説明

感光性基板に凹凸パターンを形成する方法及び干渉縞パターン露光装置

【課題】大きな面積に波長と同程度の微細な凹凸パターンを精度良く容易に形成する凹凸パターン形成方法を提供する。
【解決手段】2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光し、前記感光性基板に凹凸パターンを形成する方法において、光軸に垂直な方向の光束幅が互いに異なる2つの帯状光束を、それぞれの前記帯状光束の短い方を一致するように重ね合わせて、前記帯状光束の幅の長い方向に周期を有する干渉縞パターンを形成する工程と、前記感光性基板の表面に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に、前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、感光性基板に凹凸パターンを形成する方法及び干渉縞パターン露光装置に関する。
【背景技術】
【0002】
有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶ。)は、自己発光素子であるため、高コントラストなディスプレイ用光源、バックライトや照明用の光源として期待されており、より発光輝度が高く、輝度ムラが少なく、さらに破壊し難い等のより高性能、高品質な有機EL素子が求められている。
【0003】
また、有機EL素子は、製造工程の面において、真空装置を使用せず、インクジェット法、印刷法等により作製できる。このため、素子を広い面積に製作することに対して有利であることから大型ディスプレイ用発光素子として期待され、各社で開発が進められている。
【0004】
有機EL素子は、空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に知られている。これは、臨界角以上の角度で界面(透明基板と空気との界面)に入射する光は、全反射を起こし有機EL素子の外部に取り出すことができないことや、透明導電膜ないし発光層と透明基板との間で光が全反射を起こし、光が透明導電膜ないし発光層を導波し、結果として、光が有機EL素子の側面方向に逃げるためである。このため、有機EL素子では、有機EL素子の外部に光を取り出す、いわゆる光取り出し効率の改善が不可欠となっている。
【0005】
光取り出し効率を改善する方法として、様々な方法が提案されているが、回折格子等の光学要素を基板上に形成する方法がある(例えば、特許文献1参照)。この方法は、回折格子の1次の回折や2次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用する方法である。この方法を用いると、有機発光層から発生した光のうち、層間での全反射等により有機EL素子の外部に取り出すことができない光を、層間若しくは媒質中(透明基板内や透明電極内)に設けた回折格子による光の回折現象により、外部に取り出すことができる。この方法は、有機EL素子の光取り出し効率を改善させるのに有効であるとされている。
【0006】
このような回折格子を製造する方法としてレーザ光を用いた2光束干渉露光により基板に微細パターンを形成する方法がある(例えば、特許文献2参照)。このような微細パターンを広い面積に形成する方法として、2光束干渉によって干渉縞を生じる移動可能なヘッドと露光する感光性フィルムを移動させるための移動可能な原稿架とを備えた回折格子露光装置がある(例えば、特許文献3参照)。
【特許文献1】特開昭63−314795号公報
【特許文献2】特開2006−98489号公報
【特許文献3】特開昭60−156004号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献2において、干渉露光が可能な領域を大きくするためには、レーザ光の光束を広い面積に照射出来るように拡大する必要がある。照射面積を大きくすると単位面積当たりの光強度が小さくなってしまうため、必要な露光量を得るためには、露光時間を長くする必要がある。拡大率の2乗に反比例して光強度は低下するため,露光時間は拡大率の2乗に比例して延長されることとなる。しかし、波長程度の縞を良好に得るためには,露光時間中に干渉縞位置、または干渉縞と感光材料の相対位置関係が静止している必要があり,露光中にそれらの寸法が干渉縞の周期の1割以上変動すると干渉縞による露光量の差が低くなってしまう。この結果、得られる干渉縞パターンの凹凸の高低差が十分に得られないという問題がある。また、レーザ光源の出力を高めること,もしくは感光材料の感度を向上することで露光時間延長を抑制することが考えられるが、十分なレーザ光源の出力、感光材料の感度が得られないのが現状である。
【0008】
また、特許文献3による回折格子露光装置では、感光性フィルムとスポット状の干渉縞を形成出来る露光ヘッドとを2次元に相対的に移動・停止を繰り返し、停止の都度露光している。このため、各露光領域間でのつなぎ合わせを精度良く行う必要があるため、装置が大掛かりとなり、また高価になってしまう。
【0009】
また、干渉縞は干渉性を有する二つの光束の光路差により形成されるため、光路差が変化すると、それに応じて干渉縞も移動する。干渉縞が得られる面積を拡大する場合,二つの光束それぞれを拡大する必要が有り、それぞれの光路長はその拡大率に比例して長くなる。光路長が長くなると、音や空気の対流,温度変化による空気の粗密の影響を受けやすくなり、干渉縞を安定させることが難しくなる。
【0010】
本発明は、上記の問題を鑑みてなされたものであって、その目的とするところは、大きな面積に波長と同程度の微細な凹凸パターンを精度良く容易に形成する感光性基板に凹凸パターンを形成する方法及び干渉縞パターン露光装置を提供することである。
【課題を解決するための手段】
【0011】
上記の課題は、以下の構成により解決される。
【0012】
1. 2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光し、前記感光性基板に凹凸パターンを形成する方法において、
光軸に垂直な方向の光束幅が互いに異なる2つの帯状光束を、それぞれの前記帯状光束の短い方を一致するように重ね合わせて、前記帯状光束の幅の長い方向に周期を有する干渉縞パターンを形成する工程と、
前記感光性基板の表面に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に、前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程と、
を有することを特徴とする感光性基板に凹凸パターンを形成する方法。
【0013】
2. 前記帯状光束は、アナモルフィック光学系により形成することを特徴とする1に記載の感光性基板に凹凸パターンを形成する方法。
【0014】
3. 前記干渉縞パターンは、前記帯状光束が帯状の回折パターンを有する回折格子にコニカル入射することにより生じる回折光により形成することを特徴とする1又は2のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【0015】
4. 前記回折格子は、コニカル入射する前記帯状光束の入射角が20°以上に設定してあることを特徴とする3に記載の感光性基板に凹凸パターンを形成する方法。
【0016】
5. 前記回折格子は、反射型であることを特徴とする3又は4の感光性基板に凹凸パターンを形成する方法。
【0017】
6. 前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程で、前記干渉縞パターンを前記感光性基板に断続的に露光することを特徴とする1乃至5のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【0018】
7. 前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程で、前記干渉縞パターンが周期を有する方向に垂直な方向の前記干渉縞パターンの幅を規制することを特徴とする1乃至6のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【0019】
8. 2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光する露光装置において、
光束となる光を発生する光源と、
光束を2つに分岐する分岐手段と、
2つの光束が重なって干渉縞パターンを形成するように分岐した光束を偏向する偏向手段と、
分岐した光束を前記光束の光軸に垂直な方向の光束幅が互いに異なる帯状光束を形成する2つの帯状光束形成手段と、
前記感光性基板に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に前記感光性基板と前記干渉縞パターンとを相対的に移動させる移動手段と、
を有する干渉縞パターン露光装置。
【0020】
9. 2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光する露光装置において、
光束となる光を発生する光源と、
前記光束を前記光束の光軸に垂直な方向の光束幅が互いに異なる帯状光束を形成する帯状光束形成手段と、
前記帯状の光束を2つに分岐させると同時に分岐された2つの光束を重ね合わせて干渉縞パターンを形成する光束回折手段と、
前記感光性基板に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に前記感光性基板と前記干渉縞パターンとを相対的に移動させる移動手段と、
を有する干渉縞パターン露光装置。
【0021】
10. 前記光束回折手段は、帯状の回折パターンを有し、前帯状の光束が前記回折パターンにコニカル入射することにより生じる回折光により干渉縞パターンを形成する回折格子であることを特徴とする9に記載の干渉縞パターン露光装置。
【0022】
11. 前記回折格子で生じる回折光から、前記干渉縞パターンを形成する回折光を選択する回折光規制手段を有することを特徴とする10に記載の干渉縞パターン露光装置。
【0023】
12. 前記回折格子は、コニカル入射する前記帯状光束の入射角が20°以上に設定してあることを特徴とする10又は11に記載の干渉縞パターン露光装置。
【0024】
13. 前記回折格子は、反射型であることを特徴とする10乃至12のいずれか一に記載の干渉縞パターン露光装置。
【0025】
14. 前記帯状光束形成手段は、アナモルフィック光学系により構成することを特徴とする8乃至13の何れか一に記載の干渉縞パターン露光装置。
【0026】
15. 前記感光性基板と前記干渉縞パターンとを相対的に移動させて露光する際に、前記干渉縞パターンを前記感光性基板に断続的に露光する断続露光手段を有することを特徴とする8乃至14の何れか一に記載の干渉縞パターン露光装置。
【0027】
16. 前記干渉縞パターンが周期を有する方向に対して垂直方向の前記干渉縞パターンの露光幅を規制する露光幅規制手段を有することを特徴とする8乃至15の何れか一に記載の干渉縞パターン露光装置。
【発明の効果】
【0028】
本発明によれば、光束を帯状にし、帯状光束の短い方を一致する様に重ね合わせて光束の長い幅の方向に周期を有する干渉縞パターンを形成し、感光性基板に干渉縞パターンを露光する際に、干渉縞パターンが周期を有する方向に対して垂直の方向に、感光性基板と干渉縞パターンとを相対的に移動させる。よって、感光性基板に、干渉縞パターンが有する周期パターンを相対的に移動する方向に伸延して露光することができ、感光性基板に凹凸パターンを形成することができる。
【0029】
従って、大きな面積に波長と同程度の微細な凹凸パターンを精度良く容易に形成する凹凸パターン形成方法を提供することができる。
【0030】
本発明の露光装置は、光源から発した光束から2つの帯状光束を形成して重ね合わせることで干渉縞パターンを形成し、干渉縞パターンが周期を有する方向に対して垂直の方向に感光性基板と干渉縞パターンとを相対的に移動させることができる。よって、感光性基板に、干渉縞パターンが有する周期パターンを相対的に移動する方向に伸延して露光することができる。
【0031】
従って、大きな面積に波長と同程度の微細な凹凸パターンを精度良く容易に形成することができる干渉縞パターン露光装置を提供することができる。
【発明を実施するための最良の形態】
【0032】
本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。
【0033】
(第1の実施形態)
図1(a)、(b)に2光束干渉露光方式による干渉縞パターン露光装置(以下、露光装置と称する。)の1例の概略構成を示す。図1(a)は露光装置100の平面図を示し、図1(b)は露光装置100をAの方向から見た側面図を示している。露光装置100は以下の構成である。1はレーザ光源、3は光束分岐手段である偏光ビームスプリッタ、5は1/2波長板、7はミラー、9、13は対物レンズ、11、15は円筒レンズ、17は感光性基板、19は感光性基板17を保持し紙面に垂直な方向(図1(a))に移動可能とするテーブルを示している。また、20は移動テーブル19を支持する架台、Lは光束を示している。ミラー7は光束を偏向する偏向手段、移動テーブル19は移動手段、偏光ビームスプリッタ3は光束を分岐する分岐手段であり、円筒レンズ11、15は帯状光束形成手段であるアナモルフィック光学系を構成している。
【0034】
図1(a)において、レーザ光源1から出射した光束Lは、偏光ビームスプリッタ3で2つに分岐される。分岐された光束の一方は対物レンズ13により光束を広げられ、次に円筒レンズ15に入射する。円筒レンズ15に入射した光束は、図1(a)において紙面に垂直な方向には広がらないように、また紙面の上下方向には対物レンズ13による広がりを維持した状態で円筒レンズ15から出射して感光性基板17に到達する。分岐された他方の光束も同様にして、1/2波長板5にて偏光方向を先の一方の光束に合わせた後、ミラー7、対物レンズ9、円筒レンズ11を通過して感光性基板17に到達する。感光性基板17に到達した光束は、いずれも光軸AL1、AL2に垂直な方向の光束幅が互いに異なる帯状となり、帯状光束の短い方を一致するように重なり合って感光性基板17に干渉縞パターンを形成する。
【0035】
対物レンズ9、13からの光束は球面となるが、対物レンズ3、13から感光性基板17までの距離を十分にとり(例えば、700mmから1000mm程度)、帯状の干渉縞パターンの長手方向を長く取りすぎないようにすると(例えば、50mm程度)、感光性基板17に達す両球面は近似的に平面波に置き換えることが出来る。
【0036】
干渉縞パターンは、帯状の光束による露光領域に対して幅が長い方向に周期を有するように形成する。感光性基板17での干渉縞パターンを図1(a)の矢印Bの方向から見た様子を模式的に図1(c)に示す。図1(c)において、黒い部分は光強度が相対的に弱く、白い部分は光強度が相対的に強い領域を示している。干渉縞パターンの周期は、レーザ光源1の光の波長及び光軸AL1とAL2とがなす角度で決めることが出来る。
【0037】
感光材料を有する、例えばフォトレジストを塗布した感光性基板17は、移動テーブル19により干渉縞パターンが周期を有する方向に垂直な方向(図1(a)で紙面に垂直な方向)に移動出来る。従って、干渉縞パターンを感光性基板17に露光しながら、移動テーブル19を移動させることにより、感光性基板17に干渉縞パターン露光を干渉縞パターンが周期を有する方向に垂直な方向に伸張して形成することが出来る。
【0038】
干渉縞パターン露光を干渉縞パターンが周期を有する方向に垂直な方向に伸張する様子を図2に模式的に示す。図2(a)は感光性基板17への露光開始の時点を示し、露光中に移動テーブルにより感光性基板17が矢印Cの方向に移動する。図2(b)は露光が進行している状態を示している。21は露光領域、23は露光済みの領域を示している。このように、露光中に感光性基板17を移動させることで干渉縞パターンの露光領域を容易に広げることが出来る。露光と移動テーブルは、連続露光、連続移動としなくても、移動テーブルを停止し、露光し、次に感光性基板17を所定量移動するというように、移動、停止、露光を繰り返す露光方法とすることも出来る。
【0039】
図2(a)、(b)で示すように、露光する干渉縞パターンの周期方向と移動テーブルの移動方向とは垂直となるように精度良く合わせておく必要がある。露光を完了した感光性基板17を現像、必要であればエッチング処理を行うことで感光性基板17に微細な帯状の凹凸パターンを形成することが出来る。また、レーザ光源1からの光束をアナモルフィック光学系により帯状に広げているため、露光領域のエネルギー密度を、一般的な円形状に拡大する場合と比較して大きくすることができるので効率よく露光することができる。
【0040】
露光装置100の構成は、図1に示す構成に限定することはなく、例えばレーザ光源1からの光束の品質をより良くするため、第2の実施形態で示すようなビームエキスパンダ、ピンホール等を備えた構成としてもよい。また、光束分岐手段である偏光ビームスプリッタ3に替えて偏向に関係なく光束を分岐するビームスプリッタ(ハーフミラー)とすることが出来る。この場合、1/2波長板5は不要となる。
【0041】
(第2の実施形態)
次に、光束の偏向・分岐に回折格子を使用する干渉縞パターン露光装置の1例の概略構成を図3に示す。図3(a)は露光装置300の平面図を示し、図3(b)は側面図を示す。図3において、301はレーザ光源、303はビームエキスパンダ、305は対物レンズ、307はピンホール、309は平凸レンズ、311は円筒レンズ、313は平凸レンズ、315は反射型の回折格子、317は感光性基板を示している。また、319は感光性基板317を固定し移動可能な移動テーブル、321は移動テーブル319を支持する架台を示している。
【0042】
レーザ光源301から出射した光束は、ビームエキスパンダ303に入射して光束を大きくし、対物レンズ305に入射する。対物レンズ305から出射した光束は、絞られてピンホール307を通過した後、平凸レンズ309に入射して平行光束にする。この平行光束は円筒レンズ311に入射して光軸に垂直な一方向(図3(a)において紙面で上下方向)に光束を広げ、他の方向の光束は平行を維持する。この後、平凸レンズ313により、一方に拡大されて入射した光束は平行光束になり、他方の平行光束で入射した光束は収束する帯状光束となる。この平行光束が収束する位置に感光性基板317を置く。移動テーブル319は移動手段であり、円筒レンズ311及び平凸レンズ313は帯状光束形成手段でアナモルフィック光学系を構成する。
【0043】
平凸レンズ313と感光性基板317の間に偏向手段且つ光束分岐手段である反射型の回折格子315を設ける。この回折格子315に入射した光束は、複数の次数の回折光となって分岐され且つ反射され、同次数の回折光同士が干渉して干渉縞パターンを形成する。複数の次数の回折光のうち、回折格子315と露光される感光性基板317との配置等を含めてもっとも効率良く干渉縞パターンを形成することができる±1次回折光を回折光規制手段である規制枠323により選択して感光性基板317を露光する。以下に、回折格子315に関して説明する。
【0044】
図4に光束を偏向・分岐する帯状の回折格子の例を示す。F1は回折格子が形成されている面(回折格子面)に垂直で且つ帯状の溝方向に垂直な面、F2は回折格子面に垂直で且つ回折格子への入射光L1を面内とする面、F3は回折格子面に垂直で且つ帯状の溝方向に平行な面、F4は回折格子面に垂直で且つ回折格子からの出射光L2を面内とする面を示している。図4において、帯状の回折格子に入射する光L1と出射する光L2とは以下の式(1)、(2)を満足する。
(n×sinθ−λ/Λ×cosφ)2 + (λ/Λ×sinφ)2
= (n’×sinθ)2 (1)
sinψ = λ×sinφ/n’×Λ×sinθ’ (2)
但し、
Λ:帯状の回折格子の周期
φ:回折格子面に垂直で且つ帯状の溝方向に垂直な面F1から回折格子面に垂直で且つ回折格子に入射する光を面内とする面F2までとがなす方位角
θ:回折格子への光の入射角
θ’:回折格子から光の出射角
ψ:回折格子面に垂直で且つ帯状の溝方向に平行な面F3から回折格子面に垂直で且つ回折格子から出射する光を面内とする面F4までとが成す分離角
n:入射光が通る媒質の屈折率
n’:出射光が通る媒質の屈折率
λ:光の波長
ここで、周期Λ=833nm、回折格子への入射光(波長λ=266nm)を回折格子の溝方向に対して平行方向であるφ=90°(コニカル入射と呼ぶ。)とした場合を考える。すなわち、回折格子への入射光は回折格子の帯状の溝の伸延方向(図3(a)の回折格子315に示す矢印方向)と平行な場合である。式(1)、(2)を満足する入射角θと出射角θ’、入射角θと分離角ψとの主な数値をそれぞれ表1、表2に示す。また、回折格子面に垂直で入射光が面内とする面を入射光面とすると、出射光を入射光面に投影した場合の出射角θoを表3に示す。尚、入射光と反射光とが通過する媒質は同じ空気中としてn=n’=1とする。表1、2は、回折格子が透過型、反射型のどちらであっても同じ値となり、また表中の記号「−」は回折光が生じないことを表してしている。
【0045】
【表1】

【0046】
【表2】

【0047】
【表3】

【0048】
これらの結果を図3で示した反射型の回折格子315に入射角45°でコニカル入射する場合に当てはめてみる。入射角45°とした回折格子315で反射した回折光の様子を模式的に図5に示し、図5(a)は平面図、図5(b)は側面図をそれぞれ示す。尚、回折格子315は反射型であるが図5(a)では説明の都合上光路を反射面での折り返しを展開して示している。回折格子が透過型の場合の光束は、図5(a)で示すままの状態となる。回折格子を透過した光束の延長上に感光性基板317、移動テーブル319、架台321を配置することも可能であるが、露光装置300の全体の構成から考えて回折格子315を反射型とするのが好ましい。回折格子315を反射型とすることで、露光装置300を構成するレーザ光源301、光学系(303、305、307、309、311、313)、感光性基板317、移動テーブル319、架台321等をより安定した配置をすることが出来る。
【0049】
図5(a)において、平凸レンズ313から出射した帯状光束L5は平面図上では平行光束となり、回折格子315に入射し回折される。図5(a)で示す様に回折格子にコニカル入射した光束は0次回折光503、±1次回折光505−1、505−2、±2次回折光(図示しない)が生じる。入射光が分岐した出射角(ψ)+24.3°の+1次回折光505−1と出射角(ψ)−24.3°の−1次回折光505−2とは交差し、重なる位置502には帯状の干渉縞パターンが生じ、この縞は光束幅の長い方向に周期性を有している。また、図5(b)で示す様に回折格子315で光束の入射面に垂直な方向から見た±1次回折光505、±2次回折光507は同じ方向(θo)に進む。従って、平凸レンズ313の曲率を適宜選択することで、+1次光505−1と−1次光505−2とが交差して重なり干渉縞が生じ、且つもっとも光束が収束する位置501を調整することができる。
【0050】
図5(b)に示すように、干渉縞パターンを露光する感光性基板317の位置には、0次回折光503、±1次回折光505、±2次回折光507が到達する。干渉縞パターンを感光性基板317に露光する上で、±1次光以外の光は、不要なため感光性基板317に到達しないようにする必要がある。具体的には、露光する感光性基板317の前にスリット状の回折光規制手段である規制枠323を用いて、±1次光以外の光を遮光する。
【0051】
ここで、表3より回折格子への入射角に応じて、回折格子からの出射角において、前後の次数における出射角の差が変わることがわかる。同じ次数でも入射角により出射角の差が大きい方が規制枠323による遮光がしやすい。この表3に基づいた遮光の容易さより、回折格子への入射角は20°以上とするのが好ましい。入射角θと出射角θoとの関係は、厳密には回折格子の周期、レーザ光の波長等によって変わるが、上記の周期833nm、波長266nmで求めた値を代用しても実用上問題とならない。
【0052】
上記の干渉縞パターンを露光する場合、第1の実施形態と同様に、露光中に感光性基板317を載せた移動テーブル319を干渉縞パターンが周期を有する方向に垂直な方向に移動させることで一方向に任意に露光領域を拡大することが出来る。露光と移動テーブルは、連続露光、連続移動としなくても、移動テーブルを停止し、露光し、次に感光性基板317を所定量移動するというように、移動、停止、露光を繰り返す露光方法とすることも出来る。第1の実施形態と同じく、露光する干渉縞パターンの周期方向と移動テーブルの移動方向とは垂直となるように精度良く合わせておく必要がある。露光した感光性基板317は、例えば、感光材料としてフォトレジストを塗布したものであれば、現像、必要に応じてエッチング処理をすることにより凹凸パターンを得ることが出来る。
【0053】
ここで、第1の実施形態で示す露光装置100では、図1(a)からも分かるようにレーザ光を偏光ビームスプリッタ3で分岐した後、干渉縞パターンを露光する位置までの光路差が生じる。この光路差が大きくなると、干渉縞を安定させることが難しくなると伴に干渉性の高いレーザ光源を用いる必要がある。
【0054】
一方、露光装置300では、回折格子315で分岐した光が回折格子315直後の位置で干渉をするため、2光束の光路差を小さくすることが出来る。従って、干渉縞パターンをより安定させることが出来ると伴に、干渉性の悪いパルスレーザ等を露光装置300の光源として用いることが可能である。
【0055】
感光性基板を光浸食性のある材料からなる板としても良い。光浸食性のある材料からなる板に干渉縞パターンによる凹凸パターンを形成する方法は、例えば特許3012926号に記載されてある方法がある。これには、光浸食性のある透明部材の裏面にレーザ光吸収液体を満たし、表面側からパルスレーザ光を照射することでレーザ光吸収液体に接触する透明材料をアブレーション加工するもので、具体的な透明部材の材料やレーザ光吸収液体が挙げてある。本露光装置100、300を用いて、感光性基板17、感光性基板317の代わりに上記のレーザ光吸収液体を有した透明部材を移動ステージに固定することにより干渉縞パターンによる微細な凹凸パターンを光浸食性のある透明部材の広い面積に作製することできる。
【0056】
透明部材としては、例えば、石英ガラス、一般ガラス、フッ化カルシウム、フッ化マグネシウム、フッ化リチウム、シリコンカーバイド、アルミナ、サファイヤ、水晶、ダイヤモンドのような無機材料、ポリカーボネート樹脂、アクリル樹脂、ビニル樹脂などのプラスチック材料、有機ガラス、有機結晶・固形化合物、およびそれらの混合物などが挙げられる。
【0057】
また、レーザ光吸収液体としては、例えばピレンのアセトン溶液、ベンジルのアセトン溶液、ピレンのテトラヒドロフラン溶液、ローダミン6Gのエタノール溶液、フタロシアニンのエタノール溶液などのような芳香族環を含む有機化合物の溶液;有機色素化合物を含む溶液;ベンゼン、トルエン、四塩化炭素などのような液体状の化合物などが挙げられる。また、有機化合物、有機色素、無機顔料、あるいは炭素などの微粒子などを分散して作った溶液や、有機化合物、有機色素、無機顔料、あるいは炭素粉末などの微粒子や微結晶で作った流動性粉体などが挙げられる。更に、上記に挙げられた物質の二種類以上を混合して作られた流動性物質も使用することができる。
【0058】
感光性基板317を移動させる移動テーブルの移動精度でヨーイング(テーブル移動面に垂直な軸での回転)が大きい場合、干渉縞パターンをテーブルを移動しながら露光すると、干渉縞パターンの周期がある方向に露光のブレが生じる。このため、良好な凹凸パターンを形成できない。これに対応するためには、干渉縞パターンの露光幅をより小さくして、ヨーイングに起因する露光ブレの影響を小さくすることが出来る。具体的には、(1)反射型回折格子の幅を小さくする方法、(2)露光領域を規制する方法、(3)露光する光束の集束角を大きくする方法、が考えられる。(2)、(3)の方法は、第1の実施形態においても有効である。
【0059】
反射型回折格子の幅を小さくする方法(1)は、図6(a)に示すように、反射による光束の偏向幅が小さくなるように反射型の回折格子を、例えば反射型回折格子315−1から反射型回折格子315−2に置き換え、露光幅を幅d1から幅d0にする方法である。この場合、反射型回折格子が露光幅規制手段を兼ねることになる。露光領域を規制する方法(2)は、図6(b)に示すように、複数の次数の回折光から±1次回折光を選択した規制枠601のスリット幅をさらに狭くして露光幅を例えば幅R0のように規制する方法である。尚、幅R1は+1次光505−1と−1次光505−2とが交差して重なりあっている規制枠601が無い場合の露光領域(集光幅)603の幅を示している。この場合、規制枠601が回折光規制手段を兼ねた露光幅規制手段となる。露光する光束の集束角を大きくする方法(3)は、例えば、平凸レンズ313の焦点距離を小さくしてFナンバーを小さくすることにより光束の集束幅を小さくする方法がある。この場合、平凸レンズ313が露光幅規制手段として機能する。
【0060】
次に、露光装置300を用いて2次元に凹凸パターンを形成する方法について図7を用いて説明する。露光装置300において、テーブルの移動に合わせて感光性基板317に到達するレーザ光を断続露光手段を有するパルスレーザ光源を用いてオン・オフすると、感光性基板317に露光される干渉縞パターンは、テーブルの移動方向に、干渉縞パターンの露光有り(オン)の領域701、無し(オフ)の領域703が形成される。従って、本来の干渉縞パターンによるテーブル移動方向に垂直な方向に列ぶ凹凸パターンとテーブルの移動方向に列ぶ凹凸パターンとが同時に感光性基板317に形成することが出来る。この場合、干渉縞パターンの縞の周期方向に垂直な方向の光束705の幅W0が、レーザ光のオン・オフにより形成される干渉縞パターンのステージ移動方向の周期の長さW1より短くなるようにテーブルの移動速度とレーザ光のオン・オフ時間とを制御する。
【実施例】
【0061】
図3に示した露光装置300を用いてガラス基板の上に凹凸パターンを形成した。大きさ100mm×100mm、厚み1.5mmのガラス基板にフォトレジストを厚み800nm塗布した感光性基板317を用意し、移動テーブル319に固定した。レーザ光源301はYAGレーザの第4高調波である波長266nmを使用した。レーザ光源301から出射したレーザ光束は、ビームエキスパンダ303を通過した後、焦点距離f=l5mmの対物レンズ305と焦点距離f=l50mmの平凸レンズ309を用いて光軸対称に10倍に光束径を拡大する。この対物レンズ305と平凸レンズ309との間に直径5μmのピンホールを設けた。次に焦点距離f=l25mmの円筒レンズ311と焦点距離f=l250mmの平凸レンズ313で一方向(図3(a)において紙面に平行な方向)のみ10倍に光束幅を拡大する。拡大された光束幅は約100mmとなる。他方向の光束幅は、平凸レンズ313により収束光となり、集束した集光幅は約50μmとなる。
【0062】
平凸レンズ313と感光性基板317との間には、レーザ光を分岐・干渉させる回折格子315を設けた。回折格子315は周期Λ=833nmの帯状の溝で、溝のデューティー(凹の幅と凸の幅との比率)は50%、高さ100nmのAl面とした。
【0063】
この回折格子315は、平凸レンズ313から出射した光束がコニカル入射(φ=90°)、入射角θ=45°で入射するように設定してある。回折格子315に入射した光は、表3に示す出射角がそれぞれ0次回折45°、±1次回折48.3°、±2次回折66.8°となる回折光を生じる。集光位置に感光性基板317が配置され、また感光性基板317の直前に±1次光のみが通過する位置に集光幅以上(50μm)の開口を有する規制枠323を置き、不要回折光である0次回折光と±2次回折光が感光性基板317に達しないようにした。このようにして、感光性基板317の表面に、±1次光が重なる幅約50mm、短い方の幅約50μmの干渉縞パターンを露光することが出来る。
【0064】
この状態で、移動テーブル319を移動させながら感光性基板317に干渉縞パターンを露光した。移動テーブル319の移動量は50mmとした。また、移動テーブル319の移動速度とレーザ光の出力は、予め行った実験により設定した。露光後、感光性基板317を現像すると、フォトレジストに周期417nm、デューティー50%の凹凸パターンが良好に形成されていることが確認出来た。
【図面の簡単な説明】
【0065】
【図1】2光束干渉露光方式による干渉縞パターン露光装置の1例の概略構成を示す図である。
【図2】干渉縞パターン露光を干渉縞パターンが周期を有する方向に垂直な方向に伸張する様子を説明するために模式的に示す図である。
【図3】光束の偏向・分岐に回折格子を使用する干渉縞パターン露光装置の1例を示す図である。
【図4】光束を偏向・分岐する帯状の回折格子の例を示す図である。
【図5】入射角45°として回折格子で反射した回折光の様子を模式的に示す図である。
【図6】干渉縞パターンの露光幅を規制する方法の例を示す図である。
【図7】2次元に凹凸パターンを形成する方法について説明する図である。
【符号の説明】
【0066】
300 露光装置
301 レーザ光源
303 ビームエキスパンダ
305 対物レンズ
307 ピンホール
309 平凸レンズ
311 円筒レンズ
313 平凸レンズ
315 回折格子
317 感光性基板
319 移動テーブル
321 架台
323 規制枠

【特許請求の範囲】
【請求項1】
2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光し、前記感光性基板に凹凸パターンを形成する方法において、
光軸に垂直な方向の光束幅が互いに異なる2つの帯状光束を、それぞれの前記帯状光束の短い方を一致するように重ね合わせて、前記帯状光束の幅の長い方向に周期を有する干渉縞パターンを形成する工程と、
前記感光性基板の表面に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に、前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程と、
を有することを特徴とする感光性基板に凹凸パターンを形成する方法。
【請求項2】
前記帯状光束は、アナモルフィック光学系により形成することを特徴とする請求項1に記載の感光性基板に凹凸パターンを形成する方法。
【請求項3】
前記干渉縞パターンは、前記帯状光束が帯状の回折パターンを有する回折格子にコニカル入射することにより生じる回折光により形成することを特徴とする請求項1又は2のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【請求項4】
前記回折格子は、コニカル入射する前記帯状光束の入射角が20°以上に設定してあることを特徴とする請求項3に記載の感光性基板に凹凸パターンを形成する方法。
【請求項5】
前記回折格子は、反射型であることを特徴とする請求項3又は4の感光性基板に凹凸パターンを形成する方法。
【請求項6】
前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程で、前記干渉縞パターンを前記感光性基板に断続的に露光することを特徴とする請求項1乃至5のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【請求項7】
前記感光性基板と前記干渉縞パターンとを相対的に移動させながら露光する工程で、前記干渉縞パターンが周期を有する方向に垂直な方向の前記干渉縞パターンの幅を規制することを特徴とする請求項1乃至6のいずれか一項に記載の感光性基板に凹凸パターンを形成する方法。
【請求項8】
2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光する露光装置において、
光束となる光を発生する光源と、
光束を2つに分岐する分岐手段と、
2つの光束が重なって干渉縞パターンを形成するように分岐した光束を偏向する偏向手段と、
分岐した光束を前記光束の光軸に垂直な方向の光束幅が互いに異なる帯状光束を形成する2つの帯状光束形成手段と、
前記感光性基板に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に前記感光性基板と前記干渉縞パターンとを相対的に移動させる移動手段と、
を有する干渉縞パターン露光装置。
【請求項9】
2つの光束を用いた干渉露光方式により感光性基板の表面に干渉縞パターンを露光する露光装置において、
光束となる光を発生する光源と、
前記光束を前記光束の光軸に垂直な方向の光束幅が互いに異なる帯状光束を形成する帯状光束形成手段と、
前記帯状の光束を2つに分岐させると同時に分岐された2つの光束を重ね合わせて干渉縞パターンを形成する光束回折手段と、
前記感光性基板に前記干渉縞パターンを露光する際に、前記干渉縞パターンが周期を有する方向に対して垂直の方向に前記感光性基板と前記干渉縞パターンとを相対的に移動させる移動手段と、
を有する干渉縞パターン露光装置。
【請求項10】
前記光束回折手段は、帯状の回折パターンを有し、前帯状の光束が前記回折パターンにコニカル入射することにより生じる回折光により干渉縞パターンを形成する回折格子であることを特徴とする請求項9に記載の干渉縞パターン露光装置。
【請求項11】
前記回折格子で生じる回折光から、前記干渉縞パターンを形成する回折光を選択する回折光規制手段を有することを特徴とする請求項10に記載の干渉縞パターン露光装置。
【請求項12】
前記回折格子は、コニカル入射する前記帯状光束の入射角が20°以上に設定してあることを特徴とする請求項10又は11に記載の干渉縞パターン露光装置。
【請求項13】
前記回折格子は、反射型であることを特徴とする請求項10乃至12のいずれか一項に記載の干渉縞パターン露光装置。
【請求項14】
前記帯状光束形成手段は、アナモルフィック光学系により構成することを特徴とする請求項8乃至13の何れか一項に記載の干渉縞パターン露光装置。
【請求項15】
前記感光性基板と前記干渉縞パターンとを相対的に移動させて露光する際に、前記干渉縞パターンを前記感光性基板に断続的に露光する断続露光手段を有することを特徴とする請求項8乃至14の何れか一項に記載の干渉縞パターン露光装置。
【請求項16】
前記干渉縞パターンが周期を有する方向に対して垂直方向の前記干渉縞パターンの露光幅を規制する露光幅規制手段を有することを特徴とする請求項8乃至15の何れか一項に記載の干渉縞パターン露光装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−286920(P2008−286920A)
【公開日】平成20年11月27日(2008.11.27)
【国際特許分類】
【出願番号】特願2007−130335(P2007−130335)
【出願日】平成19年5月16日(2007.5.16)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】