説明

発光素子

【課題】発光効率が高い発光素子を提供する。
【解決手段】本発明に係る発光素子1は、支持基板20と、支持基板20の上に設けられる第1導電型の第1導電型層と、第1導電型層の上に設けられ、光を発する活性層16と、活性層16の上に設けられ、第1導電型とは異なる第2導電型の第2導電型層と、第1導電型層の表面の一部に接する第1電極と、第2導電型層の表面の一部に接する第2電極とを備え、第1電極が、活性層16の直上又は直下に対応する第1導電型層の表面とは異なる第1導電型層の表面に接し、第2電極が、活性層16の直上又は直下に対応する第2導電型層の表面とは異なる第2導電型層の表面に接する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子に関する。
【背景技術】
【0002】
白熱電球の生産の停止の動きと共に、発光ダイオードの発光効率が向上したことから、発光ダイオードが照明用として白熱電球の代わりに用いられる場合が増えている。また、発光ダイオードの発光効率が更に向上すれば、蛍光灯の代わりとして照明用途においてますます発光ダイオードが用いられる場合が増加すると考えられる。したがって、発光ダイオードの発光効率の向上は、単なる省エネルギーの観点だけでなく、蛍光灯等と同程度以上の明るさを実現するための発光ダイオードの製造コストの低減、及び信頼性の向上に関する観点においても重要である。
【0003】
従来、発光素子として、発光ダイオードチップの表面側に電極が形成されていないフリップチップ構造の発光ダイオードが知られている(例えば、特許文献1参照。)。特許文献1に記載の発光素子は、陽極と陰極との双方の電極がエピタキシャル層の裏面側に形成されているので、チップの表面から光が放射される場合に、光が遮られることがない。したがって、特許文献1に記載の発光素子においては、光取り出し効率を70%程度近くまで向上させることができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特表2008−523637号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載のような発光素子においては、光電変換効率を55%程度まで向上させたものの、いまだ、発光素子に供給されたエネルギーの半分程度は光として発光素子の外部に取り出すことができない。発光素子の外部に取り出すことのできないエネルギーは熱に変換され、当該熱は発光素子から放出される。ここで、発光素子からエネルギーが熱として放出されるということは、単に光電変換効率を低下させるだけでなく、発光素子の温度を上昇させる要因になる。発光素子の温度が上昇すると、光電変換効率の低下、及び発光素子の寿命の低下を引き起こす場合がある。
【0006】
したがって、本発明の目的は、発光効率が高い発光素子を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、上記課題を解決することを目的として、支持基板と、支持基板の上に設けられる第1導電型の第1導電型層と、第1導電型層の上に設けられ、光を発する活性層と、活性層の上に設けられ、第1導電型とは異なる第2導電型の第2導電型層と、第1導電型層の表面の一部に接する第1電極と、第2導電型層の表面の一部に接する第2電極とを備え、第1電極が、活性層の直上又は直下に対応する第1導電型層の表面とは異なる第1導電型層の表面に接し、第2電極が、活性層の直上又は直下に対応する第2導電型層の表面とは異なる第2導電型層の表面に接する発光素子が提供される。
【0008】
また、上記発光素子において、第1電極及び第2電極がそれぞれ複数設けられ、第1電極及び第2電極がそれぞれ、平面視においてライン状に形成され、第1電極と第2電極とが、平面視において平行に配置されてもよい。
【0009】
また、上記発光素子において、支持基板上に、第1導電型層と活性層とを含み、複数の溝により互いに分離される複数の発光部を更に備え、第2電極が、複数の溝それぞれの下方に位置する第2導電型層の活性層の反対側の表面に設けられ、第1電極が、複数の発光部がそれぞれ有する第1導電型層の第2導電型層側の活性層が設けられていない表面に設けられてもよい。
【0010】
また、上記発光素子において、支持基板と第2導電型層との間に設けられ、光を第1導電型層の側に反射する反射部と、反射部と第2導電型層との間の第2電極が設けられている領域とは異なる領域に設けられ、光を透過し、電気絶縁性を有する透明絶縁層とを更に備えてもよい。
【0011】
また、上記発光素子において、一の発光部の第1電極と、一の発光部の隣の他の発光部の第2電極とが電気的に接続され、一の発光部と他の発光部とが電気的に直列に接続されてもよい。
【0012】
また、上記発光素子において、一の発光部の第1電極と一の発光部の隣の他の発光部の第1電極とが電気的に接続され、一の発光部の第2電極と他の発光部の第2電極とが電気的に接続されることにより一の発光部と他の発光部とが電気的に並列に接続されてもよい。
【0013】
また、本発明は、上記課題を解決することを目的として、支持基板と、支持基板の上に設けられる第1導電型の第1導電型層と、第1導電型層の上に設けられ、光を発する活性層と、活性層の上に設けられ、第1導電型とは異なる第2導電型の第2導電型層と、第1導電型層の活性層の反対側であって、活性層の直下から離れた第1導電型層の表面に接する第1電極と、第2導電型層の活性層の反対側の表面の一部に接する第2電極と、第2電極の直下に対応する領域に活性層の代わりに設けられる絶縁部とを備える発光素子が提供される。
【0014】
また、本発明は、上記課題を解決することを目的として、支持基板と、支持基板の上に設けられる第1導電型の第1導電型層と、第1導電型層の上に設けられ、光を発する活性層と、活性層の上に設けられ、第1導電型とは異なる第2導電型の第2導電型層と、第1導電型層の活性層の側であって、活性層が除去されて露出する第1導電型層の表面に接する第1電極と、第2導電型層の活性層の反対側の表面の一部に接する第2電極と、第2電極の直下に対応する領域に活性層の代わりに設けられる絶縁部とを備える発光素子が提供される。
【発明の効果】
【0015】
本発明に係る発光素子によれば、発光効率が高い発光素子を提供できる。
【図面の簡単な説明】
【0016】
【図1A】本発明の実施の形態に係る発光素子の斜視図である。
【図1B】図1AのA−A線における断面図である。
【図1C】本実施の形態に係る発光素子の平面視における反射部、n型用パッド電極、及びp型用パッド電極の配置を示す図である。
【図2A】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2B】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2C】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2D】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2E】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2F】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2G】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図2H】本発明の実施の形態に係る発光素子の製造工程の流れを示す図である。
【図3】本発明の実施の形態の第1の変形例に係る発光素子の断面図である。
【図4】本発明の実施の形態の第2の変形例に係る発光素子の断面図である。
【図5】本発明の実施の形態の第3の変形例に係る発光素子の断面図である。
【図6】本発明の実施の形態の第4の変形例に係る発光素子の断面図である。
【発明を実施するための形態】
【0017】
[実施の形態の要約]
本実施の形態に係る発光素子は、支持基板と、前記支持基板の上に設けられる第1導電型の第1導電型層と、前記第1導電型層の上に設けられ、光を発する活性層と、前記活性層の上に設けられ、前記第1導電型とは異なる第2導電型の第2導電型層と、前記第1導電型層の表面の一部に接する第1電極と、前記第2導電型層の表面の一部に接する第2電極とを備える発光素子において、前記第1電極が、前記活性層の直上又は直下に対応する前記第1導電型層の表面とは異なる前記第1導電型層の表面に接し、前記第2電極が、前記活性層の直上又は直下に対応する前記第2導電型層の表面とは異なる前記第2導電型層の表面に接する発光素子である。
【0018】
本実施の形態に係る発光素子1は、活性層16で発光した光が発光素子1の内部で多重反射しながら発光素子1の外部に取り出される場合に、n側コンタクト電極60とp側コンタクト電極65とにより吸収される光を低減することを目的として、活性層16とn側コンタクト電極60及びp側コンタクト電極65とが設けられる領域が明確に分離する。また、n側コンタクト電極60とp側コンタクト電極65との平面視における間隔を略一定に配置することにより、活性層16に電流が局所的に集中することを抑制する。以下、実施の形態の詳細を説明する。
【0019】
[実施の形態]
図1Aは、本発明の実施の形態に係る発光素子の斜視図の概要を示し、図1Bは、図1AのA−A線における断面の概要を示す。また、図1Cは、本実施の形態に係る発光素子の平面視における反射部、n型用パッド電極、及びp型用パッド電極の配置の概要を示す。なお、図1Aにおいては説明の便宜上、凹凸部の図示は省略する。
【0020】
(発光素子1の構造の概要)
本実施の形態に係る発光素子1は、一例として、AlGaInP系のIII−V族化合物半導体を用いて主として構成され、赤色光を放射するフリップチップタイプの発光素子としての発光ダイオード(Light Emitting Diode:LED)である。発光素子1は、一例として、平面視にて矩形状を有する。具体的に発光素子1は、支持基板20と、支持基板20の上に設けられる支持基板側接合層5と、支持基板側接合層5の上に設けられ、支持基板側接合層5に金属接合している半導体側接合層4と、半導体側接合層4の上に設けられ、電気絶縁性を有する透明絶縁層30と、透明絶縁層30の上に設けられる化合物半導体層とを備える。支持基板20の裏面(すなわち、支持基板20の支持基板側接合層5が設けられている面の反対側の面)には、発光素子1をステム等の部材に実装する場合にダイボンディングを容易にすることを目的として、金属材料を用いて構成されるダイボンディング用金属層としての金属層90が設けられる。
【0021】
支持基板側接合層5は、支持基板20の側から密着層52と、支持基板側接合金属層54とを有する。また、半導体側接合層4は、透明絶縁層30の側から反射層42と、拡散抑止層44と、半導体側接合金属層46とを有する。支持基板側接合金属層54と半導体側接合金属層46とが金属接合することにより支持基板側接合層5と半導体側接合層4とが一体化する。一体化した支持基板側接合層5と半導体側接合層4とで反射部3が構成される。反射部3は、予め定められた間隔をおいて発光素子1の厚さ方向に反射部3を分断する複数の溝75を含む。複数の溝75により反射部3は複数の領域に分断される。例えば、反射部3は、図1Cに示すように、平面視にて複数のライン状のパターンを有して構成される。
【0022】
ここで、複数の反射部3のうち、発光素子1の平面視において一の辺の近傍に設けられる一の反射部3、及び当該一の辺の対辺近傍に設けられる他の反射部3は、一の反射部3と他の反射部3との間に配置される複数の反射部3の長辺より長い長辺を有して形成される。そして、一例として図1A及び図1Cに示すように、当該一の辺及び当該対辺に垂直な一辺近傍の化合物半導体層及び透明絶縁層30の全部又は一部が除去された領域に、一の反射部3及び他の反射部3の端部が露出する。そして、一の反射部3の端部にp型用パッド電極105が電気的に接続される。一方、他の反射部3の端部にはn型用パッド電極100が電気的に接続される。なお、p型用パッド電極105及びn型用パッド電極100の直下に反射部3を設けることもできる。
【0023】
化合物半導体層は、支持基板20の上方に反射部3及び透明絶縁層30を介して設けられる第1導電型の第1導電型層としてのp型クラッド層18と、p型クラッド層18上に設けられ、光を発する活性層16と、活性層16上に設けられ、第2導電型の第2導電型層としてのn型クラッド層14とを有する。また、n型クラッド層14の表面には、凹凸部80が設けられる。
【0024】
ここで、発光素子1は、p型クラッド層18から活性層16の側に向けて発光素子1の厚さ方向に沿ってp型クラッド層18の一部と活性層16の一部とが複数個所で除去されることにより形成される複数の溝77を備える。複数の溝77の側面には、透明絶縁層30が接する。すなわち、溝77が形成されることにより露出するp型クラッド層18の側面と活性層16の側面とに透明絶縁層30が接する。なお、複数の溝77はそれぞれ、一例として、平面視にてライン状を有する。
【0025】
そして、透明絶縁層30により絶縁された複数の溝77のそれぞれに反射層42の一部が充填される。また、溝77の内側であって、p型クラッド層18の一部と活性層16の一部とが除去されることにより露出するn型クラッド層14の表面には、第2電極としてのn側コンタクト電極60が設けられる。よって、反射層42とn型クラッド層14とは、n型クラッド層14の表面の一部に接するn側コンタクト電極60を介して電気的に接続される。また、透明絶縁層30の一部に設けられた貫通孔を充填し、p型クラッド層18の表面の一部に接する第1電極としてのp側コンタクト電極65を介してp型クラッド層18と反射層42とが電気的に接続される。
【0026】
したがって、n側コンタクト電極60は、活性層16の直上又は直下に対応するn型クラッド層14の表面とは異なるn型クラッド層14の表面に接する。また、p側コンタクト電極65は、活性層16の直上又は直下に対応するp型クラッド層18の表面とは異なるp型クラッド層18の表面に接する。
【0027】
ここで、発光素子1は複数の溝77を備えているので、複数の溝77のそれぞれにn側コンタクト電極60が設けられる。また、透明絶縁層30は予め定められた間隔をおいて複数の貫通孔を有する。そして、複数の貫通穴のそれぞれにp側コンタクト電極65が設けられるので、発光素子1は複数のp側コンタクト電極65を備える。また、n側コンタクト電極60及びp側コンタクト電極65はそれぞれ、平面視においてライン状に形成される。更に、n側コンタクト電極60とp側コンタクト電極65とは、平面視において平行に配置される。
【0028】
また、発光素子1は、支持基板20の上に、n型クラッド層14と活性層16とを含み、複数の溝70により互いに分離される複数の発光部11、発光部11a、発光部11b、及び発光部11cを備える。発光部11乃至発光部11cはそれぞれ、平面視にてライン形状を有する。なお、発光部の数は4つに限られず、n個(ただし、nは2以上の整数)にすることもできる。そして、p側コンタクト電極65は、複数の溝70それぞれの下方に位置するp型クラッド層18の活性層16の反対側の表面に設けられる。また、n側コンタクト電極60は、複数の発光部がそれぞれ有するn型クラッド層14のp型クラッド層18の側の活性層16が設けられていない表面に設けられる。
【0029】
ここで、一の発光部は、第1の溝70と第2の溝70とに挟まれている。そして、第1の溝70の下方のp側コンタクト電極65と第2の溝70の下方のp側コンタクト電極65とは、溝75により電気的に絶縁されている(つまり、複数のp側コンタクト電極65はそれぞれ、複数の溝75により互いに電気的に絶縁される。)。一方、一の発光部のn側コンタクト電極60と第2の溝70の下方に位置するp側コンタクト電極65とは、反射部3(より具体的には、反射層42)を介して互いに電気的に接続されている。そして、第1の溝70の下方のp側コンタクト電極65と一の発光部のn側コンタクト電極60とは、n型クラッド層14、活性層16、及びp型クラッド層18を介して電気的に接続される。他の発光部についても同様である。
【0030】
したがって、一の発光部(例えば、発光部11)と一の発光部の隣の他の発光部(例えば、発光部11a)とは電気的に直列に接続されている。すなわち、一の発光部のn側コンタクト電極60と、一の発光部の隣の他の発光部のp側コンタクト電極65とが電気的に接続されることにより、一の発光部と他の発光部とが電気的に直列に接続される。また、溝70の幅W(つまり、一の発光部と他の発光部との間の距離)は、p側コンタクト電極65の幅Wより広く形成される。
【0031】
なお、コンタクト電極の接触抵抗を低減することを目的として、p型クラッド層18の活性層16の反対側に、p型クラッド層18のキャリア濃度より高いキャリア濃度を有するp型コンタクト層を設けることもできる。同様に、n型クラッド層14の活性層16の反対側に、n型クラッド層14のキャリア濃度より高いキャリア濃度を有するn型コンタクト層を設けることもできる。また、発光素子1に供給される電流の分散を向上させ、発光素子1の発光効率を高め、かつ、順方向電圧を低減させることを目的として、p型クラッド層18とp型コンタクト層の間、及び/又はn型クラッド層14とn型コンタクト層との間にp型コンタクト層及びn型コンタクト層の抵抗より低い抵抗を有する電流分散層を更に設けることもできる。
【0032】
また、図1Aにおいては、反射部3、n型用パッド電極100、及びp型用パッド電極105が設けられている領域と、発光部11乃至発光部11cが設けられている領域とを除く部分は、支持基板20の表面が露出している。しかしながら、この露出している表面に、例えば、透明絶縁層30を設けることもできる。
【0033】
(支持基板20)
支持基板20は、複数の発光部を電気的に分離することを目的として、高い電気抵抗を有する基板を用いる。そして、支持基板20は、発光素子1の製造工程において発光素子1に加わる力、発光素子1の使用状況において発光素子1に加わる力に耐え得る機械的強度を有する材料、及び厚さを有する。支持基板20としては、例えば、Si基板を用いる。Si基板としては、一例として、抵抗率が3×10Ωcm以上の高抵抗Si基板を用いることができる。また、支持基板20の裏面(つまり、反射部3が設けられる面の反対側の面)の金属層90としては、例えば、発光素子1からの放熱を向上させることを目的として、共晶接合用の合金材料であるAuSn層を用いることができる。なお、支持基板20として、熱抵抗が小さい高キャリア濃度のSi基板の表面に絶縁膜としてのSiO膜を形成することにより絶縁性を発揮するSi基板を用いることもできる。
【0034】
(支持基板側接合層5)
支持基板側接合層5は、支持基板20の表面(つまり、裏面の反対側の面)に、予め定められたパターンを有して設けられる。具体的に支持基板側接合層5は、支持基板20の表面側から、例えば、支持基板20と支持基板側接合金属層54とを密着させるTi等の金属からなる密着層52と、例えば、Au等の金属からなる支持基板側接合金属層54とを含む。支持基板側接合金属層54が、半導体側接合金属層46に接合する機能を有する。
【0035】
(半導体側接合層4)
半導体側接合層4は、金属の単層又は複数の金属層を含んで構成される。例えば、半導体側接合層4は、支持基板20の側から、半導体側接合金属層46と、拡散抑止層44と、活性層16が発する光を反射する反射層42とを含む。半導体側接合金属層46は、例えば、Au等の金属を用いて形成され、拡散抑止層44は、例えば、Ti、Pt等の金属を用いて形成される。また、反射層42は、例えば、Au等の金属を用いて形成される。この場合、半導体側接合金属層46が支持基板側接合金属層54に接合する機能を発揮する。また、支持基板20等を構成する材料が反射層42に拡散することにより反射層42の反射特性が変化することを抑制する拡散防止バリア層としての機能を拡散抑止層44が発揮する。
【0036】
なお、反射層42は、活性層16が発する光の波長に応じて、当該波長の光に対する反射率が高い金属(例えば、反射率が80%以上の金属)を用いて形成することができる。そして、半導体側接合層4と支持基板側接合層5とを有して構成される反射部3は、化合物半導体層と支持基板20とを接続する機能を有すると共に、透明絶縁層30と接触することにより、活性層16で発光した光を反射する機能を有する。
【0037】
(透明絶縁層30)
透明絶縁層30は、活性層16が発する光を透過する。そして、透明絶縁層30は、電気絶縁性を有する材料を用いて形成される。例えば、透明絶縁層30は、SiO又はSiNを含んで構成することができる。一例として透明絶縁層20は、SiOから形成される。
【0038】
(化合物半導体層)
化合物半導体層は、支持基板20の側からp型クラッド層18と、活性層16と、n型クラッド層14とを有する。化合物半導体層を構成する各層は、(AlGa1−xIn1−yP(ただし、0<x<1、0<y<1)、GaP、又はGaAsで表される化合物半導体から構成される。例えば、p型クラッド層18はp型の(AlGa1−xIn1−yPから形成される。また、活性層16は、アンドープの(AlGa1−xIn1−yPからなる障壁層と井戸層とからなるペアを複数含む量子井戸構造を有して形成される。そして、n型クラッド層14はn型の(AlGa1−xIn1−yPから形成される。
【0039】
なお、p型クラッド層18の活性層の反対側にp型コンタクト層を設けることもできる。この場合、p型コンタクト層はp型のGaPから形成することができる。また、n型クラッド層14の活性層16の反対側にn型コンタクト層を設けることもできる。この場合、n型コンタクト層はn型のGaAsから形成することができる。
【0040】
p型クラッド層18の活性層16の反対側の表面の一部には、透明絶縁層30に設けられた開口を介してp型クラッド層18と反射層42とを電気的に接続するp側コンタクト電極65が設けられる。p側コンタクト電極65は、一例として、平面視にてライン状を有する。そして、p側コンタクト電極65は、溝70の下方に位置する。また、p側コンタクト電極65は、p型クラッド層18にオーミック接合する材料を用いて形成される。
【0041】
また、n型クラッド層14の支持基板20の側の表面の一部であって、p型クラッド層18及び活性層16の一部が除去された表面に、n側コンタクト電極60が設けられる。具体的に、n型クラッド層14の支持基板20の側には、p型クラッド層18と活性層16とにより溝77が形成され、その溝77の表面に透明絶縁層30が形成される。そして、透明絶縁層30が形成されずに溝77から露出するn型クラッド層14の表面にn側コンタクト電極60が設けられる。n側コンタクト電極60は、一例として、平面視にてライン状を有する。そして、n側コンタクト電極60は、n型クラッド層14にオーミック接合する材料を用いて形成される。
【0042】
(凹凸部80)
凹凸部80は、n型クラッド層14の活性層16の反対側の表面(つまり、光取り出し面)を粗面化して形成される。凹凸部80は、予め定められたパターンを有して当該表面に形成される。また、凹凸部80は、当該表面を予め定められたエッチャントでエッチングすることによりランダムな形状を有して形成することもできる。更に、凹凸部80は、発光素子1の光取り出し効率を向上させることを目的として、活性層16が発する光の波長に応じて決定される最大高さRyの範囲を有して形成される。例えば、発光波長が460nmである場合、発光波長の半分の230nm以上、一例として、0.2μm以上の最大高さRyを有して凹凸部80は形成される。また、凹凸部80は、光学的なフォトリソグラフィー技術、電子ビーム描画技術、又はナノインプリント技術を用いて形成することができる。発光素子1の製造コストを低下させることを目的として光学的なフォトリソグラフィーを用いる場合、凹凸部80の最大高さRyを0.5μm以上3.0μm以下程度にすることができる。
【0043】
(発光素子1の製造方法)
図2A〜図2Hは、本発明の実施の形態に係る発光素子の製造工程の流れの一例を示す。
【0044】
本実施の形態に係る発光素子1は、例えば、以下の6つの工程を経て製造される。まず、エピタキシャルウエハを製造すると共に、エピタキシャルウエハにn側コンタクト電極60とp側コンタクト電極65を形成する(第一工程)。次に、支持基板20の上に小チップ配線用の電極としての機能を有する支持基板側接合層5を形成する(第二工程)。続いて、エピタキシャルウエハと支持基板20とを貼り合わせる(第三工程)。そして、エピタキシャルウエハから半導体基板10を除去すると共に凹凸部80を形成する(第四工程)。次に、分離溝及び光吸収抑止溝としての機能を有する溝70を形成すると共に支持基板20の裏面に金属層90を形成する(第五工程)。最後に、チップ分離する(第六工程)。以下、各工程について詳細に説明する。
【0045】
(第一工程)
まず、半導体基板10を準備する。半導体基板10としては、例えば、GaAs基板を用いることができる。そして、半導体基板10上に、例えば、有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD法)によって複数のIII−V族化合物半導体層を含む半導体積層構造を形成する。すなわち、半導体基板10の側からエッチングストップ層12、n型クラッド層14、活性層16、及びp型クラッド層18をこの順に含む半導体積層構造を半導体基板10上に形成する。これにより、エピタキシャルウエハが製造される(図2Aの(a)参照。)。
【0046】
ここで、MOCVD法を用いた半導体積層構造の形成は、成長温度、成長圧力、半導体積層構造が有する複数の化合物半導体層のそれぞれの成長速度、及びV/III比をそれぞれ所定の値に設定して実施する。なお、V/III比とは、トリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)等のIII族原料のモル数を基準にした場合における、アルシン(AsH)、ホスフィン(PH)等のV族原料のモル数の比である。
【0047】
また、MOCVD法において用いる原料は、Ga原料として、トリメチルガリウム(TMGa)、又はトリエチルガリウム(TEGa)を用いることができ、Al原料としてトリメチルアルミニウム(TMAl)を用いることができ、In原料としてトリメチルインジウム(TMIn)等の有機金属化合物を用いることができる。また、As源としてアルシン(AsH)を用いることができ、P源としてホスフィン(PH)等の水素化物ガスを用いることができる。更に、n型のドーパントの原料は、セレン化水素(HSe)、ジシラン(Si)を用いることができる。そして、p型のドーパントの原料は、ビスシクロペンタジエニルマグネシウム(CpMg)を用いることができる。
【0048】
また、n型のドーパントの原料として、モノシラン(SiH)、ジシラン(Si)、ジエチルテルル(DETe)、又はジメチルテルル(DMTe)を用いることもできる。そして、p型のドーパントの原料として、CpMgの代わりに、ジメチルジンク(DMZn)又はジエチルジンク(DEZn)を用いることもできる。
【0049】
次に、エピタキシャルウエハをMOCVD装置から取り出した後、フォトリソグラフィー法及びエッチング法を用い、p型クラッド層18の一部と活性層16の一部とを除去することにより複数の溝72を形成する(図2Aの(b)参照)。続いて、複数の溝72の側に、透明絶縁層30を形成する。すなわち、p型クラッド層18の表面及び側面と、複数の溝72により外部に露出した活性層16の側面及びn型クラッド層14の表面に透明絶縁層30を形成する。透明絶縁層30は、例えば、プラズマCVD装置を用いて形成する(図2Aの(c)参照)。
【0050】
続いて、透明絶縁層30の表面にフォトリソグラフィー法を用い、n側コンタクト電極60とp側コンタクト電極65とを形成すべき領域を除く領域にマスクパターンを形成する。そして、マスクパターンを形成した後、形成したマスクパターンをマスクとして、透明絶縁層30にエッチング処理を施す。例えば透明絶縁層30をSiOから形成する場合、フッ酸系のエッチャントを用いてエッチング処理できる。
【0051】
これにより、n側コンタクト電極60とp側コンタクト電極65とを形成すべき領域の透明絶縁層30が除去された開口が形成され、n側コンタクト電極60を形成すべき領域に対応するn型クラッド層14の表面14aが露出すると共に、p側コンタクト電極65を形成すべき領域に対応するp型クラッド層18の表面18aが露出する(図2Bの(a)参照)。次に、真空蒸着法を用い、n側コンタクト電極60とp側コンタクト電極65とをそれぞれ別々に形成する。例えば、フォトリソグラフィー法、真空蒸着法、及びリフトオフ法を用いn側コンタクト電極60を形成した後、p側コンタクト電極65を同様の手法を用いて形成する。ここで、n側コンタクト電極60及びp側コンタクト電極65の厚さは、透明絶縁層30の厚さと略同一の厚さにする(図2Bの(b)参照)。なお、n型用パッド電極100及びp型用パッド電極105も同時に形成する。
【0052】
次に、透明絶縁層30の表面、並びにn側コンタクト電極60の表面及びp側コンタクト電極65の表面、すなわち、透明絶縁層30のp型クラッド層18に接している面の反対側の表面、並びにn側コンタクト電極60の表面及びp側コンタクト電極65の表面に半導体側接合層4を形成する。半導体側接合層4は、真空蒸着法、スパッタ法等を用いて形成することができる。例えば半導体側接合層4は、透明絶縁層30の側から反射層42としてのAu層と、拡散抑止層44としてのTi層と、半導体側接合金属層46としてのAu層とをこの順に成膜することにより形成される(図2Bの(c)参照)。
【0053】
また、フォトリソグラフィー法及びエッチング法を用い、半導体側接合層4の表面側から透明絶縁層30の側に向けて半導体側接合層4の一部を除去することにより、複数の溝75を形成する(図2C参照)。複数の溝75はそれぞれ、一の発光部のp側コンタクト電極65と、当該一の発光部の隣の発光部のn側コンタクト電極60とが電気的に接続することを防止する電極分離用の溝としての機能を有する。これにより、半導体側接合層4付きのエピタキシャルウエハが製造される。
【0054】
ここで、透明絶縁層30と反射層42との間に、透明絶縁層30と反射層42との密着性を向上させる密着層を挿入することもできる。この密着層は、例えば、金属材料を用いて構成することができる。そして、この密着層は、活性層16が発する光の吸収を低減した層であること(すなわち、当該光に対する反射率が高いこと)が好ましい。続いて、半導体基板10の裏側、すなわち、半導体基板10のエッチングストップ層12が設けられている面の反対側の面の予め定められた位置に、半導体側接合層4付きのエピタキシャルウエハと後述する支持基板側接合層5付の支持基板20とを貼り合わせる場合に用いる位置合わせ用のマークを形成する(図示しない)。
【0055】
(第二工程)
まず、支持基板20を準備する。そして、支持基板20の表面に支持基板側接合層5を形成する。具体的に、支持基板20の表面側から密着層52と支持基板側接合金属層54とを真空蒸着法又はスパッタ法等を用い、この順に形成する(図2Dの(a)参照)。密着層52は、例えば、Ti層であり、支持基板側接合金属層54は、例えば、Au層である。次に、フォトリソグラフィー法及びエッチング法を用い、予め定められた間隔を有する複数の溝74を支持基板側接合層5に形成する(図2Dの(b)参照)。そして、支持基板20の裏面の予め定められた位置に、半導体側接合層4付きのエピタキシャルウエハと支持基板20とを貼り合わせる場合に用いる位置合わせ用のマークを形成する(図示しない)。これにより、支持基板側接合層5付の支持基板20が形成される。
【0056】
(第三工程)
半導体側接合層4付きのエピタキシャルウエハの表面と支持基板側接合層5付の支持基板20の表面とを向かい合わせて重ね、この状態をカーボン等から形成される冶具で保持する。続いて、この接触した状態を保持している冶具を、マイクロマシーン用の位置合わせ機能を備えるウエハ貼合わせ装置内に導入する。そして、ウエハ貼合わせ装置内を所定圧力にする。一例として、1.333Pa(0.01Torr)の圧力に設定する。そして、互いに重なり合っている半導体側接合層4付きのエピタキシャルウエハと支持基板側接合層5付の支持基板20とに冶具を介して圧力を加える。一例として、30kgf/cmの圧力を加える。次に、冶具を所定温度まで所定の昇温速度で加熱する。
【0057】
例えば、冶具の温度を350℃まで加熱する。そして、冶具の温度が350℃程度に達した後、冶具を当該温度で約1時間保持する。その後、冶具を徐冷する。冶具の温度を、例えば室温まで十分に低下させる。冶具の温度が低下した後、冶具に加わっている圧力を開放する。そして、ウエハ貼合わせ装置内の圧力を大気圧にして冶具を取り出す。これにより、半導体側接合層4付きのエピタキシャルウエハと支持基板側接合層5付の支持基板20とが半導体側接合層4と支持基板側接合層5との間において機械的・電気的に接合する(図2E参照)。なお、以下において、半導体側接合層4付きのエピタキシャルウエハと支持基板側接合層5付の支持基板20とが接合した状態の構造を「接合構造体」という。
【0058】
(第四工程)
次に、接合構造体を研磨装置の冶具に貼り付け用ワックスで貼り付ける。具体的に、支持基板20側を当該冶具に貼り付ける。したがって、半導体基板10の側が外部に露出する。そして、接合構造体の半導体基板10を所定の厚さ(例えば、30μm程度の厚さ)になるまで研磨する。続いて、研磨後の接合構造体を研磨装置の冶具から取り外して、支持基板20の表面に付着しているワックスを洗浄除去する。そして、支持基板20の表面にフォトレジストからなるエッチング保護用の膜を形成した後、半導体基板10のエッチング用のエッチャントを用いて、研磨後の接合構造体から半導体基板10を選択的に完全に除去してエッチングストップ層12を露出させる。エッチングストップ層12が設けられているので、半導体基板10が完全に除去された時点でエッチング反応は終了する。
【0059】
なお、半導体基板10がGaAsから形成されている場合、半導体基板10のエッチング用エッチャントとしては、GaAsエッチング用のエッチャントであるアンモニア水と過酸化水素水との混合液を用いることができる。また、半導体基板10を研磨せずに、全ての半導体基板10をエッチングにより除去することもできる。
【0060】
続いて、エッチングストップ層12を選択的にエッチングするエッチャントを用い、エッチングストップ層12を除去する。例えばエッチングストップ層12がGaInP系の化合物半導体から形成されている場合、エッチングストップ層12を選択的にエッチングするエッチャントとしては、塩酸を用いることができる。これにより、n型コンタクト層19が露出する(図2F参照。)。
【0061】
続いて、フォトリソグラフィー法及び真空蒸着法を用いて、半導体基板10及びエッチングストップ層12を除去することにより露出したn型クラッド層14の表面の予め定められた位置に、鋭角の先端部を有する円錐状の凹凸部80を形成する。凹凸部80は、フォトリソグラフィー法及びエッチング法を用いて形成することができる。具体的には、フォトリソグラフィー法で溝70を形成すべき領域にマスクを形成する。そして、ドライエッチング法を用い、マスクが形成されていないn型クラッド層14の表面に凹凸部80を形成する。これにより、n型クラッド層14の表面に溝70が形成されるべき領域である平坦部70aと、凹凸部80が形成される(図2G参照。)。
【0062】
(第五工程)
次に、フォトリソグラフィー法を用い、素子間分離用のパターン及び溝70形成用のパターンをn型クラッド層14の表面に形成する。そして、形成したパターンをマスクとして、n型クラッド層14の表面からp型クラッド層18の表面までをエッチング処理により除去する。これにより、発光素子1をダイシングにより形成する場合にダイシングブレードがpn接合界面に触れることを防止する機能を有する溝70と共に、複数の発光部を規定する複数の溝70が形成される。また、このエッチング処理により、反射部3の一部と、n型用パッド電極100とp型用パッド電極105とが外部に露出する。露出したn型用パッド電極100及びp型用パッド電極105の表面は、複数の製造工程を経ているので、ワイヤーボンディング時にワイヤの密着性が低下する場合がある。したがって、n型用パッド電極100及びp型用パッド電極105の表面にパッド用電極として、Au層を更に成膜することもできる。次に、支持基板20の裏面に金属層90を形成する。例えば、AuSn層を支持基板20の裏面に形成する。
【0063】
続いて、n側コンタクト電極60及びp側コンタクト電極65に不活性雰囲気下においてアロイ処理を施す。例えば、窒素ガス雰囲気中で加熱処理をn側コンタクト電極60及びp側コンタクト電極65に予め定めた時間施す。これにより、n側コンタクト電極60とn型クラッド層14とがオーミック接合すると共に、p側コンタクト電極65とp型クラッド層18とがオーミック接合する(図2H参照。)。
【0064】
(第六工程)
そして、複数の溝70のうち、予め定められた溝70(つまり、素子分離用の溝70)をダイシング装置を用いて切断する。素子分離用の溝70を除く他の溝70は分離しない。これにより、本実施の形態に係る発光素子1が製造される。なお、発光素子1の上面視における形状は略矩形であり、上面視における寸法は、一例として、1mm角であり、厚さは200μm程度である。
【0065】
(変形例)
発光素子1が備えるn型クラッド層14及びp型クラッド層18を構成する化合物半導体の導電型を、反対の導電型にすることもできる。また、活性層16の量子井戸構造は、単一量子井戸構造、多重量子井戸構造、又は歪み多重量子井戸構造のいずれの構造からも形成することができる。なお、本実施の形態に係る発光素子1を主として構成する化合物半導体を、GaAs、AlGaAs、及び/又はInGaAsP等の化合物半導体に代えることもできる。
【0066】
また、n側コンタクト電極60及びp側コンタクト電極65の平面視における形状を、ドット状電極が直線状に配列された形状にすることもできる。すなわち、n側コンタクト電極60及びp側コンタクト電極65を複数の部分に離間させた形状にすることもできる。この場合において、n側コンタクト電極60及びp側コンタクト電極65の平面視における形状は円形に限られず、楕円形、矩形、又は枝付きの円形等の形状にすることもできる。
【0067】
(実施の形態の効果)
本実施の形態に係る発光素子1は、活性層16の直上及び直下にn側コンタクト電極60及びp側コンタクト電極65を形成していないので、活性層16から放出される光が発光素子1の内部で反射を繰り返しつつ発光素子1の外部に取り出される場合に、n側コンタクト電極60及びp側コンタクト電極65に入射する光の量を低減させることができる。つまり、活性層16で発光した光がn側コンタクト電極60及びp側コンタクト電極65で吸収されて損失することを抑制できる。したがって、本実施の形態に係る発光素子1においては、n側コンタクト電極60及びp側コンタクト電極65に吸収される光の量を低減できる(つまり、電極による光の吸収損失を低減できる)ので、活性層16から放出される光が熱に変換されることを抑制できる。
【0068】
なお、本実施の形態に係る発光素子1においては、光取り出し効率の向上を目的として、従来の発光素子のように電極の面積を低減させることを要さないので、発光素子1の順方向電圧が高くなることも抑制できる。また、発光素子1の内部で電極による光の反射の繰り返しも低減することができるので、電極における光の損失も低減できる。よって、発光素子1は、電極による光吸収損失の低減、及び低い順方向電圧の実現を、低い製造コストで実現できる。
【0069】
また、本実施の形態に係る発光素子1は、活性層16の直上及び直下にn側コンタクト電極60及びp側コンタクト電極65を形成していないので、反射率の高い電極を開発することを要さない。なお、接触抵抗率の低下と反射率の向上とはトレードオフの関係にあるので、接触抵抗率の低下と反射率の向上を両立させることは困難であるものの、本実施の形態に係る発光素子1においては、このトレードオフについて考慮することを要さない。また、本実施の形態に係る発光素子1は、接触抵抗率の低い電極を開発すること、及び電極面積を小さくすることも要さない。
【0070】
更に、従来、電極の面積を一定に保ちつつチップ面積を大きくすることにより、発光素子の平面視における面積に対する電極の平面視における面積の割合を低下させ、チップ内で光が反射したときに電極に入射する割合を低減させることにより、光吸収損失を減少させて発光効率を向上させる場合があった。しかし、この場合、同一電流を発光素子に供給するので、発光素子の平面視における面積が大きくなり、1枚のウエハから採取することができるチップ数が減少して製造コストが増加していた。しかしながら、本実施の形態に係る発光素子1は、活性層16の直上及び直下にn側コンタクト電極60及びp側コンタクト電極65を形成していないので、電極面積を大きくすると共にチップ面積をそれ以上に大きくしなくても、発光効率を向上させることができる。すなわち、発光素子1によれば、電極の面積を大きくして電流密度を低下させなくても、順方向電圧を低下させることができる。
【0071】
また、本実施の形態に係る発光素子1は、活性層16の直上及び直下にn側コンタクト電極60及びp側コンタクト電極65を形成していないので、n側コンタクト電極60及びp側コンタクト電極65の面積を大きくしても発光効率が低下しない。また、エピタキシャル層を厚く形成することにより内部抵抗を低下させなくても、発光領域を広げることができ、n側コンタクト電極60及びp側コンタクト電極65の直下において発光することを抑制できるので、電極設計の自由度を増加させることができる。
【0072】
また、本実施の形態に係る発光素子1は、複数のn側コンタクト電極60と複数のp側コンタクト電極65との間の距離が略一定になる配置で、複数のn側コンタクト電極60及び複数のp側コンタクト電極65が配置されているので、電極間の電流経路長がいずれの部分においても略一定(つまり、電極間の抵抗が略一定)になる。したがって、本実施の形態に係る発光素子1においては、n側コンタクト電極60、p側コンタクト電極65、及び半導体層を流れる電流が略一様になるので、効率よく発光させることができる。そして、流れる電流のばらつきを低減できるので、発光素子1の寿命を向上させることもできる。
【0073】
更に、本実施の形態に係る発光素子1においては、高抵抗基板若しくは絶縁基板上にライン状の複数の発光部11を配置することにより、発光素子1を大型化した場合であっても、電流が略一様に流れる状態を保持したまま発光部11の数を増加させ、発光素子1を大型化できる。そして、発光素子1に要求される性能に応じて電極の配線を適宜、変更することにより、低電圧で大電流駆動の発光素子1、又は高電圧で低電流駆動の発光素子1を提供することもできる。
【0074】
[実施の形態の第1の変形例]
図3は、本発明の実施の形態の第1の変形例に係る発光素子の断面の概要を示す。
【0075】
第1の変形例に係る発光素子1aは、断面において、発光部11乃至発光部11bそれぞれの両側にp側コンタクト電極65をそれぞれ配置すると共に、平面視にて発光部11乃至発光部11bそれぞれの中央付近にn側コンタクト電極60をそれぞれ配置する点を除き、発光素子1と略同一の構成及び機能を備える。よって、相違点を除き、詳細な説明は省略する。
【0076】
発光素子1aは、一の発光部(例えば、発光部11)と一の発光部の隣の他の発光部(例えば、発光部11a)とが電気的に並列に接続される。例えば、一の発光部が第1の溝70と第2の溝70とに挟まれている場合を説明する。すなわち、まず、一の発光部の隣の第1の溝70の下方のp側コンタクト電極65と一の発光部の下方のn側コンタクト電極60との間に位置する反射部3に溝75が設けられ、かつ、一の発光部を挟み、第1の溝70に対向する第2の溝70の下方のp側コンタクト電極65と当該n側コンタクト電極60との間の反射部3に溝75が設けられる。これにより、複数のp側コンタクト電極65はそれぞれ電気的に絶縁される。
【0077】
一方、第1の溝70の下方のp側コンタクト電極65とn側コンタクト電極60とは、p型クラッド層18、活性層16、及びn型クラッド層14を介して電気的に接続される。同様に、当該n側コンタクト電極60と第2の溝70の下方のp側コンタクト電極65とについても、p型クラッド層18、活性層16、及びn型クラッド層14を介して電気的に接続される。これにより、一の発光部と他の発光部とが電気的に並列に接続されることになる。なお、複数の発光部のそれぞれを、直列と並列とを組み合わせて互いに接続することもできる。
【0078】
[実施の形態の第2の変形例]
図4は、本発明の実施の形態の第2の変形例に係る発光素子の断面の概要を示す。
【0079】
第2の変形例に係る発光素子2は、GaN系の化合物半導体を主に用いて構成され、接合層6の構成が異なり、透明絶縁層30と支持基板20との間に反射部48が設けられる。そして、発光素子1と同一の符号が付されている各部材は、発光素子1が備える各部材と略同一の構成及び機能を備える。よって、相違点を除き、詳細な説明は省略する。
【0080】
第2の変形例に係る発光素子2は、例えば、青色光を発する発光ダイオードである。発光素子2は、一例として、以下のように製造する。まず、サファイア基板上にn型のAlGaNからなるn型クラッド層15と、アンドープInGaNからなる活性層17と、p型のAlGaNからなるp型クラッド層19とをエピタキシャル成長させ、エピタキシャルウエハを製造する。続いて、エピタキシャルウエハの予め定められた領域、すなわち、n側コンタクト電極61を形成すべき領域に対応するp型クラッド層19及び活性層17をドライエッチング等により除去することにより、溝を形成する。
【0081】
次に、当該溝を有するエピタキシャルウエハの表面に、透明絶縁層30を成膜する。透明絶縁層30は、例えば、SiO層である。そして、透明絶縁層30のp側コンタクト電極66を形成すべき領域とn側コンタクト電極61を形成すべき領域とのそれぞれに、電極形成用の孔を設ける。p側コンタクト電極66を形成すべき領域の孔からはp型クラッド層19の表面が露出すると共に、n側コンタクト電極61を形成すべき領域の孔からはn型クラッド層15の表面が露出する。そして、p側コンタクト電極66とn側コンタクト電極61とをそれぞれ別々にそれぞれの孔に形成する。
【0082】
次に、透明絶縁層30のp型クラッド層19に接している面の反対側の面の一部に、反射部48を形成する。反射部48は、青色光に対して高い反射率を有するAgを用いて形成することができる。ここで、Agはエレクトロマイグレーションを起こしやすいので、反射部48を形成した後、反射部48をSiOで封止する。反射部48を封止するSiOは、透明絶縁層30と一体化する。続いて、透明絶縁層30のp型クラッド層19に接している面の反対側の面に、接合層6を形成する。接合層6は、例えば、Au層から形成する。なお、接合層6には、予め定められた間隔をおいて、複数の溝75を形成する。これにより、接合層6を有するエピタキシャルウエハを得ることができる。
【0083】
次に、熱伝導性が良好なSi基板を支持基板20として用い、実施の形態と同様にして支持基板20と接合層6を有するエピタキシャルウエハとを貼り合わせる。なお、支持基板20のエピタキシャルウエハと貼り合わせられる面に、実施の形態と同様に、Au層を含む金属層を予め設けることができる。そして、当該Au層に、接合層6を有するエピタキシャルウエハが有する複数の溝75と実質的に同一の間隔の複数の溝75を形成する。貼り合わせ後、レーザーリフト法を用いてサファイア基板を剥がす。続いて、サファイア基板を剥がすことにより露出するn型のAlGaN層の表面にフォトリソグラフィー法及びドライエッチング法を用い、凹凸部85を形成する。これにより、第2の変形例に係る発光素子2が得られる。
【0084】
[実施の形態の第3の変形例]
図5は、本発明の実施の形態の第3の変形例に係る発光素子の断面の概要を示す。
【0085】
第3の変形例に係る発光素子1bは、実施の形態に係る発光素子1とは異なり、界面電極107の上方の活性層16及びn型クラッド層14とがエッチングにより除去され、光吸収抑止溝71が形成されると共に、ワイヤーボンディング用パッド電極としての機能を有する表面電極102の直下の活性層16及びp型クラッド層18とが除去された領域に、絶縁部95が形成されている。そして、発光素子1と同一の符号が付されている各部材は、発光素子1が備える各部材と略同一の構成及び機能を備える。よって、相違点を除き、詳細な説明は省略する。
【0086】
発光素子1bは、例えば、以下のようにして製造する。まず、GaAs基板の上に、n型クラッド層14、活性層16、及びp型クラッド層18をこの順にエピタキシャル成長させ、エピタキシャルウエハを製造する。次に、エピタキシャルウエハの表面(つまり、p型クラッド層18の表面)に透明絶縁層30を形成する。続いて、界面電極107が形成されるべき領域に対応する透明絶縁層30に孔を形成する。そして、当該孔に界面電極107を形成する。界面電極107は、p型クラッド層18にオーミック接合する材料を用いて形成する。
【0087】
次に、透明絶縁層30のp型クラッド層18の反対側に、半導体側接合層4を形成する。一方、実施の形態と同様に、支持基板側接合層5を有する支持基板20を準備する。そして、半導体側接合層4と支持基板側接合層5とを金属接合させ、接合構造体を形成する。接合構造体からGaAs基板を除去した後、活性層16及びp型クラッド層18の予め定められた領域に孔を形成する。そして、当該孔に、絶縁部95を形成する。絶縁部95は、例えば、ポリイミドを用いて形成される。したがって、当該孔にポリイミドを埋め込み、外部に露出しているポリイミドの表面を平坦化することにより絶縁部95を形成することができる。
【0088】
次に、絶縁部95の上方のn型クラッド層14の表面に、表面電極102を形成する。表面電極102は、n型クラッド層14にオーミック接合する材料を用いて形成する。続いて、表面電極102が形成されていないn型クラッド層14の表面に、凹凸部80を形成すると共に、界面電極107の上方の活性層16及びn型クラッド層14をエッチングにより除去することにより光吸収抑止溝71を形成する。これにより、第3の変形例に係る発光素子1bが得られる。
【0089】
なお、発光素子1の製造の実用性の観点、並びに製造の容易性の向上、及び製造コスト低減の観点から、絶縁部95は、以下のように形成することもできる。すなわち、エピタキシャルウエハを製造した後、絶縁部95が形成されるべき領域のp型クラッド層18及び活性層16をエッチング除去することで溝を形成する。そして、当該溝に、第三工程を経た場合であっても絶縁性を維持することのできる材料、例えば、ポリイミドを埋め込む。続いて、ポリイミドの表面とp型クラッド層18の表面とを同一にすることを目的として、ポリイミドの表面を平坦化する。次に、p型クラッド層18の表面上、及びポリイミドの表面上に透明絶縁層30を形成する。その後、上記の工程と略同様の工程を経ることで、発光素子1bを製造することができる。
【0090】
[実施の形態の第4の変形例]
図6は、本発明の実施の形態の第4の変形例に係る発光素子の断面の概要を示す。
【0091】
第3の変形例に係る発光素子1cは、第2の変形例に係る発光素子1bとは、界面電極107が外部に露出すると共に、表面電極102及び絶縁部95が発光素子1cの端部側に設けられている点を除き、発光素子1cと略同一の構成及び機能を備える。したがって、相違点を除き、詳細な説明は省略する。
【0092】
発光素子1cの界面電極107は、活性層16及びn型クラッド層14が除去されて露出したp型クラッド層18の表面の一部であって、発光素子1cの平面視にて一の辺の近傍に設けられる。また、絶縁部95は、表面電極102の直下の活性層16及びp型クラッド層18が除去された領域であって、平面視にて発光素子1cの一の辺の対辺側に設けられる。
【実施例】
【0093】
実施例に係る発光素子として、実施の形態に係る発光素子1の構成を備える発光素子を作製した。
【0094】
まず実施例では、n型のGaAs基板上に半導体積層構造を形成した。具体的には、n型のGaAs基板の側から、エッチングストップ層、n型のAlGaInPクラッド層、AlGaInPの量子井戸型活性層、p型のAlGaInPクラッド層をこの順にMOCVD法でエピタキシャル成長した。
【0095】
そして、実施の形態において説明した製造方法に沿って実施例に係る発光素子を製造した。なお、透明絶縁層30を構成する材料としてはSiOを用い、支持基板20としては高抵抗のSi基板(抵抗率:3×10Ωcm以上)を用いた。半導体側接合層4としては、Si基板側からAu層、Ti層、Au層を形成した。また、11個の発光部を形成すると共に、各発光部を直列に接続した。
【0096】
そして、実施例に係る発光素子を、ステムにダイボンディングした後、発光素子にワイヤーボンディングを施した。そして、シリコーンを用い、発光素子を透明樹脂モールドして発光装置を作製した。この発光装置を放熱冶具に固定した上で、発光特性と電気特性とを評価した。その結果、順方向通電で、駆動電流は30mAであり、順方向電圧は24Vであり(発光部が11個直列していることから24Vになった)、ドミナント波長は625nmであり、発光出力は480mWであった。この発光素子の外部量子効率は約76%であり、発光効率は140lm/Wであった。この発光効率は、従来の発光素子の発光効率より約35%向上した値であった。また、実施例に係る発光素子は、発熱エネルギーを従来比で45%低減することができた。
【0097】
以上の発光効率を従来より向上させることができた結果は、実施例に係る発光素子が、n側コンタクト電極60及びp側コンタクト電極による光吸収を大幅に低減する構成を有することに起因すると考えられる。また、30mAという低い通電電流で高い発光出力を達成できたことは、発光素子に電力を供給する電源系を大電流対応にすることを要さず、小電流対応の電源を用いることができることを示している。
【0098】
更に、発熱エネルギーを低減することができたことは、発光ダイオードが発熱に弱く、素子寿命に発熱が影響を与えていることを考慮すると、通電電流の限界値を40%増加させ得ることを示している。そして、発熱エネルギーの低減は、同一の電流を供給した場合における発光素子からの発熱量が従来の発光素子よりも少なくなることを示しているので、実施例に係る発光素子の素子寿命が、従来の発光素子の素子寿命より長くなることを示している。更に、同一の電流で同一の素子寿命であれば、放熱特性が小さい小型のステムに発光素子を実装することもできる。特に、パワーLEDでは放熱特性の向上が要求されている。例えば、実施例に係る発光素子を電球型LEDに適用した場合に、電球型LEDの放熱部を従来より小型化できるので、電球型LEDを従来より低コストで提供できる。
【0099】
以上のように、実施例に係る発光素子は、発光効率を向上させることができるだけでなく、発光素子の素子寿命の長寿命化を実現でき、ダウンサイジング及び製造コストの低減も実現することができる。
【0100】
以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
【符号の説明】
【0101】
1、1a、1b、1c 発光素子
2 発光素子
3 反射部
4 半導体側接合層
5 支持基板側接合層
6 接合層
10 半導体基板
11、11a、11b、11c 発光部
12 エッチングストップ層
14 n型クラッド層
14a 表面
15 n型クラッド層
16 活性層
17 活性層
18 p型クラッド層
18a 表面
19 p型クラッド層
20 支持基板
30 透明絶縁層
42 反射層
44 拡散抑止層
46 半導体側接合金属層
48 反射部
52 密着層
54 支持基板側接合金属層
60 n側コンタクト電極
61 n側コンタクト電極
65 p側コンタクト電極
66 p側コンタクト電極
70 溝
70a 平坦部
71 光吸収抑止溝
72 溝
74 溝
75 溝
77 溝
80 凹凸部
85 凹凸部
90 金属層
95 絶縁部
100 n型用パッド電極
102 表面電極
105 p型用パッド電極
107 界面電極

【特許請求の範囲】
【請求項1】
支持基板と、
前記支持基板の上に設けられる第1導電型の第1導電型層と、
前記第1導電型層の上に設けられ、光を発する活性層と、
前記活性層の上に設けられ、前記第1導電型とは異なる第2導電型の第2導電型層と、
前記第1導電型層の表面の一部に接する第1電極と、
前記第2導電型層の表面の一部に接する第2電極と
を備え、
前記第1電極が、前記活性層の直上又は直下に対応する前記第1導電型層の表面とは異なる前記第1導電型層の表面に接し、
前記第2電極が、前記活性層の直上又は直下に対応する前記第2導電型層の表面とは異なる前記第2導電型層の表面に接する発光素子。
【請求項2】
前記第1電極及び前記第2電極がそれぞれ複数設けられ、
前記第1電極及び前記第2電極がそれぞれ、平面視においてライン状に形成され、
前記第1電極と前記第2電極とが、平面視において平行に配置される請求項1に記載の発光素子。
【請求項3】
前記支持基板上に、前記第1導電型層と前記活性層とを含み、複数の溝により互いに分離される複数の発光部
を更に備え、
前記第2電極が、前記複数の溝それぞれの下方に位置する前記第2導電型層の前記活性層の反対側の表面に設けられ、
前記第1電極が、前記複数の発光部がそれぞれ有する前記第1導電型層の前記第2導電型層側の前記活性層が設けられていない表面に設けられる請求項2に記載の発光素子。
【請求項4】
前記支持基板と前記第2導電型層との間に設けられ、前記光を前記第1導電型層の側に反射する反射部と、
前記反射部と前記第2導電型層との間の前記第2電極が設けられている領域とは異なる領域に設けられ、前記光を透過し、電気絶縁性を有する透明絶縁層と
を更に備える請求項3に記載の発光素子。
【請求項5】
一の発光部の第1電極と、前記一の発光部の隣の他の発光部の第2電極とが電気的に接続され、前記一の発光部と前記他の発光部とが電気的に直列に接続される請求項4に記載の発光素子。
【請求項6】
一の発光部の第1電極と前記一の発光部の隣の他の発光部の第1電極とが電気的に接続され、前記一の発光部の第2電極と前記他の発光部の第2電極とが電気的に接続されることにより前記一の発光部と前記他の発光部とが電気的に並列に接続される請求項4に記載の発光素子。
【請求項7】
支持基板と、
前記支持基板の上に設けられる第1導電型の第1導電型層と、
前記第1導電型層の上に設けられ、光を発する活性層と、
前記活性層の上に設けられ、前記第1導電型とは異なる第2導電型の第2導電型層と、
前記第1導電型層の前記活性層の反対側であって、前記活性層の直下から離れた前記第1導電型層の表面に接する第1電極と、
前記第2導電型層の前記活性層の反対側の表面の一部に接する第2電極と、
前記第2電極の直下に対応する領域に前記活性層の代わりに設けられる絶縁部と
を備える発光素子。
【請求項8】
支持基板と、
前記支持基板の上に設けられる第1導電型の第1導電型層と、
前記第1導電型層の上に設けられ、光を発する活性層と、
前記活性層の上に設けられ、前記第1導電型とは異なる第2導電型の第2導電型層と、
前記第1導電型層の前記活性層の側であって、前記活性層が除去されて露出する前記第1導電型層の表面に接する第1電極と、
前記第2導電型層の前記活性層の反対側の表面の一部に接する第2電極と、
前記第2電極の直下に対応する領域に前記活性層の代わりに設けられる絶縁部と
を備える発光素子。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図2G】
image rotate

【図2H】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−129281(P2012−129281A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2010−277879(P2010−277879)
【出願日】平成22年12月14日(2010.12.14)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】