説明

熱処理装置、半導体装置の製造方法及び基板の製造方法

熱処理中に発生する基板のスリップ転位欠陥発生を少なくし、高品質な半導体装置を製造することができる熱処理装置、半導体装置の製造方法及び基板の製造方法を提供することを目的としている。基板支持体30は、本体部56と支持部58とから構成されている。本体部56は、多数の載置部66が平行に延び、この載置部66に支持部58が設けられている。この支持部58に基板68が載置される。支持部58は、基板平坦面の面積よりも面積が小さく、前記基板の厚さよりも厚いシリコン製の板から構成されており、熱処理中の変形が小さくなるようにしてある。また、支持部58は、シリコン製であり、支持部58の基板載置面には炭化珪素(SiC)がコーティングされた層が形成されている。

【発明の詳細な説明】
【技術分野】
本発明は、半導体ウェハやガラス基板等を熱処理するための熱処理装置、半導体装置の製造方法及び半導体ウェハやガラス基板の製造方法に関する。
【背景技術】
例えば縦型熱処理炉を用いて、複数のシリコンウェハ等の基板を熱処理する場合、炭化珪素製の基板支持体(ボート)が用いられている。この基板支持体には、例えば3点で基板を支持する支持溝が設けられている。
この場合、1000°C程度以上の温度で熱処理すると、支持溝付近で、基板にスリップ転位欠陥が発生し、これがスリップラインになるという問題があった。スリップラインが発生すると、基板の平坦度が劣化する。これらのため、LSI製造工程における重要な工程の一つであるリソグラフィ工程で、マスク合わせずれ(焦点ずれ又は変形によるマスク合わせずれ)が生じ、所望パターンを有するLSIの製造が困難であるという問題が発生していた。
このような問題を解決する手段として、支持溝にまずダミーウェハを載置し、このダミーウェハの上に処理すべき基板を載置する技術が知られている(特許文献1参照)。これは、従来の3点支持からダミーウェハによる面支持に変えることにより、処理すべき基板の自重応力集中を抑え、基板の反り発生を防止し、スリップ転位欠陥が発生するのを防止しようとするものである。
また、この種の基板支持体の一つとして、Si−SiC等のボート基材に、基材中からの不純物汚染を防止するため、CVD−SiC被膜を形成することが知られている(特許文献2参照)。この公知例によれば、CVD−SiC被膜の厚さは、30μm〜100μmである。即ち、被膜の厚さが30μmより小さいと、ボート基材から不純物が被膜表面に拡散して、被膜が不純物の拡散を防止するというCVD被膜の目的を達成できず、被膜の厚さが100μmを超えると、ボート基材のエッジ部にCVDが集中して堆積する肉盛り状態になり、この状態でボート(基板支持体)を使用すると、バリが形成されてパーティクル汚染の原因になるとしている。
また、他の従来例として、Si含浸焼結SiC材、黒鉛などの基材に対してCVD法によりSiC膜を形成し、耐熱性、耐衝撃性、耐酸化性、耐食性を改善したものが知られている(特許文献3参照)。この公知例によれば、SiC膜の厚さは、20μm〜200μmが好ましく、20μm未満では、SiC膜自体が消耗を受けるため寿命が短くなるおそれがあり、200μmを超えると、SiC膜が剥離し易くなるとしている。
また、さらに他の従来例として、SiC製の治具(ボート等)の表面にCVD−SiCコーティングを施し、その表面にSiO膜を形成したものが知られている(特許文献4参照)。この公知例によれば、SiCコーティングは、基材表面の均一性を確保するために行い、SiC膜の厚さは、100μmとすることが実施例として示されている。また、SiO膜は、ClF3によるドライクリーニング時に基材の減肉を防止するために形成し、その厚さは100Å〜100μmが望ましいとしている。
また、さらに他の従来例として、Si−SiC製の支持体の表面にCVD−SiCを100μm程度被膜することが知られている(特許文献5参照)。
【特許文献1】特開2000−223495号公報
【特許文献2】特開2000−164522号公報
【特許文献3】特開2002−274983号公報
【特許文献4】特開平10−242254号公報
【特許文献5】特開平10−321543号公報
【発明の開示】
しかしながら、本発明者による実験結果によれば、ダミーウェハ上に基板を載置する上記従来例は、3点支持によるものと比較して改善されてはいるものの、スリップラインが発生し、スリップ転位欠陥発生防止という点では不十分であった。
この原因は、ダミーウェハが基板と同様に例えば700μmというように薄いため、炭化珪素からなる基板支持体との間に発生する熱膨張の差やその他の応力により変形し、このダミーウェハの変形により基板にスリップ転位欠陥を生じさせるためと考えられる。
また、本願の発明者らが実験した結果、基板支持体の支持部の基板載置面にコーティングする材料や膜の厚さによっては、その膜の熱膨張率等のためにスリップが発生することがあることを発見した。
そこで、本発明は、熱処理中に発生する基板のスリップ転位欠陥発生を少なくし、高品質な半導体装置を製造することができる熱処理装置、半導体装置の製造方法及び基板の製造方法を提供することを目的としている。
上記課題を解決するため、本発明の第1の特徴とするところは、基板を基板支持体に支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、前記基板の厚さよりも厚いシリコン製の板状部材から構成されてなる熱処理装置にある。支持部の厚さは、基板の厚さよりも厚く、10mm以下、例えば3mm〜6mmであることが好ましく、さらに好ましくは4mm〜5mmがよい。また、支持部の厚さを基板の厚さと比較すると、支持部の厚さは、少なくとも基板の厚さの2倍以上であることが好ましい。
基板支持体は、本体部から平行に載置部が多数延びるボートとして構成することができる。本体部は、例えば炭化珪素から構成することができる。また、支持部は、円柱状、楕円柱状、多角柱状等、一端面に基板を載置できる形状であればよい。この支持部は、本体部の載置部の厚さよりも厚いことが好ましい。
本発明の第2の特徴とするところは、基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の前記基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、窒化珪素(Si)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコーティングされている熱処理装置にある。
本発明は、基板と同等の硬度や熱膨張率等を持つシリコン製の支持部に炭化珪素等の接着防止膜をコーティングしたものであり、支持部が炭化珪素質を主体とし、その上に炭化珪素等をコーティングする前述した特許文献2〜5に記載された従来例とは、目的、構成及び作用効果を全く異にするものである。
炭化珪素製の膜をコーティングする場合、膜の厚さは、0.1μm〜50μmとすることが好ましく、より好ましくは0.1μm〜15μmがよく、さらに好ましくは0.1μm〜3μmがよい。
シリコン製の支持部と炭化珪素製の膜との厚さを両者の割合で示すと、炭化珪素製の膜の厚さがシリコン製の支持部の厚さの0.0025%〜1.25%とするのがよく、より好ましくは0.0025%〜0.38%がよく、さらに好ましくは0.0025%〜0.25%がよい。
シリコン製の支持部にコーティングする膜は、炭化珪素(SiC)以外に窒化珪素(Si)を用いることができる。窒化珪素製の膜とした場合は、この膜の厚さは0.1μm〜30μmとすることがよく、より好ましくは0.1μm〜5μmである。
本発明の第3の特徴とするところは、基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質である熱処理装置にある。
ここで、積層される複数の膜のうち少なくとも一つの膜は、炭化珪素(SiC)、窒化珪素(SiN)、多結晶シリコン(Poly−Si)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドから選ばれた材料からなることが好ましい。このように耐熱性が優れた材料をシリコン製の支持部に積層することにより、基板と支持部との接着を防止することができる。
また、複数の膜のうち最表面(基板と接触する面)は、酸化珪素(SiO)等のように熱処理時において他の膜より硬度の小さい材料からなることが好ましい。
また、最表面を、熱処理時において他の膜より硬度が小さく、且つ基板よりも硬度が小さい材料とすることが更に好ましい。また、最表面のSiOは非晶質(アモルファス)であることが好ましい。
積層する膜を2層とした場合、そのうちの一つを炭化珪素とし、最表面の膜を酸化珪素とすることが好ましい。
基板支持体の本体部は、炭化珪素(SiC)から構成することができる。また、基板支持体は、1つの基板を支持する枚葉式のものであってもよいが、複数の基板を略水平状態で隙間をもって複数段に支持するよう構成することもできる。
また、熱処理装置としては、基板を1000°C以上、さらには1350°C以上の高温で処理するものに適用できる。
本発明の第4の特徴とするところは、基板を基板支持体に支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成される熱処理装置にある。
本発明の第5の特徴とするところは、基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面にはコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質である熱処理装置にある。
本発明の第6の特徴とするところは、処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程とを有する基板の製造方法にある。
本発明の第7の特徴とするところは、処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程とを有する基板の製造方法にある。
本発明の第8の特徴とするところは、処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程とを有する半導体装置の製造方法にある。
本発明の第9の特徴とするところは、処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程とを有する半導体装置の製造方法にある。
【図面の簡単な説明】
図1は、本発明の実施形態に係る熱処理装置を示す斜視図である。
図2は、本発明の実施形態に係る熱処理装置に用いた反応炉を示す断面図である。
図3は、本発明の実施形態に係る熱処理装置に用いた基板支持体を示す断面図である。
図4は、本発明の実施形態に係る熱処理装置に用いた基板支持体の拡大断面図である。
図5は、本発明の実施形態に係る熱処理装置に用いた基板支持体の拡大平面図である。
図6は、本発明の実施形態に係る熱処理装置に用いた基板支持体の第1の変形例を示す断面図である。
図7は、本発明の実施形態に係る熱処理装置に用いた基板支持体の第2の変形例を示し、(a)は平面図、(b)は(a)のA−A線断面図である。
図8は、本発明の実施形態に係る熱処理装置に用いた基板支持体の第3の変形例を示し、(a)は平面図、(b)は(a)のB−B線断面図である。
図9は、本発明の実施形態に係る熱処理装置に用いた基板支持体の第4の変形例を示す断面図である。
図10は、支持部の種々の変形例を示す断面図である。
図11は、本発明の他の実施形態に係る熱処理装置に用いた基板支持体を示す断面図である。
図12は、本発明の実施例における基板処理時の温度変化を示す線図である。
【発明を実施するための最良の形態】
次に本発明の実施形態を図面に基づいて説明する。
図1には、本発明の実施形態に係る熱処理装置10が示されている。この熱処理装置10は、例えば縦型であり、主要部が配置された筺体12を有する。この筺体12には、ポッドステージ14が接続されており、このポッドステージ14にポッド16が搬送される。ポッド16は、例えば25枚の基板が収納され、図示しない蓋が閉じられた状態でポッドステージ14にセットされる。
筺体12内において、ポッドステージ14に対向する位置には、ポッド搬送装置18が配置されている。また、このポッド搬送装置18の近傍には、ポッド棚20、ポッドオープナ22及び基板枚数検知器24が配置されている。ポッド搬送装置18は、ポッドステージ14とポッド棚20とポッドオープナ22との間でポッド16を搬送する。ポッドオープナ22は、ポッド16の蓋を開けるものであり、この蓋が開けられたポッド16内の基板枚数が基板枚数検知器24により検知される。
さらに、筺体12内には、基板移載機26、ノッチアライナ28及び基板支持体30(ボート)が配置されている。基板移載機26は、例えば5枚の基板を取り出すことができるアーム32を有し、このアーム32を動かすことにより、ポッドオープナ22の位置に置かれたポッド、ノッチアライナ28及び基板支持体30間で基板を搬送する。ノッチアライナ28は、基板に形成されたノッチまたはオリフラを検出して基板のノッチまたはオリフラを一定の位置に揃えるものである。
図2において、反応炉40が示されている。この反応炉40は、反応管42を有し、この反応管42内に基板支持体30が挿入される。反応管42の下方は、基板支持体30を挿入するために開放され、この開放部分はシールキャップ44により密閉されるようにしてある。また、反応管42の周囲は、均熱管46により覆われ、さらに均熱管46の周囲にヒータ48が配置されている。熱電対50は、反応管42と均熱管46との間に配置され、反応炉40内の温度をモニタできるようにしてある。そして、反応管42には、処理ガスを導入する導入管52と、処理ガスを排気する排気管54とが接続されている。
次に上述したように構成された熱処理装置10の作用について説明する。
まず、ポッドステージ14に複数枚の基板を収容したポッド16がセットされると、ポッド搬送装置18によりポッド16をポッドステージ14からポッド棚20へ搬送し、このポッド棚20にストックする。次に、ポッド搬送装置18により、このポッド棚20にストックされたポッド16をポッドオープナ22に搬送してセットし、このポッドオープナ22によりポッド16の蓋を開き、基板枚数検知器24によりポッド16に収容されている基板の枚数を検知する。
次に、基板移載機26により、ポッドオープナ22の位置にあるポッド16から基板を取り出し、ノッチアライナ28に移載する。このノッチアライナ28においては、基板を回転させながら、ノッチを検出し、検出した情報に基づいて複数枚の基板のノッチを同じ位置に整列させる。次に、基板移載機26により、ノッチアライナ28から基板を取り出し、基板支持体30に移載する。
このようにして、1バッチ分の基板を基板支持体30に移載すると、例えば700°C程度の温度に設定された反応炉40内に複数枚の基板を装填した基板支持体30を装入し、シールキャップ44により反応管42内を密閉する。次に、炉内温度を熱処理温度まで昇温させて、導入管52から処理ガスを導入する。処理ガスには、窒素、アルゴン、水素、酸素等が含まれる。基板を熱処理する際、基板は例えば1000°C程度以上の温度に加熱される。なお、この間、熱電対50により反応管42内の温度をモニタしながら、予め設定された昇温、熱処理プログラムに従って基板の熱処理を実施する。
基板の熱処理が終了すると、例えば炉内温度を700°C程度の温度に降温した後、基板支持体30を反応炉40からアンロードし、基板支持体30に支持された全ての基板が冷えるまで、基板支持体30を所定位置で待機させる。なお、炉内温度降温の際も、熱電対50により反応管42内の温度をモニタしながら、予め設定された降温プログラムに従って降温を実施する。次に、待機させた基板支持体30の基板が所定温度まで冷却されると、基板移載機26により、基板支持体30から基板を取り出し、ポッドオープナ22にセットされている空のポッド16に搬送して収容する。次に、ポッド搬送装置18により、基板が収容されたポッド16をポッド棚20に搬送し、さらにポッドステージ14に搬送して完了する。
次に上記基板支持体30について詳述する。
図3乃至図5において、基板支持体30は、本体部56と支持部58とから構成されている。本体部56は、例えば炭化珪素からなり、上部板60、下部板62、及び該上部板60と下部板62とを接続する支柱64を有する。また、この本体部56には、この支柱64から前述した基板移載機26側に延びる載置部66が多数平行に形成されている。
支持部58はシリコン製の板状部材からなり、例えば基板68と同心円状の円柱状に形成され、この支持部58の下面が載置部66上面に接触して支持部58が載置部66上に載置され、支持部58の上面に基板68の下面が接触して基板68を載置支持する。
支持部58の直径は、基板68の直径より小さく、即ち、支持部58の上面は、基板68の下面である平坦面の面積より小さな面積を有し、基板68は、該基板68の周縁を残して支持部58に支持されている。基板68は例えば直径が300mmであり、したがって、支持部58の直径は300mm未満であり、100mm〜250mm程度(基板外径の1/3〜5/6程度)が好ましい。
なお、支持部58の直径(面積)は、基板68の直径(面積)より大きくすることもできる。この場合は、支持部58の厚さをさらに厚くすることが好ましい。
また、この支持部58の円柱軸方向の厚さは、基板68の厚さよりも厚く形成されている。基板68の厚さは、例えば700μmであり、したがって、支持部58の厚さは、700μmを越えており、10mmまでは可能であり、少なくとも基板68の厚さの2倍以上、例えば3mm〜10mmが好ましく、更には3mm〜6mmが好ましく、更には4mm〜5mmが好ましい。また、この支持部58の厚さは、載置部66の厚さよりも厚くなっている。支持部58の厚さをこのような厚さとするのは、支持部58自体の剛性を増し、支持部58の熱処理時の変形を抑制するためである。
なお、熱処理時の変形を抑制することができるのであれば、必ずしもシリコン製の支持部58の厚さは、基板68の厚さよりも厚く形成する必要はない。
図6に示すように、支持部58に対応して載置部66に円形の嵌合溝74を形成し、この嵌合溝74に支持部58を嵌合させるようにしてもよい。支持部58の厚さを薄くすることなく維持したまま、支持部58と載置部66との合計の厚さを薄くすることができ、一度に処理する基板68の処理枚数を増やすことができる。また、嵌合溝74に支持部58を嵌合させることにより支持部58の位置を安定させることができる。この場合、支持部58と嵌合溝74との間には、熱膨張を考慮して若干の隙間を形成してもよい。
また、図7に示すように、載置部66に開口66aを設け、支持部58の下面に、開口66aに嵌る凸部58aを設け、この支持部58の凸部58aを載置部66の開口66aに嵌め込むようにしてもよい。本発明では、このような形状のものも、板状部材に含めるものとする。なお、この場合も、支持部58の凸部58aと載置部66の開口66aとの間には、熱膨張を考慮して若干の隙間を形成するとよい。
なお、支持部58の形状は、この実施形態のように円柱状である必要はなく、楕円柱や多角柱として構成することもできる。また、支持部58は、載置部66に固定することもできる。
支持部58の基板68側の上面(基板載置面)には、接着防止層(コーティングされた膜)70が形成されている。この接着防止層70は、例えばシリコン表面を処理することにより、又はCVD(プラズマCVD又は熱CVD)等によりシリコン表面上に堆積(deposition)することにより形成した窒化珪素(Si)膜、炭化珪素(SiC)膜、酸化珪素(SiO)膜、ガラス状炭素、微結晶ダイヤモンド等、耐熱性及び耐磨耗性に優れた材料からなり、基板68の処理後の支持部58と基板68との接着を防止するようにしてある。接着防止層70を炭化珪素(SiC)製の膜とした場合、膜の厚さは、0.1μm〜50μmの範囲とすることが好ましい。炭化珪素製の膜70を厚くすると、シリコンと炭化珪素との熱膨張率の差により、シリコン製の支持部58が炭化珪素製の膜70に引っ張られて支持部全体の変形量が大きくなり、この大きな変形によって基板68にスリップが発生するおそれがある。これに対して炭化珪素製の膜70を上記のような厚さとすると、シリコン製の支持部58が炭化珪素製の膜70に引っ張られる量が少なくなり、支持部全体の変形量も少なくなる。即ち、炭化珪素製の膜70を薄くすると支持部58と膜70との熱膨張率の差による応力が低減し、支持部全体の変形量が少なくなり、支持部全体の熱膨張率も本来のシリコンの熱膨張率(基板68がシリコンの場合は略同等の熱膨張率)に近づき、スリップの発生を防止できるものである。
炭化珪素製の膜70の厚さを0.1μm未満とすると、炭化珪素の膜70が薄過ぎて消耗し、シリコン製の支持部58に炭化珪素を再コーティングする必要が生じ、同一の支持部58を繰り返し使用することができなくなる。この膜70の厚さを0.1μm以上とすれば、炭化珪素の膜70をシリコン製の支持部58に頻繁に再コーティングする必要がなくなり、同一の支持部58を繰り返し使用することができる。尚、炭化珪素製の膜70の厚さを1μm以上とすれば、更に膜が消耗しなくなり、同一の支持部58を繰り返し使用できる回数が一層増えるので好ましい。
炭化珪素製の膜70の厚さを50μmを超えるようにすると、炭化珪素製の膜70自体が割れやすくなり、この割れが原因で基板にスリップも発生しやすくなる。この膜70の厚さを50μm以下とすれば、膜70の割れが生じにくくなり、上述したようにシリコン製の支持部58と炭化珪素製の膜70との熱膨張率の差による応力も低減することから、支持部全体の変形が少なくなり、基板のスリップ発生を防止することができる。炭化珪素製の膜の厚さを15μm以下とすると基板のスリップが殆ど発生しなくなる。さらに炭化珪素製の膜70の厚さを0.1μm〜3μmとすると基板68のスリップは発生しなくなる。よって、炭化珪素製の膜70の厚さは、0.1μm〜50μmとするのがよく、より好ましくは0.1μm〜15μmがよく、さらに好ましくは0.1μm〜3μmがよい。
シリコン製の支持部58と炭化珪素製の膜70との厚さを両者の割合で示すと、炭化珪素製の膜70の厚さがシリコン製の支持部58の厚さの0.0025%〜1.25%とするのがよく、より好ましくは0.0025%〜0.38%がよく、さらに好ましくは0.0025%〜0.25%がよい。
膜70は、炭化珪素以外に窒化珪素(Si)を同様にプラズマCVD又は熱CVDによりコーティングして形成することができる。窒化珪素製とした場合は、この膜70の厚さは0.1μm〜30μmとすることがよく、より好ましくは0.1μm〜5μmとするのがよい。
また、支持部58の上面周縁には、滑らかな面取りを施して凹部72が形成されている。この凹部72は、支持部58の周縁に基板68が接触して基板68に傷等が発生するのを防止する。
なお、支持部58の全面に、接着防止層70を形成するのではなく、図8に示すように、支持部58の基板載置面の一部に、これらの材料からなるチップ76を載せて、このチップ76により基板68を支持するようにしてもよい。この場合、チップ76は3個以上設けることが好ましい。
また、図9に示すように、支持部58の周縁近傍に同心円状の溝78を形成し、基板68との接触面積を減らし、基板68が支持部58との接触により傷が発生する確率を減らすことができると共に、基板68がずれるのを防止することができる。
上記実施形態においては、支持部58の厚さを前述のような基板68の厚さよりも厚い所定の厚さとしたので、支持部58の剛性を大きくすることができ、基板搬入時、昇温、降温時、熱処理時、基板搬出時等における温度変化に対する支持部58の変形を抑制することができる。これにより支持部58の変形に起因する基板68へのスリップ発生を防止することができる。また、支持部58の材質を基板68と同じ材質であるシリコン製、即ち、シリコン製の基板68と同じ熱膨張率や硬度を持つ材質としたので、温度変化に対する基板68と支持部58との熱膨張、熱収縮の差をなくすことができ、また、基板68と支持部58との接触点で応力が発生してもその応力を開放し易くなるので、基板68に傷が発生しにくくなる。これにより基板68と支持部58との熱膨張率の差や硬度の差に起因する基板68へのスリップ発生を防止することができる。
なお、上記実施形態及び実施例の説明では、支持部の直径(面積)が基板よりも小さい場合について説明したが、基板直径よりも支持部直径を大きくすることもできる。この場合は、支持部58の剛性を確保するため、支持部58の厚さをさらに厚くする必要がある。
また、シリコン製の支持部58には、炭化珪素製の膜等の接着防止膜70がコーティングされているので、支持部58と基板68との熱による接着を防止することができる。膜70は、上述したように薄く形成されているので、支持部58と膜70との熱膨張率の差による応力を小さくすることができ、シリコン製の支持部58の熱膨張に支障を与えることがなく、膜70を含めた支持部全体を本来のシリコンが持つ熱膨張率と略同等に維持することができるものである。尚、膜70は支持部58の裏面や側面にもコーティングしてもよい。
図10において、支持部58に関する種々の変形例が示されている。
前述した実施形態においては、支持部58の基板載置面にのみ膜70を形成したが、図10(a)に示すように、支持部58の全体、即ち、支持部58の表面(基板載置面)、側面及び裏面に膜70を形成してもよい。
また、図10(b)に示すように、支持部58の裏面を除いて、支持部58の表面(基板載置面)及び側面に膜70を形成することもできる。
また、膜70は一層に限られるものではなく、複数の層として形成してもよく、例えば図10(c)に示すように、第1の膜80の上に第2の膜82を形成することができる。第1の膜80は、例えば炭化珪素(SiC)、窒化珪素(Si)、多結晶シリコン(Poly−Si)、酸化珪素(SiO)、ガラス状炭素又は微結晶ダイヤモンドからなる。炭化珪素又は窒化珪素から構成する場合は、前述したように、プラズマCVD又は熱CVDにて形成することができる。また、第2の膜82は、熱処理時において第1の膜70よりも硬度が小さい材料、例えば酸化珪素(SiO)から構成することができる。このように、最表面となる第2の膜82を熱処理時において第1の膜80よりも硬度が小さい材料とすることにより、高温熱処理時に基板68と支持部58との接触点で応力が発生した場合に応力を開放し易くなるので、基板68に傷を与えにくくなり、スリップが発生しにくくなる。特に最表面の膜70を、熱処理時において基板(Si)68より硬度が小さいSiOとした場合、熱処理時においては、高度の小さい方のSiOが壊れて応力を開放するので、硬度の大きい方の基板68に傷を発生させず、スリップを発生することがない。即ち、最表面を、熱処理時において他の膜より硬度が小さく、且つ基板よりも硬度が小さい材料とすることが更に好ましい。
また、最表面のSiOは非晶質(アモルファス)であることが好ましい。基板68と支持部58とは高温になれば、それらの接触点で融着するが、そのとき支持部58の基板68との接触点が結晶である場合、結晶部分は粘性流動しないので、熱膨張の差による応力を開放できず、最終的には基板68と支持部58とのどちらかにスリップが発生する。これに対して支持部58の基板68との接触点が非晶質である場合、その非晶質部分は粘性流動(粘性変形)するので、基板68と支持部58とが融着しても、接触点で発生した応力を開放することが可能となり、基板68に傷を発生させず、スリップ発生を防止することができる。
また、図10(d)に示すように、支持部58は、支持部58の基板載置面の周縁部分を残して切欠かれ、中心側で円形に形成された切欠部84と、周縁でリング状に形成された突部86とから構成され、この突部86の基板載置面及び側面に第1の膜80と第2の膜82を形成してもよい。これにより、基板68が接触する面積を少なくすることができる。
なお、第2の膜82は、第1の膜80と同様にCVD等により形成することもできるが、後述するように、基板68を処理するときに自然に形成されるものであってもよい。
【実施例1】
図11において、本発明に係る第1実施例が示されている。前述した実施形態と同様に例えば本体部が炭化珪素から構成された基板支持体30には、載置部66が支柱64から平行に突出形成されている。尚、支柱は複数本、例えば3〜4本設けられる。プレート(土台)88は、例えば炭化珪素(SiC)製の円柱状の板状部材からなり、該プレート88の下面周縁が載置部66に支持されている。支持部82は、シリコン(Si)製の円柱状の板状部材からなり、プレート88の上面に載置されている。該支持部82の上面には、例えば炭化珪素からなる接着防止層70が形成されている。この接着防止層70は0.1μm〜50μmとすることが好ましい。基板68は、この接着防止層70を介して支持部82に支持されている。
プレート88及び支持部82の厚さは、それぞれ基板68の厚さよりも厚いことが好ましいが、支持部82の厚さのみが基板68の厚さよりも厚くなるようにしてもよい。
プレート88は、直径Φ308mm、厚さ3mmとした。支持部82は、直径Φ200mm、厚さ4mmとした。基板68は、直径Φ300mm、厚さ700μmのシリコンウエハである。炭化珪素からなる接着防止層70は0.1μm〜50μmとした。熱処理は、600°Cの温度に保持した反応炉内に基板支持体30に支持した基板68をロードし、基板ロード後、反応炉内を処理温度である1200°C、又は1350°Cまで昇温し、窒素(N)ガスと酸素(O)ガスを導入して反応炉内を処理温度に所定時間保持し、その後反応炉内温度を600°Cに降温して基板支持体30に支持された基板68をアンロードした。尚、基板68の昇温、降温速度は高温になる程、遅くなるよう多段階で昇温、降温するようにした。このように多段階で昇温、降温するのは(高温である程、昇温速度、降温速度を小さくするのは)高温で急激に温度を変化させると、基板面内で均一に温度が変化せず、スリップ発生の原因となるからである。熱処理時間は合計で13〜14時間程度とした。その結果、処理温度が、1200°Cの場合、1350°Cの場合のいずれの場合においても基板68にはスリップの発生は見られなかった。
【実施例2】
図12において、本発明に係る第2実施例が示されている。前述した実施形態と同様に例えば本体部が炭化珪素から構成された基板支持体30には、載置部66が支柱64から平行に突出形成されている。尚、支柱64は複数本、例えば3本又は4本設けられる。プレート(土台)88は、例えば炭化珪素(SiC)製の円柱状の板状部材からなり、該プレート88の下面周縁が載置部66に支持されている。そして、このプレート88には、前述した円柱状の板状部材からなるシリコン(Si)製の支持部58が載置されている。さらに、支持部58の上面には、例えば炭化珪素からなる接着防止層70が形成されている。
本体部が炭化珪素製の基板支持体30に厚さ2.5mm〜3mm、直径Φ308mmの炭化珪素製プレート88を支持し、その上に、厚さ4mm、直径Φ200mm、基板載置面に接着防止層としての炭化珪素膜70をコーティングしたシリコン製の支持部58を載せ、その上に厚さ700μm、直径Φ300mmのシリコンウェハである基板68を載置した。熱処理は、図12に示すように、600°Cの温度に保持した反応炉内に基板支持体30に支持した基板68をロードし、基板ロード後、反応炉内を処理温度である1350°Cまで昇温度速度を段階的に変えて昇温し、窒素(N)ガスと酸素(O)ガスを導入して反応炉内を処理温度に所定時間保持し、その後反応炉内温度を600°Cまで降温速度を段階的に変えて降温して基板支持体30に支持された基板68をアンロードした。基板68の昇温、降温速度は高温になる程、遅くなるようにした。即ち、室温から600°Cまでの昇温速度よりも、600°Cから1000°Cまでの昇温速度の方が遅く、600°Cから1000°Cまでの昇温速度よりも1000°Cから1200°Cまでの昇温速度の方が遅く、1000°Cから1200°Cまでの昇温速度よりも1200°Cから1350°Cまでの昇温速度の方が遅くなるようにした。また、逆に1350°Cから1200°Cまでの降温速度の方が、1200°Cから1000°Cまでの降温速度よりも遅く、1200°Cから1000°Cまでの降温速度の方が、1000°Cから600°Cまでの降温速度よりも遅く、1000°Cから600°Cまでの降温速度の方が、600°Cから室温までの降温速度よりも遅くなるようにした。このように多段階で昇温、降温するのは(高温である程、昇温速度、降温速度を小さくするのは)高温で急激に温度を変化させると、基板面内で均一に温度が変化せず、スリップ発生の原因となるからである。熱処理時間は合計で13〜14時間程度とした。その結果、炭化珪素製の膜70を0.1μm〜3μmとしたときは、基板68にはスリップは発生しなかった。膜70を15μm、50μmとしたときは、基板68にはスリップは殆ど発生しなかった。
上記実施例を繰り返し行った結果、1回目の評価よりも、2回目以降の評価の方が、スリップは発生しにくくなることが分った。これは、1回目の評価におけるN、O雰囲気下での熱処理で支持部58上の膜70の表面に非晶質(アモルファス)状のSiO膜が形成されることが原因と考えられる。この非晶質状のSiO膜が支持部58の最表面に形成されることにより、支持部58の基板68と接触する部分の硬度が熱処理時においてSiC製の膜70やSi製の基板68より小さくなり、高温熱処理時において基板68と支持部58との接触点で応力が発生してもその応力を開放することができる。しかもSiOが非晶質であることから、高温熱処理時において基板68と支持部58とがそれらの接触点で融着しても、非晶質部分の粘性流動により融着した接触点で発生した応力を、非晶質SiOが粘性流動(粘性変形)することにより開放することができる。その結果、2回目以降の評価における高温熱処理時の基板68の傷発生を抑制することができるようになり、基板68へのスリップ発生を抑制できるようになったものと考えられる。
なお、本実施例においては、Si製の支持部58上面に設けたSiC製の膜70の表面に、アモルファス状のSiO膜が形成される場合について説明したが、Si製の支持部58の表面に、直接アモルファス状のSiOを設けるようにしてもよいのは勿論のことである。
なお、上記実施形態及び実施例の説明にあっては、熱処理装置として、複数の基板を熱処理するバッチ式のものを用いたが、これに限定するものではなく、枚葉式のものであってもよい。
本発明の熱処理装置は、基板の製造工程にも適用することができる。
SOI(Silicon On Insulator)ウエハの一種であるSIMOX(Separation by Implanted Oxygen)ウエハの製造工程の一工程に本発明の熱処理装置を適用する例について説明する。
まずイオン注入装置等により単結晶シリコンウエハ内へ酸素イオンをイオン注入する。その後、酸素イオンが注入されたウエハを上記実施形態の熱処理装置を用いて、例えばAr、O雰囲気のもと、1300°C〜1400°C、例えば1350°C以上の高温でアニールする。これらの処理により、ウエハ内部にSiO層が形成された(SiO層が埋め込まれた)SIMOXウエハが作製される。
また、SIMOXウエハの他,水素アニールウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。この場合、ウエハを本発明の熱処理装置を用いて、水素雰囲気中で1200°C程度以上の高温でアニールすることとなる。これによりIC(集積回路)が作られるウエハ表面層の結晶欠陥を低減することができ、結晶の完全性を高めることができる。
また、この他、エピタキシャルウエハの製造工程の一工程に本発明の熱処理装置を適用することも可能である。
以上のような基板の製造工程の一工程として行う高温アニール処理を行う場合であっても、本発明の熱処理装置を用いることにより、基板のスリップの発生を防止することができる。
本発明の熱処理装置は、半導体装置の製造工程にも適用することも可能である。
特に、比較的高い温度で行う熱処理工程、例えば、ウェット酸化、ドライ酸化、水素燃焼酸化(パイロジェニック酸化)、HCl酸化等の熱酸化工程や、硼素(B)、リン(P)、砒素(As)、アンチモン(Sb)等の不純物(ドーパント)を半導体薄膜に拡散する熱拡散工程等に適用するのが好ましい。
このような半導体デバイスの製造工程の一工程としての熱処理工程を行う場合においても、本発明の熱処理装置を用いることにより、スリップの発生を防止することができる。
以上のように、本発明は、特許請求の範囲に記載した事項を特徴とするが、さらに次のような実施形態が含まれる。
(1)請求項1記載の熱処理装置において、前記支持部の厚さが少なくとも前記基板の厚さの2倍以上であることを特徴とする熱処理装置。
(2)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、前記支持部の厚さが前記載置部の厚さよりも厚いことを特徴とする熱処理装置。
(3)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料が被覆されてなることを特徴とする熱処理装置。
(4)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなるチップが一つ又は複数設けられてなることを特徴とする熱処理装置。
(5)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面に、凹部又は基板と同心円状の溝が形成されてなることを特徴とする熱処理装置。
(6)請求項1記載の熱処理装置において、前記支持部は、前記基板が載置される基板載置面の周縁に、凹部又は基板と同心円状の溝が形成されてなることを特徴とする熱処理装置。
(7)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、この載置部に前記支持部が嵌合する嵌合溝が形成されていることを特徴とする熱処理装置。
(8)請求項1記載の熱処理装置において、前記本体部は、前記支持部を載置する載置部を有し、この載置部に開口又は溝が形成され、前記支持部には、前記開口または溝に嵌る凸部が設けられ、この支持部の凸部が前記開口又は溝に嵌合されていることを特徴とする熱処理装置。
(9)請求項1記載の熱処理装置において、前記支持部の基板載置面の面積は基板平坦面の面積よりも小さいことを特徴とする熱処理装置。
(10)請求項1記載の熱処理装置において、前記支持部は円柱状であり、前記支持部の直径が基板の直径よりも小さいことを特徴とする熱処理装置。
(11)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧はが支持部の厚さの0.0025%〜1.25%であることを特徴とする熱処理装置。
(12)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧が支持部の厚さの0.0025%〜0.38%であることを特徴とする熱処理装置。
(13)請求項6記載の熱処理装置において、前記炭化珪素膜の膜圧が支持部の厚さの0.0025%〜0.25%であることを特徴とする熱処理装置。
(14)請求項6記載の熱処理装置において、前記支持部の最上面には酸化珪素(SiO)膜が形成されていることを特徴とする熱処理装置。
(15)請求項10記載の熱処理装置において、前記複数の膜は2種類の膜からなり、そのうち一つは炭化珪素(SiC)膜であり、最上面の膜は酸化珪素(SiO)膜であることを特徴とする熱処理装置。
(16)請求項1記載の熱処理装置において、前記本体部の構成物は炭化珪素(SiC)であることを特徴とする熱処理装置。
(17)請求項1記載の熱処理装置において、前記基板支持体は、複数枚の基板を略水平状態で隙間をもって複数段に支持されてなるように構成されてなることを特徴とする熱処理装置。
(18)請求項1記載の熱処理装置において、熱処理は1000°C以上の温度で行うことを特徴とする熱処理装置。
(19)請求項1記載の熱処理装置において、熱処理は、1350°C以上の温度で行うことを特徴とする熱処理装置。
(20)処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(21)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(22)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(23)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(24)処理室内に基板を搬入する工程と、基板が載置される基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前期処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(25)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(26)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(27)処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
(28)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
(29)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
(30)処理室内に基板を搬入する工程と、基板が載置される基板載置面にコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であるシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部に支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板処理方法。
以上述べたように、本発明によれば、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持するようにしたので、基板にスリップ転位欠陥が生じるのを防止することができる。
また、本発明によれば、シリコン製の支持部に炭化珪素や窒化珪素膜や、酸化珪素等の接着防止層をコーティングしたので、基板にスリップが生じるのを防止することができると共に、熱処理後の基板と支持部との接着を防止することができる。また、支持部の基板載置面にコーティングした膜の硬度が、熱処理時において、熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質となるようにしたので、基板にスリップが生じるのを更に防止することができる。また、支持部の基板載置面に複数の膜をコーティングする場合、最表面の膜の硬度が熱処理時において最も小さいか、又は最表面の膜が非晶質となるようにしたので、この場合においても、基板にスリップが生じるのをさらに防止することができるものである。
【産業上の利用可能性】
本発明は、熱処理中に発生する基板のスリップ転位欠陥発生をを少なくし、高品質な半導体装置を製造することができる熱処理装置、半導体装置の製造方法及び基板の製造方法に利用することができる。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】


【特許請求の範囲】
【請求項1】
基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、前記基板の厚さよりも厚いシリコン製の板状部材から構成されてなることを特徴とする熱処理装置。
【請求項2】
請求項1記載の熱処理装置において、前記支持部の厚さが10mm以下であることを特徴とする熱処理装置。
【請求項3】
請求項1記載の熱処理装置において、前記支持部の厚さが3mm〜6mmであることを特徴とする熱処理装置。
【請求項4】
請求項1記載の熱処理装置において、前記支持部の厚さが4mm〜5mmであることを特徴とする熱処理装置。
【請求項5】
請求項1記載の熱処理装置において、前記支持部の前記基板が載置される基板載置面には、前記基板と前記支持部との接着を防止するための接着防止層が設けられることを特徴とする熱処理装置。
【請求項6】
基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の前記基板が載置される基板載置面に、炭化珪素(SiC)、窒化珪素(Si)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされていることを特徴とする熱処理装置。
【請求項7】
請求項6記載の熱処理装置において、前記支持部の基板載置面には、炭化珪素(SiC)膜がコートされており、前記炭化珪素膜の膜厚が、0.1μm〜50μmであることを特徴とする熱処理装置。
【請求項8】
請求項6記載の熱処理装置において、前記支持部の基板載置面には、炭化珪素(SiC)膜がコートされており、前記炭化珪素膜の膜厚が、0.1μm〜15μmであることを特徴とする熱処理装置。
【請求項9】
請求項6記載の熱処理装置において、前記支持部の基板載置面には、炭化珪素(SiC)膜がコートされており、前記炭化珪素膜の膜厚が、0.1μm〜10μmであることを特徴とする熱処理装置。
【請求項10】
基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面に複数の異なる膜が積層され、該複数の膜のうち最表面の膜の硬度が熱処理温度において最も小さいか、又は最表面の膜が非晶質であることを特徴とする熱処理装置。
【請求項11】
請求項10記載の熱処理装置において、前記複数の膜は、炭化珪素(SiC)、窒化珪素(Si)、多結晶シリコン(Poly−Si)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれかの材料からなることを特徴とする熱処理装置。
【請求項12】
請求項10記載の熱処理装置において、前記最表面の膜が酸化珪素(SiO)膜であることを特徴とする熱処理装置。
【請求項13】
基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面に炭化珪素(SiC)膜が形成され、更に最表面に酸化珪素(SiO)膜が形成されることを特徴とする熱処理装置。
【請求項14】
基板を基板支持体により支持した状態で熱処理する熱処理装置において、前記基板支持体は、本体部と、この本体部に設けられ、前記基板と接触する支持部とを有し、この支持部は、シリコン製であると共に、該支持部の基板載置面にはコーティング膜が形成され、該コーティング膜の硬度が熱処理温度において熱処理時における基板の硬度よりも小さいか、又はコーティング膜が非晶質であることを特徴とする熱処理装置。
【請求項15】
処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
【請求項16】
処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする基板の製造方法。
【請求項17】
処理室内に基板を搬入する工程と、基板の厚さよりも厚いシリコン製の板状部材から構成された支持部により基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。
【請求項18】
処理室内に基板を搬入する工程と、基板が載置される基板載置面に炭化珪素(SiC)、酸化珪素(SiO)、ガラス状炭素、微結晶ダイヤモンドのうちいずれか一つ又は複数の材料からなる膜がコートされたシリコン製の支持部により前記基板を支持する工程と、前記処理室内で前記基板を前記支持部により支持した状態で熱処理する工程と、前記基板を前記処理室より搬出する工程と、を有することを特徴とする半導体装置の製造方法。

【国際公開番号】WO2004/030073
【国際公開日】平成16年4月8日(2004.4.8)
【発行日】平成18年1月26日(2006.1.26)
【国際特許分類】
【出願番号】特願2004−539559(P2004−539559)
【国際出願番号】PCT/JP2003/012353
【国際出願日】平成15年9月26日(2003.9.26)
【出願人】(000001122)株式会社日立国際電気 (5,007)
【Fターム(参考)】