説明

発光素子および製造方法

【課題】大面積での面発光が実現可能であり、またリーク電流による消費電力を抑えることを可能とする発光素子、およびその製造方法を提供する。
【解決手段】発光素子は、電子輸送層と、前記電子輸送層と互いに対向すると共に、離間して設けられたホール輸送層と、前記電子輸送層と前記ホール輸送層との間に挟持された複数の半導体微粒子からなる層を有する発光層と、前記電子輸送層に面して設けられ、電気的に接続された第1の電極と、前記ホール輸送層に面して設けられ、電気的に接続された第2の電極とを備え、前記発光層を構成する前記半導体微粒子は、その内部にp型部分とn型部分とを有し、前記p型部分と前記n型部分との界面にpn接合を持ち、前記p型部分の一部が前記ホール輸送層に接すると共に、前記n型部分の一部が前記電子輸送層に接するように配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子及びその製造方法に関する。
【背景技術】
【0002】
近年、直流電流により動作する発光素子の研究開発が活発に行われている。特に、青色発光ダイオード(Blue−LED;Blue Light Emitting Diode)、紫外発光ダイオード(UV−LED;Ultra−Violet Light Emitting Diode)などの発光素子に使用される実用的な半導体材料として、窒化ガリウム(GaN),窒化インジウム・ガリウム混晶(InGaN),窒化アルミニウム・ガリウム混晶(AlGaN)あるいは窒化インジウム・アルミニウム・ガリウム混晶(InAlGaN)に代表される3族ナイトライド化合物半導体が注目されている。
【0003】
従来、このような第3族ナイトライド化合物半導体は、MOCVD(MetalOrganic Chemical Vapor Deposition;有機金属化学気相成長)法を用いて基板上に成長させることにより単結晶薄膜として作製されている。
【0004】
しかしながら、MOCVD法により発光素子を製造する場合、使用する基板は成長させる化合物半導体とほぼ等しい結晶格子定数を有すると共に、耐熱性に優れている必要がある。すなわち、基板の材質や大きさに制約が生じてしまうという問題があった。
【0005】
例えば、第3族ナイトライド化合物半導体を成長させる場合には、主に結晶性のサファイア(α−Al)基板が使用されている。このサファイアは、第3族ナイトライド化合物半導体、中でも窒化ガリウムとほぼ等しい結晶格子定数を有すると共に、耐熱性に優れており、MOCVD用の基板として好適な材料である。しかし、サファイア基板を用いる場合には、そのc面上に成長させる必要があるため、基板の加工性や成形性に難があり、材料コストが高くなってしまう問題があった。
【0006】
また、基板の全面に均一な膜厚の薄膜を形成することが困難であるために、面積の大きな基板を用いることができず、現状では最大で20cm×20cm程度であり、生産性が低いという問題もあった。
【0007】
更に、発光素子は、発光層(活性層とも言う)と電子/ホールのキャリア輸送層とで構成される多層構造となるため、各半導体層の接合面において結晶格子歪みが生じないように化合物半導体をエピタキシャル成長させる必要がある。その理由としては、結晶格子歪みが生じると、各半導体層の接合面近傍において転位などの結晶格子欠陥が発生し、発光効率が低下してしまうからである。すなわち、各半導体層の結晶系と格子定数を精密に制御する必要があり、結晶成長条件の設定とその制御には困難を極め、製造が難しいという問題もあった。
【0008】
そこで、面発光が可能である発光デバイスを実現するため、ホール輸送層と電子輸送層との間に、焼成により粒子を結合させた粒子層を挟み、ホール輸送層と電子輸送層間に電圧を印加し、面発光を可能とする方法が試みられている(例えば、特許文献1参照。)。
【0009】
【特許文献1】特開2001−210865号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
ところが、特許文献1のような発光素子の製造方法、また、それによって得られる発光素子の構成では粒子を焼成により結合させる必要があるため、蒸気圧の低い材料や、GaNなどの昇華性の材料を用いる場合には使用できないという問題点がある。また粒子間は空洞となっていることでリーク電流を生じやすい構造となっている。
【0011】
そこで、このような問題点を解決すべく、本発明の目的は、大面積での面発光が実現可能であり、またリーク電流による消費電力を抑えることを可能とする発光素子、およびその製造方法を提供することである。
【課題を解決するための手段】
【0012】
本発明に係る発光素子は、電子輸送層と、
前記電子輸送層と互いに対向すると共に、離間して設けられたホール輸送層と、
前記電子輸送層と前記ホール輸送層との間に挟持された複数の半導体微粒子からなる層を有する発光層と、
前記電子輸送層に面して設けられ、電気的に接続された第1の電極と、
前記ホール輸送層に面して設けられ、電気的に接続された第2の電極と
を備え、
前記発光層を構成する前記半導体微粒子は、その内部にp型部分とn型部分とを有し、前記p型部分と前記n型部分との界面にpn接合を持ち、前記p型部分の一部が前記ホール輸送層に接すると共に、前記n型部分の一部が前記電子輸送層に接するように配置されていることを特徴とする。
【0013】
また、前記発光層は、前記半導体微粒子の一粒子層を有してもよい。さらに、前記発光層は、前記半導体微粒子間の間隙を埋める誘電体をさらに有してもよい。
【0014】
また、前記半導体微粒子の平均粒子径は、前記電子輸送層と前記ホール輸送層との間の平均間隔よりも大きいことが好ましい。
【0015】
また、前記半導体粒子は、GaN微結晶を含んでもよい。また、前記半導体微粒子の平均粒子径は、1〜100μmの範囲内であってもよい。
【0016】
本発明による発光素子の製造方法は、基板上に、第1の電子輸送層を形成する工程と、
前記第1の電子輸送層上に流動性を有する第2の電子輸送層を形成する工程と、
前記第2の電子輸送層上に半導体微粒子が一粒子層並んだ層を形成する工程と、
前記半導体微粒子にpn接合を形成する工程と、
前記半導体微粒子の上にホール輸送層を形成する工程と、
前記ホール輸送層の上に第2の電極を設ける工程と
を含むことを特徴とする。
【0017】
また、前記半導体微粒子間の間隙に誘電体を埋め込む工程と、
前記誘電体を前記半導体微粒子の上部が露出するように除去する工程と
をさらに含んでもよい。
【0018】
さらに、前記半導体微粒子として、GaNを含む半導体微粒子を使用してもよい。
【発明の効果】
【0019】
本発明によれば、大面積で面発光が可能である発光素子を低コストで製造することが可能である。
【発明を実施するための最良の形態】
【0020】
本発明の実施の形態に係る発光素子及びその製造方法について添付図面を用いて説明する。なお、図面において、実質的に同一の部材には同一の符号を付して、その説明を省略する。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1に係る発光素子10の構成を示す概略断面図である。図2は、特に、図1の電子輸送層3、発光層4、ホール輸送層5間の関係を示す拡大断面図である。この発光素子10は、基板1の上に、下部電極2、電子輸送層3、半導体の微結晶を含む半導体微粒子11の一粒子層を有する発光層4、ホール輸送層5、上部電極6の順に積層された多層構造を有している。また、電子輸送層3とホール輸送層5とは、互いに対向すると共に、離間して設けられている。さらに、発光層4は、電子輸送層3とホール輸送層5との間に挟持された半導体微粒子11の一粒子層を有する。この半導体微粒子11は、p型部分13aとn型部分13bとを有し、粒子内部にpn接合を有する。また、各粒子11のp型部分13aの一部がホール輸送層5に接し、n型部分13bの一部が電子輸送層3に接している。半導体微粒子11の平均粒子径Rは、電子輸送層3とホール輸送層5との平均間隔dよりも大きい(R > d)。また、下部電極2は、電子輸送層3に電気的に接続されている。上部電極6は、ホール輸送層5に電気的に接続されている。発光層4は、半導体微粒子11間の間隙を埋める誘電体12をさらに有している。この誘電体12によってリーク電流を減少させることができる。なお、誘電体12は必ずしも必要でなく、例えば、外部の支持体等によって電子輸送層3とホール輸送層5とを所定の間隔で離間させておくことができれば誘電体12を用いなくてもよい。この発光素子10は、上部電極6と下部電極2との間に接続された電源7によって電圧を印加することによって発光させることができる。
【0022】
この発光素子10では、発光層4を半導体微粒子11の一粒子層として構成できるので、薄膜によって構成する場合に比べて安価に作製することができる。また、半導体微粒子11が、バインダを介することなく直接に電子輸送層3とホール輸送層5との間に挟持され、それぞれの層3,5と電気的に接続されるので、半導体微粒子11への電子/ホールのキャリア注入効率を向上させることができる。これによって、発光素子10の発光効率を高くすることができる。さらに、各粒子のp型部分13aの一部がホール輸送層5に接すると共に、n型部分13bの一部が電子輸送層3に接しているので、半導体微粒子11の内部へホール及び電子が効率的に導入される。これによって、各粒子11の内部のpn接合において効率的に発光させることができる。
【0023】
以下、発光素子10の各構成部材について説明する。
<基板>
基板1には、例えば、ガラス基板,セラミックス基板,サファイア基板,窒化ホウ素(BN)基板,窒化アルミニウム基板,窒化ガリウム基板,窒化アルミニウム・ガリウム基板,窒化インジウム・ガリウム基板,炭化ケイ素(SiC)基板,シリコン(Si)基板、あるいは、金属基板、またはポリカーボネート樹脂,ポリエチレンテレフタレート樹脂,ポリエステル樹脂,エポキシ樹脂,アクリル樹脂あるいはABS(Acrylonitrile−Butadiene−Styrene copolymer)樹脂等からなる樹脂基板を用いることができる。
【0024】
なお、基板1側から光を取り出さない構成の場合は、上述の光透過性は不要であり、光透過性を有していない材料も用いることができる。
【0025】
<電極>
電極として、下部電極2と上部電極6とがある。これらは、例えば、光を取り出す側の電極を透明電極として、他方の電極を背面電極としてもよい。それぞれの電極2,6は、光を取り出す側であるか否かでその材料等が限定される。なお、両方の電極2、6を透明電極としてもよい。そこで、下部電極2及び上部電極6について、その配置ではなく、透明電極として用いる場合と背面電極として用いる場合のそれぞれについて説明する。
【0026】
まず、透明電極として用いる場合について説明する。透明電極の材料は、発光層4内で生じた発光を外部に取り出せるように光透過性を有するものであればよく、特に可視光領域において高い透過率を有することが好ましい。また、電極として低抵抗であることが好ましく、更には基板1や発光層3との密着性に優れていることが好ましい。透明電極の材料として、特に好適なものは、ITO(InにSnOをドープしたものであり、インジウム錫酸化物ともいう。)やInZnO、ZnO、SnO等を主体とする金属酸化物、Pt、Au、Pd、Ag、Ni、Cu、Al、Ru、Rh、Ir等の金属薄膜、あるいはポリアニリン、ポリピロール、PEDOT/PSS、ポリチオフェンなどの導電性高分子等が挙げられるが、特にこれらに限定されるものではない。これらの透明電極はその透明性を向上させ、あるいは抵抗率を低下させる目的で、スパッタリング法、エレクトロンビーム蒸着法、イオンプレーティング法、等の成膜方法で成膜できる。また成膜後に、抵抗率制御の目的でプラズマ処理などの表面処理を施してもよい。透明電極の膜厚は、必要とされるシート抵抗値と可視光透過率から決定される。
【0027】
透明電極のキャリア濃度は、1E17〜1E22cm−3の範囲であることが望ましい。また、透明電極として性能を出すために、透明電極の体積抵抗率は1E−3Ω・cm以下であって、透過率は380〜780nmの波長において75%以上であることが望ましい。また、透明電極の屈折率は、1.85〜1.95が良い。さらに、透明電極の膜厚は30nm以下の場合に緻密で安定した特性を持つ膜が実現できる。
【0028】
また、背面電極として用いる場合について説明する。背面電極には、一般に良く知られている導電材料であればいずれでも適用できる。更には、隣接する層3、5との密着性に優れていることが好ましい。好適な例としては、例えば、ITOやInZnO、ZnO、SnO等の金属酸化物、Pt、Au、Pd、Ag、Ni、Cu、Al、Ru、Rh、Ir、Cr、Mo、W、Ta、Nb等の金属、これらの積層構造体、あるいは、ポリアニリン、ポリピロール、PEDOT〔ポリ(3,4−エチレンジオキシチオフェン)〕/PSS(ポリスチレンスルホン酸)等の導電性高分子、あるいは導電性カーボンなどを用いることができる。
【0029】
次に、電子輸送層3及びホール輸送層5について説明する。電子輸送層3とホール輸送層5とは、互いに対向すると共に、離間して設けられている。
【0030】
<電子輸送層>
電子輸送層3は、たとえばケイ素(Si)などのn型不純物を添加した第3B族元素の窒化物により構成されている。電子輸送層3は単結晶体,多結晶体,非晶質体,微粒子体、有機物あるいはこれらの複合体、積層膜などどのような形態を有していてもよい。
【0031】
また、電子輸送層3は、発光層4を構成する半導体の微結晶を含む半導体微粒子11よりも大きな禁制帯幅エネルギーを有していることが好ましい。これにより、電子輸送層3を半導体微粒子11に対するキャリア閉じ込めおよびクラッド層として機能させることができる。また、電子輸送層3の吸収端波長よりも半導体微粒子11から放出される光の波長の方が長くなり、半導体微粒子11から放出される光は電子輸送層3の中を減衰することなく透過するので、基板1の側から光を取り出すことができ、光取り出し効率を増大させることができる。
【0032】
<ホール輸送層>
ホール輸送層5は、例えば、マグネシウム(Mg)などのp型不純物を添加した3B族元素の窒化物により構成されている。ホール輸送層5は、単結晶体,多結晶体,非晶質体,微粒子体、有機物あるいはこれらの複合体、積層膜などどのような形態を有していてもよい。
【0033】
また、ホール輸送層5は、発光層4を構成する半導体の微結晶を含む半導体微粒子11よりも大きな禁制帯幅エネルギーを有していることが好ましい。これにより、電子輸送層3と同様に、ホール輸送層5を半導体微粒子11に対するキャリア閉じ込めおよびクラッド層として機能させることができる。また、ホール輸送層5の吸収端波長よりも半導体微粒子11から放出される光の波長の方が長くなり、半導体の微結晶を含む半導体微粒子11から放出される光はホール輸送層5の中を減衰することなく透過するので、ホール輸送層5の側から光を取り出すことができ、光取り出し効率を増大させることができる。
【0034】
<発光層>
発光層4は、電子輸送層3とホール輸送層5との間に挟持された半導体微粒子11からなる層を有する。なお、上述のように、半導体微粒子11間の間隙を埋める誘電体12をさらに有してもよい。誘電体12を用いることによってリーク電流を減少させることができる。この発光層4を構成する半導体微粒子11からなる層は、電子輸送層3とホール輸送層5との間に一粒子層として形成されることが好ましい。また、半導体微粒子11には、その平均粒子径Rが電子輸送層3とホール輸送層5との間の平均面間隔dよりも大きいものを用いる(関係式:R > d)。これによって、電子輸送層3とホール輸送層5とを互いに対向させ、所定間隔で離間させておき、半導体微粒子11の各粒子を介して電子輸送層3とホール輸送層5との間の電気的接続を行うことができる。なお、この半導体微粒子11の平均粒子径Rは、1〜100μmの範囲内であればよい。
【0035】
<半導体微粒子>
図4の(a)及び(b)は、半導体微粒子11の内部構造を示す概略断面図である。この半導体微粒子11は、図4の(a)に示すように、粒子の上部にp型部分13a、下部にn型部分13bを備えており、p型部分13aとn型部分13bとの界面にpn接合を持つ。また、図4の(b)に示すように、内核と外殻とでドープ特性が異なる半導体材料を用いて内核と外殻の一部とで異なるドープ型を有する半導体微粒子11を構成してもよい。この半導体微粒子11では、ドープされにくいn型の内核13cと、ドープされやすく、一部に元のn型部分13bが残ると共に、一部がp型部分13aとなった外殻とを有し、外殻のp型ドープされた部分13aと、内核のn型部分13cとの界面においてpn接合が形成される。この場合、外殻の下部にn型部分13bを残存させることによって、内核のn型部分13cからn型部分13bを介して電子輸送層3との電気的接続を確保することができる。
【0036】
また、この半導体の微結晶を含む半導体微粒子11は、少なくとも一部が微結晶により構成されておればよく、例えば、半導体微結晶以外の他の粒子を含んでいてもよい。また、例えば、微結晶に被覆層などが設けられた微粒子を含んでいてもよい。また、半導体微粒子11自体が単結晶であってもよい。ここで微結晶とは、単結晶または多結晶よりなる微粒子のことである。さらに、この半導体微粒子11は、禁制帯遷移発光(禁制帯遷移に起因する発光)またはドナーアクセプターペア発光(ドナーアクセプター準位間遷移に起因する発光)をするようになっている。すなわち、この粒子11は、禁制帯遷移発光機能またはドナーアクセプターペア発光機能をそれぞれ有している。
【0037】
半導体微粒子11としては、例えば、III−V族化合物半導体、具体的には、GaAs、InPなど、酸化物または窒化物、例えば亜鉛(Zn),チタン(Ti)および鉄(Fe)からなる群のうちの少なくとも一種を含む酸化物、または3B族元素の窒化物などが好ましい。具体的には、酸化亜鉛,酸化チタン(TiO),酸化鉄(FeまたはFeO),酸化亜鉛・酸化チタン(ZnO・TiO)混晶,酸化亜鉛・酸化鉄(ZnO・Fe)混晶あるいは酸化チタン・酸化鉄(TiO・Fe)混晶など、または窒化ガリウム,窒化インジウム,窒化インジウム・ガリウム混晶,窒化アルミニウム・ガリウム混晶あるいは窒化インジウム・アルミニウム・ガリウム混晶などが挙げられる。
【0038】
また、例えば、半導体微粒子11を酸化亜鉛、酸化チタンあるいは酸化鉄よりなる微結晶を含むように構成する場合には、ホール輸送層5は、窒化ホウ素,窒化アルミニウム,窒化ガリウム,窒化アルミニウム・ガリウム混晶などにより構成することが好ましい。なお、上記半導体微粒子11の禁制帯幅エネルギーは、酸化亜鉛では3.2eV、酸化チタンでは3.0eV、酸化鉄(Fe)では3.1eV、窒化ホウ素では6.2eV、窒化アルミニウムでは6.1eV、窒化ガリウムでは3.4eVであり、混晶の場合にはその組成に応じて変化する。
【0039】
<誘電体>
誘電体12には、必要に応じて低誘電率材料又は高誘電率材料を用いることができる。低誘電率材料の場合、具体的にはSiO、Al、Y、BaTa、Taなどの金属酸化物やSiなどの窒化物、SiONなどの酸窒化物を用いることができる。また、高誘電率材料の場合、具体的にはペロブスカイト構造を有するセラミック材料が好ましく、さらに具体的にはPbNbOやBaTiO、SrTiO、PbTiO、(Sr,Ca)TiOなどを用いることができる。半導体微粒子11間の間隙を誘電体12で埋めることによってリーク電流を生じにくくすることができる。
【0040】
<製造方法>
図3の(a)〜(i)は、本実施の形態1に係る発光素子10の製造方法の各工程を示す概略断面図である。
(a)まず、基板1の上に下部電極2をパターニングし、さらに、パターンニングされた下部電極2上に第1の電子輸送層3aを形成する(図3(a))。
(b)次に、第1の電子輸送層3aの上に流動性を有する液体状の第2の電子輸送層3bを塗布により形成する(図3(b))。第2の電子輸送層3bは、液体の塗布により形成される。第2の電子輸送層3bの膜厚d1は、後に形成される半導体の微結晶を含む半導体微粒子11の直径Rより小さい膜厚で形成される(関係式:d1 < R)。なお、第1の電子輸送層3aと第2の電子輸送層3bとは、同じ材料であっても異なる材料であってもよい。また、第2の電子輸送層3bは、流動性を有するものに限られず、半導体微粒子11を接着しうる接着性を有するもの、あるいは、半導体微粒子11が一部分だけ埋設されるものを用いることができる。
【0041】
(c)次に、流動性を有する第2の電子輸送層3bの上に、半導体の微結晶を含む半導体微粒子11の一粒子層からなる発光層4を形成する(図3(c))。上述のように、第2の電子輸送層3bの膜厚d1は、半導体微粒子11の直径Rに比べて薄く形成されている。そのため、半導体微粒子11を第2の電子輸送層3b上に吹き付けることにより、半導体微粒子11はちょうど一粒子ずつが第2の電子輸送層3bの上に付着され、余分の粒子は除去されるので、半導体微粒子11の一粒子層が形成される。これによって、半導体微粒子11と第2の電子輸送層3bとの電気的な接続を確実にすることができ、その後に形成する誘電体12が半導体微粒子11と第1の電子輸送層3aとの間に入り込むことを抑制できる。なお、半導体微粒子11は、第2の電子輸送層3bの上部にのみ接していてもよい。あるいは、半導体微粒子11は、第2の電子輸送層3bに埋設され、第1の電子輸送層3aに接していてもよい。この第1の電子輸送層3aと第2の電子輸送層3bによって電子輸送層3を構成する。また、半導体微粒子11からなる発光層4は、吹きつけによる方法に限られず、例えば、塗布等によって形成してもよい。
(d)半導体の微結晶を含む粒子11間の間隙を埋め込むように誘電体膜12を形成する(図3(d))。
(e)半導体の微結晶を含む粒子11の上部が露出するように余分の誘電体膜を除去する(図3(e))。
(f)p型ドープ材料23を粒子上に形成する(図3(f))。このp型ドープ材料23には、例えばMgなどの材料を用いる。
(g)熱処理等の手法により、半導体の微結晶を含む粒子11の上部にp型ドープされた部分13aを形成し、その後、不要なp型ドープ材料23を除去する(図3(g))。
(h)半導体微粒子11の上にホール輸送層5を形成する(図3(h))。
(i)上記ホール輸送層5の上に上部電極6を形成する(図3(i))。
以上によって発光素子10が形成される。
【0042】
なお、この製造方法では、電子輸送層3の上に半導体微粒子11の一粒子層を形成したが、この場合にかぎられず、逆に、ホール輸送層5の上に半導体微粒子11の一粒子層を設けてもよい。
【0043】
また、上記製造方法では流動性の第2の電子輸送層3bを用いたが、第2の電子輸送層3bは必ずしも用いなくてもよい。この流動性を有する第2の電子輸送層3bは、その上に半導体微粒子11の一粒子層を形成するために、半導体微粒子11の接着用として用いるものである。そこで、第1の電子輸送層3aが、その表面に接着性を有する場合には、流動性の第2の電子輸送層3bを用いる必要はない。さらに、第1の電子輸送層3aが、表面に接着性を有しない場合であっても、その後、半導体微粒子11の一粒子層を形成した際に半導体微粒子11と第1の電子輸送層3aとの電気的な接続が確保できれば、第2の電子輸送層3bを用いる必要はない。
【0044】
また、上記の製造方法では、半導体微粒子11として、図4(a)の場合について説明したが、これに限られず、例えば、図4(b)に示す構造を有する半導体微粒子11を形成することができる。
【0045】
図5の(a)〜(c)は、図4(b)の半導体微粒子11の構造を形成する製造方法の核工程を示す概略断面図である。
(a)それぞれn型半導体からなる内核13cとn型半導体からなる外殻13bとを有する半導体微粒子11を用意する(図5(a))。この内核と外殻とは、ドープ特性が異なり、内核はp型ドープされにくく、外殻はp型ドープされやすいものを用いる。
(b)粒子11の上部から、例えば、p型ドープ材料23によってドープを行う(図5(b))。
(c)この半導体微粒子11では、内核はp型ドープされにくいのでn型部分13cのまま残り、外殻はp型ドープされやすいので、下部に元のn型部分13bが残ると共に、上部から側部にかけてp型部分13aとなる(図5(a))。このようにして、外殻のp型ドープされた部分13aと、内核のn型部分13cとの界面においてpn接合が形成される。
以上によって、図4の(b)の構造を有する半導体微粒子11が形成される。この場合、外殻の下部にn型部分13bを残存するので、内核のn型部分13cからn型部分13bを介して電子輸送層3との電気的接続を確保することができる。
【産業上の利用可能性】
【0046】
本発明によれば、大面積で面発光が可能である発光素子を低コストで製造することが可能である。
【図面の簡単な説明】
【0047】
【図1】本発明の実施の形態1に係る発光素子の構成を示す概略断面図である。
【図2】図1の電子輸送層、発光層、ホール輸送層間の関係を示す拡大断面図である。
【図3(a)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(b)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(c)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(d)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(e)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(f)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(g)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(h)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図3(i)】本実施の形態1に係る発光素子の製造方法における一工程を示す概略断面図である。
【図4】(a)は、半導体微粒子のpn接合を示す概略断面図であり、(b)は、別例の半導体微粒子のpn接合を示す概略断面図である。
【図5】(a)〜(c)は、図4(b)の半導体微粒子のpn接合を形成する製造方法の各工程を示す概略断面図である。
【符号の説明】
【0048】
1 基板
2 下部電極
3 電子輸送層
3a 第1の電子輸送層
3b 第2の電子輸送層
4 発光層
5 ホール輸送層
6 上部電極
7 電源
10 発光素子
11、11a 半導体微粒子
12 誘電体
13a p型部分
13b n型部分
13c n型部分
23 p型ドープ材料

【特許請求の範囲】
【請求項1】
電子輸送層と、
前記電子輸送層と互いに対向すると共に、離間して設けられたホール輸送層と、
前記電子輸送層と前記ホール輸送層との間に挟持された複数の半導体微粒子からなる層を有する発光層と、
前記電子輸送層に面して設けられ、電気的に接続された第1の電極と、
前記ホール輸送層に面して設けられ、電気的に接続された第2の電極と
を備え、
前記発光層を構成する前記半導体微粒子は、その内部にp型部分とn型部分とを有し、前記p型部分と前記n型部分との界面にpn接合を持ち、前記p型部分の一部が前記ホール輸送層に接すると共に、前記n型部分の一部が前記電子輸送層に接するように配置されていることを特徴とする発光素子。
【請求項2】
前記発光層は、前記半導体微粒子の一粒子層を有することを特徴とする請求項1に記載の発光素子。
【請求項3】
前記発光層は、前記半導体微粒子間の間隙を埋める誘電体をさらに有することを特徴とする請求項1に記載の発光素子。
【請求項4】
前記半導体微粒子の平均粒子径は、前記電子輸送層と前記ホール輸送層との間の平均間隔よりも大きいことを特徴とする請求項1に記載の発光素子。
【請求項5】
前記半導体粒子は、GaN微結晶を含むことを特徴とする請求項1に記載の発光素子。
【請求項6】
前記半導体微粒子の平均粒子径は、1〜100μmの範囲内であることを特徴とする請求項1に記載の発光素子。
【請求項7】
基板上に、第1の電子輸送層を形成する工程と、
前記第1の電子輸送層上に流動性を有する第2の電子輸送層を形成する工程と、
前記第2の電子輸送層上に半導体微粒子が一粒子層並んだ層を形成する工程と、
前記半導体微粒子にpn接合を形成する工程と、
前記半導体微粒子の上にホール輸送層を形成する工程と、
前記ホール輸送層の上に第2の電極を設ける工程と
を含むことを特徴とする発光素子の製造方法。
【請求項8】
前記半導体微粒子間の間隙に誘電体を埋め込む工程と、
前記誘電体を前記半導体微粒子の上部が露出するように除去する工程と
をさらに含むことを特徴とする請求項7に記載の発光素子の製造方法。
【請求項9】
前記半導体微粒子として、GaNを含む半導体微粒子を使用することを特徴とする請求項7に記載の発光素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3(a)】
image rotate

【図3(b)】
image rotate

【図3(c)】
image rotate

【図3(d)】
image rotate

【図3(e)】
image rotate

【図3(f)】
image rotate

【図3(g)】
image rotate

【図3(h)】
image rotate

【図3(i)】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−251875(P2008−251875A)
【公開日】平成20年10月16日(2008.10.16)
【国際特許分類】
【出願番号】特願2007−91946(P2007−91946)
【出願日】平成19年3月30日(2007.3.30)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】