説明

塗布型層間絶縁膜形成用組成物の製造方法、塗布型層間絶縁膜形成用組成物および電子デバイス

【課題】金属不純物成分が極めて低減されることにより、充分な機械強度とともに、絶縁膜のリーク電流やブレークダウン電圧に優れており、なおかつその経時安定性に優れた塗布型層間絶縁膜形成用組成物の製造方法を提供する。
【解決手段】少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材で濾過される工程を含むことを特徴とし、塗布型絶縁膜形成用組成物がカゴ型構造を含む繰り返し単位を有する高分子化合物を含有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は電子デバイスなどに用いられる誘電率、機械強度、耐熱性等の膜特性が良好な絶縁膜形成用組成物の製造方法に関し、さらには当該製造方法より製造される塗布型絶縁膜形成用組成物、該組成物を用いて得られる絶縁膜を有する電子デバイスに関する。
【背景技術】
【0002】
近年、電子材料分野においては、高集積化、多機能化、高性能化の進行に伴い、回路抵抗や配線間のコンデンサー容量が増大し、消費電力や遅延時間の増大を招いている。中でも、遅延時間の増大は、デバイスの信号スピードの低下やクロストークの発生の大きな要因となるため、この遅延時間を減少させてデバイスの高速化を図るべく、寄生抵抗や寄生容量の低減が求められている。この寄生容量を低減するための具体策の一つとして、配線の周辺を低誘電性の層間絶縁膜で被覆することが試みられている。また、層間絶縁膜には実装基板製造時の薄膜形成工程やチップ接続、ピン付け等の後工程に耐え得る優れた耐熱性やウェットプロセスに耐え得る耐薬品性が求められている。さらに、近年はAl配線から低抵抗のCu配線が導入されつつあり、これに伴い、CMP(ケミカルメカニカルポリッシング)による平坦化が一般的となっており、このプロセスに耐え得る高い機械的強度が求められている。
【0003】
一方、電子デバイスの配線周辺に使用される層間絶縁膜は上述のような誘電率低減や機械強度向上が求められるのみならず、絶縁膜として最も基本的な電気絶縁性が充分確保される必要があり、そのためには絶縁膜形成用組成物中の金属不純物の含有量を著しく低いレベルに抑制することが求められている。
絶縁膜形成用組成物中の金属不純物を除去・低減する方法としては、(1)特許文献1等に記載されているビーズ状のイオン交換樹脂を用いる方法、(2)特許文献2、特許文献3に記載されているゼータ電位が作用する濾材によって金属及び金属イオンを吸着させる方法が知られている。しかしながら、これらの技術において絶縁膜形成用組成物から金属不純物を除去する能力、また処理された塗布液の経時安定性の点で更に改善する余地があった。
【0004】
【特許文献1】特開2006−291160号公報
【特許文献2】特開2001−89661号公報
【特許文献3】特開2001−354775号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の目的は、上記の様な絶縁膜形成用材料に対する問題点に鑑み、金属不純物成分が極めて低減されることにより、絶縁膜のリーク電流やブレークダウン電圧に優れており、なおかつその経時安定性に優れた塗布型層間絶縁膜形成用組成物の製造方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明の上記目的は、下記の手段により達成されることを見出した。
(1)少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材で濾過される工程を含む塗布型絶縁膜形成用組成物の製造方法。
(2)(A)高分子化合物、(B)有機溶剤からなる塗布型絶縁膜組成物であって、少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材による濾過が行われていることを特徴とする塗布型絶縁膜形成用組成物。
(3)前記高分子化合物(A)が少なくとも一種の有機ポリマーを含む前記(2)に記載の塗布型絶縁膜形成用組成物。
(4)前記高分子化合物(A)がカゴ型構造を含む繰り返し単位を有するを少なくとも1種含有する前記(2)または(3)に記載の塗布型絶縁膜形成用組成物。
(5)前記高分子化合物(A)が重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するカゴ型構造含有モノマーの重合体であることを特徴とする前記(4)に記載の塗布型絶縁膜形成用組成物。
(6)前記カゴ型構造がアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、テトラマンタンから選択されることを特徴とする前記(4)または(5)に記載の塗布型絶縁膜形成用組成物。
【0007】
(7)前記カゴ型構造を有するモノマーが下記式(I)〜(VI)の群から選択されることを特徴とする前記(6)に記載の塗布型絶縁膜形成用組成物。
【0008】
【化1】

【0009】
式(I)〜(VI)中、X〜Xは水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基等を表す。
〜Yはハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基または炭素数0〜20のシリル基を表す。
1、mはそれぞれ独立に1〜16の整数を表し、n1、nは0〜15の整数を表す。
、m、m、mはそれぞれ独立に1〜15の整数を表し、n、n、n、nは0〜14の整数を表す。
、mはそれぞれ独立に1〜20の整数を表し、n、nは0〜19の整数を表す。
【0010】
(8)m個のRSi(O0.5)3ユニット(mは8〜16の整数を表す。Rはそれぞれ独立して非加水分解性基を表すが、少なくとも2つはビニル基またはエチニル基を含む基を示す)が、その酸素原子を共有しながら他のRSi(O0.5)3ユニットと連結して前記カゴ型構造を形成していることを特徴とする前記(4)に記載の塗布型絶縁膜形成用組成物。
【0011】
(9)前記カゴ型構造を有するモノマーが下記式(Q-1)〜(Q-6)の群から選択されることを特徴とする前記(8)に記載の塗布型絶縁膜形成用組成物。
【0012】
【化2】

【0013】
【化3】

【0014】
(上記一般式中、Rはそれぞれ独立して非加水分解性基を表す。ただし、少なくとも2つはビニル基またはエチニル基を含む基を示す)
【0015】
(10)前記(2)〜(9)のいずれかに記載の塗布型層間絶縁膜形成用組成物より形成される絶縁膜を有する電子デバイス。
【発明の効果】
【0016】
本発明の塗布型層間絶縁膜形成用組成物の製造方法は、少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン膜で濾過される工程を有し、該工程を経た組成物は、アルカリ金属、重金属の含有濃度が非常に低いため、形成した絶縁膜は、充分な機械強度とともに、誘電率、機械強度等の膜特性が良好であり、特に耐熱性に優れ、電子デバイスなどにおける層間絶縁膜として好適に利用できる。
また、単に金属除去能に優れるのみならず、塗布液の経時安定性を良化させる効果を得ることができ、塗布液を経時させた場合にも、その塗布欠陥数が少ない状態で維持される。
【発明を実施するための最良の形態】
【0017】
以下、本発明を詳細に説明する。
本発明の塗布型層間絶縁膜形成用組成物の製造方法に用いられる、少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材(以下、「イオン交換性多孔質濾材」とも呼ぶ)は、材質がポリオレフィンである多孔質濾材に、少なくとも1種のイオン交換基を有する化合物をグラフト重合によって化学結合させた濾材を指す。当該濾材は、ポリオレフィンを主鎖とするポリマー側鎖にイオン交換基が櫛状にぶら下がった化学構造となっているものである。このような濾材としては、例えば特表2001-515113号公報、特開2003-251118号公報等に記載の濾材を使用することができる。
従来、塗布型層間絶縁膜形成用組成物に含まれる金属不純物を除去する方法としては特開2006-291160号公報等に記載されているビーズ状のイオン交換樹脂を用いる方法が最も一般的である。
しかしながら、ビーズ状のイオン交換樹脂は、その金属吸着サイトとなるイオン交換基・キレート基の殆どが樹脂ビーズの細孔内に存在するため、濾液がイオン交換基・キレート基へ効果的に接触することができにくく、また濾過時の液流量(濾過速度)によって金属除去能力が大きく左右されることがあり、安定的に組成物中の金属不純物を除去することが難しかった。
【0018】
本発明の組成物製造方法に使用されるイオン交換性多孔質濾材では、その孔の内壁にイオン交換基が露出しており、その濾過過程において濾液そのものが孔内を通過するため、濾材が担持するほぼ全てのイオン交換基に濾液が接液可能であり、その金属補足能が極めて大きい。
また、このようなイオン交換性多孔質濾材を層間絶縁膜形成用組成物の濾過工程に適用すると、単に金属除去能に優れるのみならず、塗布液の経時安定性を良化させる効果を得ることができる。具体的には塗布液を経時させた場合にも、その塗布欠陥数が少ない状態で維持される。
本発明の組成物製造方法に用いられるイオン交換性多孔質濾材の形態は特に限定されないが、膜状・繊維状の何れかであることが好ましく、より好ましくは膜状である。
【0019】
本発明の組成物製造方法に用いられるイオン交換性多孔質濾材の材質はポリオレフィンであれば特に限定されないが、ポリエチレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンの何れかが好ましく、より好ましくはポリエチレン、最も好ましくはその重量平均分子量が1,000,000以上の超高分子量ポリエチレンである。
本発明の組成物製造方法に用いられるイオン交換性多孔質濾材において、その孔径は特に限定されないが、好ましくは0.01〜1000μm、より好ましくは0.1〜50μmである。
本発明の組成物製造方法においては、上述のようなイオン交換性多孔質濾材による濾過工程が少なくとも1回行われていれば特に限定されないが、必要に応じて従来から使用されているビーズ状のイオン交換樹脂のカラム通液による金属除去工程、あるいは特開2004-73294号公報に記載されているようなイオン交換樹脂のパウダー・ビーズが分散された多孔質濾材による濾過工程、ゼータ電位が作用する濾材による濾過工程と組合せて使用する事が可能である。
また、本発明の組成物製造方法の特徴であるイオン交換性多孔質濾材による濾過では、組成物に含まれる異物・パーティクルを充分なレベルまで除去することはできないため、孔径が細かいパーティクル除去用フィルターを併用することが好ましい。具体的には孔径0.001〜0.1μm、材質がPTFE,PE,PP,ナイロン製のパーティクル除去フィルターを組合せて使用することが好ましい。
【0020】
以下に本発明における塗布型層間絶縁膜形成用組成物について詳細に説明するが、本発明がこれらに限定されることを示すものではない。
(A)高分子化合物
【0021】
本発明における塗布型層間絶縁膜形成用組成物は少なくとも1種以上の高分子化合物を含有することが好ましい。この時、使用可能な高分子化合物は低誘電率で高機械的強度な膜を形成し得るものであれば特に限定されないが、有機ポリマーであることが好ましい。ここで、有機ポリマーとはそのポリマー主鎖を構成する元素がC,O,Nだけで構成されている重合体を指す。また、本発明にて、使用可能な高分子化合物は「カゴ型構造」を有する繰り返し単位を少なくとも1種有するものであることが好ましい。
【0022】
本発明における「カゴ型構造」とは、共有結合した原子で形成された複数の環によって容積が定まり、容積内に位置する点は環を通過せずには容積から離れることができないような分子を指す。例えば、アダマンタン構造はカゴ型構造と考えられる。対照的にノルボルナン(ビシクロ[2,2,1]ヘプタン)などの単一架橋を有する環状構造は、単一架橋した環状化合物の環が容積を定めないことから、カゴ型構造とは考えられない。
【0023】
本発明におけるカゴ型構造として好ましいものとして、アダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、テトラマンタン、ドデカヘドラン等の脂環炭化水素構造(以下、「カゴ型構造(a)」と呼ぶ)、もしくはm個のRSi(O0.5)3ユニット(mは8〜16の整数を表す。Rはそれぞれ独立して非加水分解性基を表すが、少なくとも2つはビニル基またはエチニル基を含む基を示す)が、その酸素原子を共有しながら他のRSi(O0.5)3ユニットと連結して形成される構造(以下、「カゴ型構造(b)」と呼ぶ。)を挙げることができる。
【0024】
カゴ型構造(a)としてはアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、テトラマンタン、ドデカヘドランが挙げられ、より好ましくはアダマンタン、ビアダマンタン、ジアマンタンであり、低誘電率である点で特にビアダマンタン、ジアマンタンが好ましい。
【0025】
本発明におけるカゴ型構造(a)は1つ以上の置換基を有していても良く、置換基の例としては、ハロゲン原子(フッ素原子、クロル原子、臭素原子、または沃素原子)、炭素数1〜10の直鎖、分岐、環状のアルキル基(メチル、t−ブチル、シクロペンチル、シクロヘキシル等)、炭素数2〜10のアルケニル基(ビニル、プロペニル等)、炭素数2〜10のアルキニル基(エチニル、フェニルエチニル等)、炭素数6〜20のアリール基(フェニル、1−ナフチル、2−ナフチル等)、炭素数2〜10のアシル基(ベンゾイル等)、炭素数2〜10のアルコキシカルボニル基(メトキシカルボニル等)、炭素数1〜10のカルバモイル基(N,N−ジエチルカルバモイル等)、炭素数6〜20のアリールオキシ基(フェノキシ等)、炭素数6〜20のアリールスルホニル基(フェニルスルホニル等)、ニトロ基、シアノ基、シリル基(トリエトキシシリル、メチルジエトキシシリル、トリビニルシリル等)等である。
【0026】
カゴ型構造(a)を有するモノマーの重合反応はモノマーに置換した重合性基によって起こる。ここで重合性基とは、モノマーを重合せしめる反応性の置換基を指す。該重合反応としてはどのような重合反応でも良いが、例えばラジカル重合、カチオン重合、アニオン重合、開環重合、重縮合、重付加、付加縮合、遷移金属触媒重合等が挙げられる。
【0027】
本発明におけるカゴ型構造(a)を有するモノマーの重合反応は非金属の重合開始剤の存在下で行うことが好ましい。例えば、重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するモノマーを、加熱によって炭素ラジカルや酸素ラジカル等の遊離ラジカルを発生して活性を示す重合開始剤存在下で重合することが出来る。
重合開始剤としては有機過酸化物または有機アゾ系化合物が好ましく用いられるが特に有機過酸化物が好ましい。
有機過酸化物としては、日本油脂株式会社より市販されているパーヘキサH等のケトンパーオキサイド類、パーヘキサTMH等のパーオキシケタール類、パーブチルH−69等のハイドロパーオキサイド類、パークミルD、パーブチルC、パーブチルD等のジアルキルパーオキサイド類、ナイパーBW等のジアシルパーオキサイド類、パーブチルZ、パーブチルL等のパーオキシエステル類、パーロイルTCP等のパーオキシジカーボネート等が好ましく用いられる。
有機アゾ系化合物としては和光純薬工業株式会社で市販されているV−30、V−40、V−59、V−60、V−65、V−70等のアゾニトリル化合物類、VA−080、VA−085、VA−086、VF−096、VAm−110、VAm−111等のアゾアミド化合物類、VA−044、VA−061等の環状アゾアミジン化合物類、V−50、VA−057等のアゾアミジン化合物類等が好ましく用いられる。
【0028】
カゴ型構造(a)を有するモノマーの重合開始剤は1種のみ、または2種以上を混合して用いてもよい。その使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
【0029】
本発明におけるカゴ型構造(a)を有するモノマーの重合反応は遷移金属触媒存在下で行うこともできる。例えば、重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するモノマーを例えばPd(PPh3)4、Pd(OAc)2等のPd系触媒、Ziegler−Natta触媒、ニッケルアセチルアセトネート等のNi系触媒、WCl等のW系触媒、MoCl等のMo系触媒、TaCl等のTa系触媒、NbCl等のNb系触媒、Rh系触媒、Pt系触媒等を用いて重合することが好ましい。
【0030】
上記の遷移金属触媒は1種のみ、または2種以上を混合して用いてもよい。
上記の遷移金属触媒の使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
【0031】
本発明におけるカゴ型構造(a)は高分子化合物(A)中にペンダント基として置換していて良く、高分子化合物(A)の主鎖の一部となっていても良いが、ポリマー主鎖の一部となっている形態がより好ましい。ここで、ポリマー主鎖の一部になっている形態とは、本ポリマーからかご化合物を除去するとポリマー鎖が切断されることを意味する。この形態においては、カゴ型構造(a)は直接単結合するかまたは適当な2価の連結基によって連結される。連結基の例としては例えば、−C(R11)(R12)−、−C(R13)=C(R14)−、−C≡C−、アリーレン基、−CO−、−O−、−SO2−、−N(R15)−、−Si(R16)(R17)−またはこれらを組み合わせた基が挙げられる。ここで、R11〜R17はそれぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基またはアリール基を表す。これらの連結基は置換基で置換されていてもよく、例えば前述の置換基が好ましい例として挙げられる。
この中でより好ましい連結基は、−C(R11)(R12)−、−CH=CH−、−C≡C−、アリーレン基、−O−、−Si(R16)(R17)−またはこれらを組み合わせた基であり、特に好ましいものは、低誘電率である見地から−C(R11)(R12)−、−CH=CH−である。
【0032】
本発明におけるカゴ型構造(a)を有する高分子化合物(A)の質量平均分子量は好ましくは1000〜500000、より好ましくは2000〜200000、特に好ましくは3000〜100000であることが好ましい。
【0033】
本発明におけるカゴ型構造(a)を有する高分子化合物(A)は、重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するモノマーの重合体であることが好ましい。さらには、下記式(I)〜(VI)で表される化合物の重合体であることがより好ましい。
【0034】
【化4】

【0035】
式(I)〜(VI)中、X〜Xはそれぞれ独立に水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル、炭素数1〜20のカルバモイル基等を表す。このうち、好ましくは水素原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基であり、より好ましくは水素原子、炭素数6〜20のアリール基であり、特に好ましくは水素原子である。
〜Yはそれぞれ独立にハロゲン原子(フッ素、塩素、臭素等)、炭素数1〜10のアルキル基、炭素数6〜20のアリール基または炭素数0〜20のシリル基を表し、より好ましくは置換基を有していても良い炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり、特に好ましくはアルキル基(メチル基等)である。
〜X、Y〜Yはさらに別の置換基で置換されていてもよい。
【0036】
1、mはそれぞれ独立に1〜16の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
1、nはそれぞれ独立に0〜15の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
、m、m、mはそれぞれ独立に1〜15の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
、n、n、nはそれぞれ独立に0〜14の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
、mはそれぞれ独立に1〜20の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
、nはそれぞれ独立に0〜19の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
【0037】
本発明におけるカゴ型構造(a)を有するモノマーは好ましくは上記式(II)、(III)、(V)、(VI)であり、より好ましくは上記式(II)、(III)であり、特に好ましくは上記式(III)で表される化合物である。
【0038】
本発明におけるカゴ型構造(a)を有する化合物は2つ以上を併用しても良く、また、本発明のカゴ型構造(a)を有するモノマーを2種以上共重合しても良い。
【0039】
本発明におけるカゴ型構造(a)を有する高分子化合物(A)は有機溶剤へ十分な溶解性を有することが好ましい。好ましい溶解度は25℃でシクロヘキサノンまたはアニソールに3質量%以上、より好ましくは5質量%以上、特に好ましくは10質量%以上である。
【0040】
本発明におけるカゴ型構造(a)を有する高分子化合物(A)としては、例えば特開平11−322929号、特開2003−12802号、特開2004−18593号記載のポリベンゾオキサゾール、特開2001−2899号に記載のキノリン樹脂、特表2003−530464号、特表2004−535497号、特表2004−504424号、特表2004−504455号、特表2005−501131号、特表2005−516382号、特表2005−514479号、特表2005−522528号、特開2000−100808号、米国特許6509415号に記載のポリアリール樹脂、特開平11−214382号、特開2001−332542号、特開2003−252982号、特開2003−292878号、特開2004−2787号、特開2004−67877号、特開2004−59444号に記載のポリアダマンタン、特開2003−252992号、特開2004−26850号に記載のポリイミド等が挙げられる。
【0041】
以下に本発明で使用できるカゴ型構造(a)を有するモノマーの具体例を記載するが、本発明はこれらに限定はされない。
【0042】
【化5】

【0043】
【化6】

【0044】
【化7】

【0045】
【化8】

【0046】
【化9】

【0047】
重合反応で使用する溶媒は、原料モノマーが必要な濃度で溶解可能であり、かつ得られる重合体から形成する膜の特性に悪影響を与えないものであればどのようなものを使用しても良い。例えば水やメタノール、エタノール、プロパノール等のアルコール系溶剤、アルコールアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、メチルベンゾエート等のエステル系溶剤、ジブチルエーテル、アニソール等のエーテル系溶剤、トルエン、キシレン、メシチレン、1,2,4,5−テトラメチルベンゼン、ペンタメチルベンゼン、イソプロピルベンゼン、1,4−ジイソプロピルベンゼン、t−ブチルベンゼン、1,4−ジ−t−ブチルベンゼン、1,3,5−トリエチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、4−t−ブチル−オルトキシレン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン等の芳香族炭化水素系溶剤、N−メチルピロリジノン、ジメチルアセトアミド等のアミド系溶剤、四塩化炭素、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼン等のハロゲン系溶剤、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶剤などが利用できる。これらの中でより好ましい溶剤はアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、アニソール、テトラヒドロフラン、トルエン、キシレン、メシチレン、1,2,4,5−テトラメチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、1,4−ジ−t−ブチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、4−t−ブチル−オルトキシレン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、より好ましくはテトラヒドロフラン、γ−ブチロラクトン、アニソール、トルエン、キシレン、メシチレン、イソプロピルベンゼン、t−ブチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、特に好ましくはγ−ブチロラクトン、アニソール、メシチレン、t−ブチルベンゼン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンである。これらは単独でも2種以上を混合して用いてもよい。
反応液中のモノマーの濃度は好ましくは1〜50重量%、より好ましくは5〜30重量%、特に好ましくは10〜20重量%である。
【0048】
本発明における重合反応の最適な条件は、重合開始剤、モノマー、溶媒の種類、濃度等によって異なるが、好ましくは内温0℃〜200℃、より好ましくは50℃〜170℃、特に好ましくは100℃〜150℃で、好ましくは1〜50時間、より好ましくは2〜20時間、特に好ましくは3〜10時間の範囲である。
また、酸素による重合開始剤の不活性化を抑制するために不活性ガス雰囲気下(例えば窒素、アルゴン等)で反応させることが好ましい。反応時の酸素濃度は好ましくは100ppm以下、より好ましくは50ppm以下、特に好ましくは20ppm以下である。
【0049】
本発明におけるカゴ型構造(a)を有するモノマーは、例えば市販のジアマンタンを原料として、臭化アルミニウム触媒存在下または非存在下で臭素と反応させて臭素原子を所望の位置に導入、続けて臭化アルミニウム、塩化アルミニウム、塩化鉄等のルイス酸の存在下で臭化ビニルとフリーデルクラフツ反応させて2,2−ジブロモエチル基を導入、続けて強塩基で脱HBr化してエチニル基に変換することで合成することができる。具体的にはMacromolecules.,1991年24巻5266〜5268頁、1995年28巻5554〜5560、Journal of Organic Chemistry.,39,2995-3003(1974)等に記載された方法に準じて合成することが出来る。
また、末端アセチレン基の水素原子をブチルリチウム等でアニオン化して、これにハロゲン化アルキルやハロゲン化シリルを反応させることによって、アルキル基やシリル基を導入することが出来る。
【0050】
一方、本発明におけるカゴ型構造の好ましい形態として、m個のRSi(O0.5)3ユニット(mは8〜16の整数を表す。Rはそれぞれ独立して非加水分解性基を表すが、少なくとも2つはビニル基またはエチニル基を含む基を示す)が、その酸素原子を共有しながら他のRSi(O0.5)3ユニットと連結して形成されるカゴ型構造(b)を挙げることができる。
【0051】
ここで、Rは非加水分解性基を表す。
ここで言う非加水分解性基とは、室温で、1当量の中性水と1時間接触させた場合に、95%以上残存する基である。
Rのうち、少なくとも2つはビニル基またはエチニル基を含む基である。Rの非加水分解性基の例としては、アルキル基(メチル、t−ブチル、シクロペンチル、シクロヘキシル等)、アリール基(フェニル、1−ナフチル、2−ナフチル等)、ビニル基、エチニル基、アリル基等があげられる。
【0052】
Rで表される基のうち、少なくとも2つが、ビニル基またはエチニル基を含む基であり、少なくとも2つがビニル基であることが好ましい。Rで表される基がビニル基またはエチニル基を含む場合には、ビニル基またはエチニル基は、直接もしくは2価の連結基を介して、Rが結合するケイ素原子に結合することが好ましい。2価の連結基としては、−[C(R11)(R12)]−(R11およびR12はそれぞれ独立して水素原子、メチル基、またはエチル基を表し、kは1〜6の整数を表す。)、−CO−、−O−、−N(R13)−(R13は水素原子、メチル基、またはエチル基を表す。)、−S−、およびこれらを任意に組み合わせてできる2価の連結基が挙げられ、−[C(R11)(R12)]−、−O−、またはこれらを任意に組み合わせてできる2価の連結基が好ましい。カゴ型構造(b)において、ビニル基またはエチニル基はRが結合するケイ素原子に直接結合することが好ましい。
カゴ型構造(b)におけるRのうち、少なくとも2つのビニル基が、Rが結合するケイ素原子に直接結合することがさらに好ましく、さらにRは全てビニル基であることが特に好ましい。
【0053】
カゴ型構造(b)としては、下記式(Q-1)〜(Q-6)で表される構造体が好ましい。
【0054】
【化10】

【0055】
【化11】

【0056】
上記一般式(Q-1)〜(Q-6)中、Rは非加水分解性基を表す。
Rの具体例としては上述したものと同様のものを挙げることができる。
【0057】
カゴ型構造(b)の具体例としては、例えば、下記のものが挙げられるが、これらに限定されるものではない。
【0058】
【化12】

【0059】
【化13】

【0060】
【化14】

【0061】
カゴ型構造(b)は、市販のものを使用してもよいし、公知の方法で合成してもよい。
【0062】
本発明における組成物には、複数の異なったカゴ型構造(b)の重合物が含まれていても良い。その場合、複数の異なったカゴ型構造(b)からなる共重合体であってもよいし、ホモポリマーの混合物であってもよい。本発明の組成物が、複数の異なったカゴ型構造(b)からなる共重合体を含む場合、m=8、10、および12から選ばれる2種以上のカゴ型構造(b)の混合物の共重合体であることが好ましい。
また、カゴ型構造(b)と別のモノマーとの共重合物を高分子化合物(A)として用いることもできる。その場合に用いられる別のモノマーとしては、重合性炭素−炭素不飽和結合を複数有する化合物が好ましい。その例としては、ビニルシラン類、ビニルシロキサン類、フェニルアセチレン類、もしくは上述した一般式(I)〜(VI)のモノマーを適用できる。
【0063】
カゴ型構造(b)を含むモノマーより構成される重合体を合成するための方法としては、前記モノマーを溶媒に溶解させ、重合開始剤を添加してビニル基等を反応させることが好ましい。
重合反応としてはどのような重合反応でも良いが、例えばラジカル重合、カチオン重合、アニオン重合、開環重合、重縮合、重付加、付加縮合、遷移金属触媒重合等が挙げられる。
【0064】
カゴ型構造(b)を含むモノマーの重合反応は非金属の重合開始剤の存在下で行うことが好ましい。例えば、加熱によって炭素ラジカルや酸素ラジカル等の遊離ラジカルを発生して活性を示す重合開始剤の存在下で重合することが出来る。
重合開始剤としては有機過酸化物または有機アゾ系化合物が好ましく用いられるが特に有機過酸化物が好ましい。
有機過酸化物としては、日本油脂株式会社より市販されているパーヘキサH等のケトンパーオキサイド類、パーヘキサTMH等のパーオキシケタール類、パーブチルH−69等のハイドロパーオキサイド類、パークミルD、パーブチルC、パーブチルD等のジアルキルパーオキサイド類、ナイパーBW等のジアシルパーオキサイド類、パーブチルZ、パーブチルL等のパーオキシエステル類、パーロイルTCP等のパーオキシジカーボネート、アルケマ吉冨社より市販されているルペロックス11等が好ましく用いられる。
有機アゾ系化合物としては和光純薬工業株式会社で市販されているV−30、V−40、V−59、V−60、V−65、V−70等のアゾニトリル化合物類、VA−080、VA−085、VA−086、VF−096、VAm−110、VAm−111等のアゾアミド化合物類、VA−044、VA−061等の環状アゾアミジン化合物類、V−50、VA−057等のアゾアミジン化合物類等が好ましく用いられる。
【0065】
カゴ型構造(b)を含むモノマーの重合反応に使用する重合開始剤は1種のみ、または2種以上を混合して用いてもよい。
その使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
【0066】
カゴ型構造(b)を含むモノマーの重合反応で使用する溶媒は、モノマーが必要な濃度で溶解可能であり、かつ得られる重合体から形成する膜の特性に悪影響を与えないものであればどのようなものを使用しても良い。例えば水やメタノール、エタノール、プロパノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、メチルベンゾエート等のエステル系溶剤、ジブチルエーテル、アニソール、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン、1,2,4,5−テトラメチルベンゼン、ペンタメチルベンゼン、イソプロピルベンゼン、1,4−ジイソプロピルベンゼン、t−ブチルベンゼン、1,4−ジ−t−ブチルベンゼン、1,3,5−トリエチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、4−t−ブチル−オルトキシレン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン等の芳香族炭化水素系溶剤、N−メチルピロリジノン、ジメチルアセトアミド等のアミド系溶剤、四塩化炭素、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼン等のハロゲン系溶剤、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶剤などが利用できる。これらの中でより好ましい溶剤はアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、アニソール、テトラヒドロフラン、トルエン、キシレン、メシチレン、1,2,4,5−テトラメチルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、1,4−ジ−t−ブチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、4−t−ブチル−オルトキシレン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、より好ましくはテトラヒドロフラン、γ−ブチロラクトン、アニソール、トルエン、キシレン、メシチレン、イソプロピルベンゼン、t−ブチルベンゼン、1,3,5−トリ−t−ブチルベンゼン、1−メチルナフタレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、特に好ましくはγ−ブチロラクトン、アニソール、メシチレン、t−ブチルベンゼン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンである。これらは単独でも2種以上を混合して用いてもよい。
反応液中のモノマー濃度は、好ましくは30質量%以下であり、より好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは1質量%以下であり、最も好ましくは0.5質量%以下である。重合時のモノマーの濃度が低い程、重量平均分子量および数平均分子量が大きく、有機溶剤に可溶な組成物を合成することができる。
【0067】
カゴ型構造(b)を含むモノマーの重合反応の最適な条件は、重合開始剤、モノマー、溶媒の種類、濃度等によって異なるが、好ましくは内温0℃〜200℃、より好ましくは40℃〜170℃、特に好ましくは70℃〜150℃で、好ましくは1〜50時間、より好ましくは2〜20時間、特に好ましくは3〜10時間の範囲である。
また、酸素による重合開始剤の不活性化を抑制するために不活性ガス雰囲気下(例えば窒素、アルゴン等)で反応させることが好ましい。反応時の酸素濃度は好ましくは100ppm以下、より好ましくは50ppm以下、特に好ましくは20ppm以下である。
重合して得られるポリマーの重量平均分子量(Mw)の好ましい範囲は1000〜1000000、より好ましくは2000〜500000、特に好ましくは3000〜100000である。
【0068】
カゴ型構造(b)を含むモノマーより構成される重合体は有機溶媒に可溶であることが好ましい。ここで、有機溶媒に可溶であるとは、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルおよびγ−ブチロラクトンから選ばれる溶媒に、25℃で、5質量%以上溶解することと定義するが10質量%以上溶解することが好ましく、20質量%以上溶解することが、より好ましい。
【0069】
GPCチャートから計算した、カゴ型構造(b)を含むモノマーより構成される重合体の分散度(Mw/Mn)は1〜15が好ましく、1〜10が、より好ましく、1〜5が最も好ましい。Mwが同じであった場合、分散度が小さいほうが、密度、屈折率および誘電率の低い膜を形成することができる。
【0070】
上述した物性を有する組成物を製造する方法としては、カゴ型構造(b)を含むモノマーを重合させる際に、高希釈条件を用いる、連鎖移動剤を添加する、反応溶剤を最適化する、重合開始剤を連続添加する、モノマーを連続添加する、ラジカルトラップ剤を添加するなどの方法が挙げられる。
また、カゴ型構造(b)を含むモノマーを重合させた後、不溶物をろ過する、カラムクロマトグラフィーを用いて精製する、再沈殿処理により精製する、などの方法を用いることも可能である。
ここで、再沈殿処理とは、必要に応じて反応溶媒を留去した反応液に、貧溶媒(本発明の組成物を実質的に溶解しない溶媒)を加える、もしくは必要に応じて反応溶媒を留去した反応液を、貧溶媒に滴下することにより、本発明の組成物を析出させ、これをろ取することである。
貧溶媒としては、アルコール類(メタノール、エタノール、イソプロピルアルコール)などが好ましい。貧溶媒として、本発明の組成物の等質量〜200倍質量を用いることが好ましく、2倍質量〜50倍質用いることが、より好ましい。
【0071】
カゴ型構造(b)を含むモノマーより構成される高分子化合物を使用する場合、重合に用いた反応溶媒を留去することにより、前記高分子化合物を濃縮して用いることが好ましい。また、再沈殿処理を行った後に用いることが好ましい。
濃縮する方法としては、ロータリーエバポレーター、蒸留装置または重合反応を行った反応装置などを用いて、反応液を加熱および/または減圧することによって行うことが好ましい。濃縮時の反応液の温度は、一般的には0℃〜180℃であり、10℃〜140℃が好ましく、20℃〜100℃が、より好ましく、30℃〜60℃が最も好ましい。濃縮時の圧力は、一般的に0.001トール〜760トールであり、好ましくは0.01トール〜100トールであり、より好ましくは、0.01トール〜10トールである。
反応液を濃縮する際は、反応液中の固形分含量が10質量%以上になるようになるまで濃縮することが好ましく、30%重量以上になるまで濃縮することがより好ましく、50%重量以上になるまで濃縮することが最も好ましい。
【0072】
本発明における絶縁膜形成用組成物には、上述のような高分子化合物を単独で使用しても2種以上を混合して使用してもよい。
【0073】
(B)塗布溶剤
本発明における塗布型絶縁膜形成用組成物に用いられる塗布溶剤は特に限定はされないが、例えばメタノール、エタノール、2−プロパノール、1−ブタノール、2−エトキシメタノール、3−メトキシプロパノール,1−メトキシー2−プロパノール等のアルコール系溶剤、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、2−ペンタノン、3−ペンタノン、2−ヘプタノン、3−ヘプタノン、シクロペンタノン,シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル系溶剤、ジイソプロピルエーテル、ジブチルエーテル、エチルプロピルエーテル、アニソール、フェネトール、ベラトロール等のエーテル系溶剤、メシチレン、エチルベンゼン、ジエチルベンゼン、プロピルベンゼン、t−ブチルベンゼン等の芳香族炭化水素系溶剤、N−メチルピロリジノン、ジメチルアセトアミド等のアミド系溶剤などが挙げられ、これらは単独でも2種以上を混合して用いてもよい。
より好ましい塗布溶剤は、1−メトキシー2−プロパノール、プロパノール、アセチルアセトン,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル,乳酸メチル、乳酸エチル、γ−ブチロラクトン、アニソール、メシチレン、t−ブチルベンゼンであり、特に好ましくは1−メトキシー2−プロパノール,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル,γ−ブチロラクトン、t−ブチルベンゼン,アニソールである。
(C)界面活性剤
【0074】
本発明における塗布型絶縁膜形成用組成物には塗布膜の膜厚均一性等の調整のため、適宜、界面活性剤を添加し得る。添加し得る界面活性剤(C)としては、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤などが挙げられ、さらにシリコーン系界面活性剤、含フッ素系界面活性剤、ポリアルキレンオキシド系界面活性剤、アクリル系界面活性剤が挙げられる。本発明で使用する界面活性剤は、一種類でも良いし、二種類以上でも良い。界面活性剤としては、シリコーン系界面活性剤、ノニオン系界面活性剤、含フッ素系界面活性剤、アクリル系界面活性剤が好ましく、特にシリコーン系界面活性剤が好ましい。
【0075】
本発明で使用する界面活性剤の添加量は、膜形成塗布液の全量に対して0.01質量%以上1質量%以下であることが好ましく、0.1質量%以上0.5質量%以下であることが更に好ましい。
【0076】
本発明において、シリコン系界面活性剤とは、少なくとも1原子のSi原子を含む界面活性剤である。本発明に使用するシリコン系界面活性剤としては、いかなるシリコン系界面活性剤でもよく、アルキレンオキシド及びジメチルシロキサンを含む構造であることが好ましい。下記化学式を含む構造であることが更に好ましい。
【0077】
【化15】

【0078】
式中Rは水素原子または炭素原子数1〜5のアルキル基であり、xは1〜20の整数であり、m、nはそれぞれ独立に2〜100の整数である。複数のRは同じでも異なっていてもよい。
【0079】
本発明に使用するシリコン系界面活性剤としては、例えばBYK306、BYK307(ビックケミー社製)、SH7PA、SH21PA、SH28PA、SH30PA(東レ・ダウコーニング・シリコーン社製)、TroysolS366(トロイケミカル社製)等を挙げることができる。
【0080】
本発明に使用するノニオン系界面活性剤としては、いかなるノニオン系界面活性剤でもよい。例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアリールエーテル類、ポリオキシエチレンジアルキルエステル類、ソルビタン脂肪酸エステル類、脂肪酸変性ポリオキシエチレン類、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体等を挙げることができる。
【0081】
本発明に使用する含フッ素系界面活性剤としては、いかなる含フッ素系界面活性剤でもよい。例えば、パーフルオルオクチルポリエチレンオキシド、パーフルオルデシルポリエチレンオキシド、パーフルオルドデシルポリエチレンオキシド等が挙げられる。
【0082】
本発明に使用するアクリル系界面活性剤としては、いかなるアクリル系界面活性剤でもよい。例えば、(メタ)アクリル酸系共重合体等が挙げられる。
【0083】
(D)その他の絶縁膜物性調整剤
更に、本発明の塗布型絶縁膜形成用組成物には、得られる絶縁膜の特性(耐熱性、誘電率、機械強度、塗布性、密着性等)を損なわない範囲で、ラジカル発生剤、コロイド状シリカ、シランカップリング剤、密着剤、空孔形成剤などの添加剤を添加してもよい。
【0084】
本発明にいかなるコロイド状シリカを使用してもよい。例えば、高純度の無水ケイ酸を親水性有機溶媒もしくは水に分散した分散液であり、通常、平均粒径5〜30nm、好ましくは10〜20nm、固形分濃度が5〜40重量%程度のものである。
【0085】
本発明にいかなるシランカップリング剤を使用してもよいが、例えば、3−グリシジロキシプロピルトリメトキシシラン、3−アミノグリシジロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、1−メタクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリエトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン等が挙げられる。本発明で使用するシランカップリング剤は、一種類でも良いし、二種類以上でも良い。
【0086】
本発明にはいかなる密着促進剤を使用してもよいが、例えば、トリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、トリメトキシビニルシラン、γ-アミノプロピルトリエトキシシラン、アルミニウムモノエチルアセトアセテートジイソプロピレート、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、トリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン、ヘキサメチルジシラザン、N,N’−ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール、ビニルトリクロロシラン、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン、1,1−ジメチルウレア、1,3−ジメチルウレア、チオ尿素化合物等を挙げることができる。官能性シランカップリング剤が密着促進剤として好ましい。密着促進剤の好ましい使用量は、全固形分100重量部に対して10重量部以下、特に0.05〜5重量部であることが好ましい。
【0087】
本発明における塗布型絶縁膜形成用組成物には膜の機械強度の許す範囲内で、空孔形成因子を使用して、膜を多孔質化し、低誘電率化を図ることができる。
空孔形成剤となる添加剤としての空孔形成因子としては特に限定はされないが、非金属化合物が好適に用いられ、膜形成用塗布液で使用される溶剤との溶解性、本発明重合体との相溶性を同時に満たすことが必要である。またこの空孔形成剤の沸点若しくは分解温度は、好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃である。分子量としては、200〜50000であることが好ましく、より好ましくは300〜10000、特に好ましくは400〜5000である。添加量は膜を形成する重合体に対して、質量%で好ましくは0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1%〜20%である。また、空孔形成因子として、重合体の中に分解性基を含んでいても良く、その分解温度は好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃であると良い。分解性基の含有率は膜を形成する重合体に対して、モル%で0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1〜20%である。
【0088】
本発明における塗布型絶縁膜形成用組成物に含まれる全固形分濃度は、好ましくは0.1〜50質量%であり、より好ましくは0.5〜15質量%であり、特に好ましくは1〜10質量%である。
【0089】
本発明における塗布型絶縁膜形成用組成物には不純物としての金属含量が充分に少ないことが好ましい。塗布型絶縁膜形成用組成物の金属濃度はICP−MS法にて高感度に測定可能であり、その場合の遷移金属以外の金属含有量は好ましくは30ppm以下、より好ましくは3ppm以下、特に好ましくは300ppb以下である。また、遷移金属に関しては酸化を促進する触媒能が高く、プリベーク、熱硬化プロセスにおいて酸化反応によって本発明で得られた膜の誘電率を上げてしまうという観点から、含有量がより少ないほうがよく、好ましくは10ppm以下、より好ましくは1ppm以下、特に好ましくは100ppb以下である。
塗布型絶縁膜形成用組成物の金属濃度は本発明の塗布型絶縁膜形成用組成物を用いて得た膜に対して全反射蛍光X線測定を行うことによっても評価できる。X線源としてW線を用いた場合、金属元素としてK、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pdが観測可能であり、それぞれ100×1010cm−2以下が好ましく、より好ましくは50×1010cm−2以下、特に好ましくは10×1010cm−2以下である。また、ハロゲンであるBrも観測可能であり、残存量は10000×1010cm−2以下が好ましく、より好ましくは1000×1010cm−2以下、特に好ましくは400×1010cm−2以下である。また、ハロゲンとしてClも観測可能であるが、CVD装置、エッチング装置等へダメージを与えるという観点から残存量は100×1010cm−2以下が好ましく、より好ましくは50×1010cm−2以下、特に好ましくは10×1010cm−2以下である。
【0090】
本発明における塗布型絶縁膜形成用組成物を使用して得られる膜は、塗布型絶縁膜形成用組成物をスピンコーティング法、ローラーコーティング法、ディップコーティング法、スキャン法等の任意の方法により基板に塗布した後、溶剤を加熱処理で除去することにより形成することができる。基板に塗布する方法としては,スピンコーティング法,スキャン法によるものが好ましい。特に好ましくは,スピンコーティング法によるものである。スピンコーティングについては,市販の装置を使用できる。例えば,クリーントラックシリーズ(東京エレクトロン製),D-スピンシリーズ(大日本スクリーン製),SSシリーズあるいはCSシリーズ(東京応化工業製)等が好ましく使用できる。スピンコート条件としては,いずれの回転速度でもよいが,膜の面内均一性の観点より,300mmシリコン基板においては1300rpm程度の回転速度が好ましい。また組成物溶液の吐出方法においては,回転する基板上に組成物溶液を吐出する動的吐出,静止した基板上へ組成物溶液を吐出する静的吐出のいずれでもよいが,膜の面内均一性の観点より,動的吐出が好ましい。また,組成物の消費量を抑制する観点より,予備的に組成物の主溶剤のみを基板上に吐出して液膜を形成した後,その上から組成物を吐出するという方法を用いることもできる。スピンコート時間については特に制限はないが,スループットの観点から180秒以内が好ましい。また,基板の搬送の観点より,基板エッジ部の膜を残存させないための処理(エッジリンス,バックリンス)をすることも好ましい。
熱処理の方法は、特に限定されないが、一般的に使用されているホットプレート加熱、ファーネス炉を使用した加熱方法、RTP(Rapid Thermal Processor)等によるキセノンランプを使用した光照射加熱等を適用することができる。好ましくは,ホットプレート加熱,ファーネスを使用した加熱方法である。ホットプレートとしては市販の装置を好ましく使用でき,クリーントラックシリーズ(東京エレクトロン製),D-スピンシリーズ(大日本スクリーン製),SSシリーズあるいはCSシリーズ(東京応化工業製)等が好ましく使用できる。ファーネスとしては,αシリーズ(東京エレクトロン製)等が好ましく使用できる。
【0091】
本発明における塗布型絶縁膜形成用組成物に含まれる高分子化合物(A)は基盤上に塗布した後に加熱処理することによって硬化させることが特に好ましい。例えば高分子化合物(A)中に残存する炭素三重結合や二重結合の後加熱時の重合反応が利用できる。この後加熱処理の条件は、好ましくは100〜450℃、より好ましくは200〜420℃、特に好ましくは350℃〜400℃で、好ましくは1分〜2時間、より好ましくは10分〜1.5時間、特に好ましくは30分〜1時間の範囲である。後加熱処理は数回に分けて行っても良い。また、この後加熱は酸素による熱酸化を防ぐために窒素雰囲気下で行うことが特に好ましい。
【0092】
また、本発明では加熱処理ではなく高エネルギー線を照射することで重合体中に残存する炭素三重結合もしくは二重結合の重合反応を起こして硬化させても良い。高エネルギー線とは、電子線、紫外線、X線などが挙げられるが、特にこれらの方法に限定されるものではない。
高エネルギー線として、電子線を使用した場合のエネルギーは0〜50keVが好ましく、より好ましくは0〜30keV、特に好ましくは0〜20keVである。電子線の総ドーズ量は好ましくは0〜5μC/cm 2 、より好ましくは0〜2μC/cm2 、特に好ましくは0〜1μC/cm2である。電子線を照射する際の基板温度は0〜450℃が好ましく、より好ましくは0〜400℃、特に好ましくは0〜350℃である。
圧力は好ましくは0〜133kPa、より好ましくは0〜60kPa、特に好ましくは0〜20kPaである。
本発明における重合物の酸化を防止するという観点から、基盤周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、電子線との相互作用で発生するプラズマ、電磁波、化学種との反応を目的に酸素、炭化水素、アンモニアなどのガスを添加してもよい。本発明における電子線照射は複数回行ってもよく、この場合は電子線照射条件を毎回同じにする必要はなく、毎回異なる条件で行ってもよい。
高エネルギー線として紫外線を用いてもよい。紫外線を用いる際の照射波長領域は160〜400nmが好ましく、その出力は基板直上において0.1〜2000mWcm−2が好ましい。紫外線照射時の基板温度は250〜450℃が好ましく、より好ましくは250〜400℃、特に好ましくは250〜350℃である。本発明の重合物の酸化を防止するという観点から、基盤周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、その際の圧力は0〜133kPaが好ましい。
【0093】
本発明における塗布型絶縁膜形成用組成物を使用して得られる膜は、半導体用層間絶縁膜として使用する際、その配線構造において、配線側面にはメタルマイグレーションを防ぐためのバリア層があっても良く、また、配線や層間絶縁膜の上面底面にはCMP(化学的機械的研磨)での剥離を防ぐキャップ層、層間密着層の他、エッチングストッパー層等があってもよく、更には層間絶縁膜の層を必要に応じて他種材料で複数層に分けても良い。
【0094】
本発明における塗布型絶縁膜形成用組成物を使用して得られる膜は,銅配線あるいはその他の目的でエッチング加工をすることができる。エッチングとしてはウエットエッチング,ドライエッチングのいずれでもよいが,ドライエッチングが好ましい。ドライエッチングは,アンモニア系プラズマ,フルオロカーボン系プラズマのいずれもが適宜使用できる。これらプラズマにはArだけでなく,酸素,あるいは窒素,水素,ヘリウム等のガスを用いることができる。また,エッチング加工後に,加工に使用したフォトレジスト等を除く目的でアッシングすることもでき,さらにはアッシング時の残渣を除くため,洗浄することもできる。
【0095】
本発明における塗布型絶縁膜形成用組成物を使用して得られる膜は,銅配線加工後に,銅めっき部を平坦化するためCMP(化学的機械的研磨)をすることができる。CMPスラリー(薬液)としては,市販のスラリー(例えば,フジミ製,ロデールニッタ製,JSR製,日立化成製等)を適宜使用できる。また,CMP装置としては市販の装置(アプライドマテリアル社製,荏原製作所製等)を適宜使用することができる。さらにCMP後のスラリー残渣除去のため,洗浄することができる。
【0096】
本発明における塗布型絶縁膜形成用組成物を使用して得られる膜は、多様の目的に使用することが出来る。例えばLSI、システムLSI、DRAM、SDRAM、RDRAM、D−RDRAM等の半導体装置、マルチチップモジュール多層配線板等の電子部品における絶縁皮膜として好適であり、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜の他、LSIにおけるパッシベーション膜、α線遮断膜、フレキソ印刷版のカバーレイフィルム、オーバーコート膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜等として使用することが出来る。
さらに、別の用途として本発明の膜に電子ドナーまたはアクセプターをドープすることによって導電性を付与し、導電性膜として使用することも出来る。
【実施例】
【0097】
以下に本発明を実施例によってさらに具体的に説明が、勿論本発明の範囲は、これらによって限定されるものではない。
【0098】
<合成例1>
Macromolecules.,5266(1991)に記載の合成法に従って、4,9−ジエチニルジアマンタン(a)を合成した。次に、4,9−ジエチニルジアマンタン(a)2gとジクミルパーオキサイド(パークミルD、日本油脂製)0.22g、t−ブチルベンゼン10mlを窒素気流下で内温150℃で7時間攪拌、重合した。反応液を室温にした後、イソプロピルアルコール60mlに添加、析出した固体を濾過して、イソプロピルアルコールで十分に洗浄して所望の4,9−ジエチニルジアマンタン(a)の重合体を得た。
【0099】
<合成例2〜7>
合成例1の4,9−ジエチニルジアマンタン(a)の代わりに、3,3,3’,3’−トリエチニル−1,1’−ビアダマンタン(b)、3,3‘−ジエチニル−1,1’−ビアダマンタン(c)、1,6−ジエチニルジアマンタン(d)、1,4,6,9−テトラエチニルジアマンタン(e)、例示化合物(I−a)、例示化合物(I−d)を使用する以外は上記の合成例1と同様の方法にて各重合体を得た。
【0100】
<合成例8>
3,3’−(オキシジ−1,4−フェニレン)ビス(2,4,5-トリフェニルシクロペンタジエノン)(化合物(f)、782.4g、1.0モル)、および1,3,5-トリス(フェニルエチニル)ベンゼン(化合物(g)、378.2g(1.00モル))を4リットルのγ−ブチロラクトンに溶解させ、当溶液をフラスコ内に加えた。このフラスコ内を窒素置換した上で、溶液を200℃に加熱攪拌した。12時間加熱後、室温まで冷却した溶液を5リットルのエタノールに加えた。この時に析出して得られる粉状固体として化合物(f)と化合物(g)のDiels-Alder反応体としてのポリマーを得た。
【0101】
〔実施例1〜37、比較例1〜2〕
<塗布型絶縁膜形成用組成物の調製>
上記合成例にて得られた各重合体を固形分3.0重量%となるようシクロヘキサノンに完全溶解させて塗布液を調製した。この塗布原液を下記表1に示す各種濾過フィルターを通した濾過を行うことで塗布膜形成用組成物の調製を行った。ここで、濾過フィルターは表1に示したイオン除去フィルターに加え、パーティクル除去フィルターとして孔径0.02μmの非対称構造ナイロンフィルター(日本ポール製)を併用して濾過した。これら金属除去フィルターおよびパーティクル除去フィルターによる濾過工程は室温20〜30℃、湿度40〜60%RHの範囲に入るような環境下で実施した。このような製造手法にて得られた組成物について、偏光ゼーマン原子吸光分光光度計(日立製、Z−9000)を用いてNa, K, Fe, Zn, Ptの含有量を定量した。その結果を表1に示す。
【0102】
<絶縁耐性の測定>
上述の要領にて調整した塗布液を東京エレクトロン製スピンコーターACT-8 SODを用いて基板抵抗値7 Ω/cmの8インチベアシリコンウェハー上にスピン塗布した。塗布後の膜を110℃60秒間、続いて200℃60秒ベークを行った後、窒素置換した400℃のクリーンオーブン内にて1時間焼成することで膜厚100nmの塗布膜を得た。得られた膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横河ヒューレットパッカード製のHP4285A LCR meterを用いて1MHzにおける電気容量値から算出した。
また得られた膜に対してフォーディメンジョンズ製水銀プローバおよび横河ヒューレットパッカード製のHP4285A LCR meterを用いて電圧を徐々に印加し、絶縁膜における電界強度が 1.0MV/cmである時のリーク電流(leak current)を測定した。また、ある程度まで印加電圧を上昇させるとリーク電流が1E-3 A/cm2を超えるが、この時点で絶縁膜に印加されている電圧をブレークダウン電圧(breakdown voltage)として測定した。なお、上述のリーク電流とブレークダウン電圧は何れも8インチウェハー上の20点で測定を行い、その平均として測定値を求めた。下記表1に評価結果を纏めて示す。
【0103】
<経時した組成物の塗布欠陥数評価>
8インチシリコンウェハー上に、表1に示す各組成物の溶液を1ヶ月間23℃で経時させた液をピン塗布し、110℃/60秒ベークと200℃/60秒ベークを行って膜厚80nmの絶縁膜を得た。このようにして得られた絶縁膜について、ケーエルエー・テンコール(株)製ウェハー欠陥検査装置KLA-2360機にて塗布欠陥を検査し、得られた1次欠陥数を塗布欠陥数とした。その結果を表1に纏めて示す。
【0104】
【表1】

【0105】
(註)
(A):日本ポール製、ion kleen SL(多孔質ポリエチレンに陽イオン交換基がグラフトされた濾材
(B):日本インテグリス製、protego CF(多孔質ポリエチレンに陽イオン交換基がグラフトされた濾材
(C):日本ポール製、ion kleen AN(多孔質ポリプロピレンに陰イオン交換樹脂を分散させた濾材
(D):三菱化学製、ダイヤイオン(R)CR20(キレート樹脂)を超純水および電子グレードのシクロヘキサノンで洗浄し乾燥させたビーズを充填したカラム
(E):オルガノ製、アンバーリスト 15DRY(陽イオン交換樹脂)を超純水および電子グレードのシクロヘキサノンで洗浄し乾燥させたビーズを充填したカラム
【0106】
上記表1に示すとおり、本発明の塗布型絶縁膜形成用組成物の製造方法によれば、組成物に含まれる金属不純物が低減されており、そのリーク電流・ブレークダウン電圧といった絶縁耐性に優れており、さらに塗布液の経時安定性に優れていることが判る。

【特許請求の範囲】
【請求項1】
少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材で濾過される工程を含む塗布型絶縁膜形成用組成物の製造方法。
【請求項2】
(A)高分子化合物、(B)有機溶剤からなる塗布型絶縁膜組成物であって、少なくとも一種のイオン交換基を有する構造体がグラフトされている多孔質ポリオレフィン濾材による濾過が行われていることを特徴とする塗布型絶縁膜形成用組成物。
【請求項3】
前記高分子化合物(A)が少なくとも一種の有機ポリマーを含む請求項2に記載の塗布型絶縁膜形成用組成物。
【請求項4】
前記高分子化合物(A)がカゴ型構造を含む繰り返し単位を有するを少なくとも1種含有する請求項2または3に記載の塗布型絶縁膜形成用組成物。
【請求項5】
前記高分子化合物(A)が重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するカゴ型構造含有モノマーの重合体であることを特徴とする請求項4に記載の塗布型絶縁膜形成用組成物。
【請求項6】
前記カゴ型構造がアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、テトラマンタンから選択されることを特徴とする請求項4または5に記載の塗布型絶縁膜形成用組成物。
【請求項7】
前記カゴ型構造を有するモノマーが下記式(I)〜(VI)の群から選択されることを特徴とする請求項6に記載の塗布型絶縁膜形成用組成物。
【化1】

式(I)〜(VI)中、X〜Xは水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基等を表す。
〜Yはハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基または炭素数0〜20のシリル基を表す。
1、mはそれぞれ独立に1〜16の整数を表し、n1、n5は0〜15の整数を表す。
、m、m、mはそれぞれ独立に1〜15の整数を表し、n、n、n、nは0〜14の整数を表す。
、mはそれぞれ独立に1〜20の整数を表し、n、nは0〜19の整数を表す。
【請求項8】
m個のRSi(O0.5)3ユニット(mは8〜16の整数を表す。Rはそれぞれ独立して非加水分解性基を表すが、少なくとも2つはビニル基またはエチニル基を含む基を示す)が、その酸素原子を共有しながら他のRSi(O0.5)3ユニットと連結して前記カゴ型構造を形成していることを特徴とする請求項4に記載の塗布型絶縁膜形成用組成物。
【請求項9】
前記カゴ型構造を有するモノマーが下記式(Q-1)〜(Q-6)の群から選択されることを特徴とする請求項8に記載の塗布型絶縁膜形成用組成物。
【化2】

【化3】

(上記一般式中、Rはそれぞれ独立して非加水分解性基を表す。ただし、少なくとも2つはビニル基またはエチニル基を含む基を示す)
【請求項10】
請求項2〜9の何れかに記載の塗布型絶縁膜形成用組成物より形成される絶縁膜を有する電子デバイス。

【公開番号】特開2008−239690(P2008−239690A)
【公開日】平成20年10月9日(2008.10.9)
【国際特許分類】
【出願番号】特願2007−79149(P2007−79149)
【出願日】平成19年3月26日(2007.3.26)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】