説明

磁気記録媒体用薄膜の成膜方法およびそれが用いられる成膜装置

【課題】比較的大きい表面凹凸が形成される磁気記録層上であっても、FCVA法により、ステップカバレッジ、および、耐食性・耐摩耗性に優れた磁気記録媒体用薄膜を成膜できる。
【解決手段】回転駆動機構部およびチルト機構部が制御ユニット40に制御されることにより、基板ホルダー20および記録媒体用基板28’の傾斜角θが、成膜中、保護層の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変化する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空蒸着法を用いた磁気記録媒体用薄膜の成膜方法およびそれが用いられる成膜装置に関する。
【背景技術】
【0002】
近年、コンピュータ、および、画像記録再生装置等において、外部記録装置であるハードディスク装置の高記録密度化および小型化が、進んでいる。この装置の技術開発に伴いハードディスク装置に搭載される磁気記録媒体についても高記録密度化および小型化の要求が高まっている。
【0003】
磁気記録媒体の記録密度を向上させるためには、磁気ヘッドと磁気記録媒体の磁性層との距離(以下、磁気スペーシングともいう)を低下させる必要がある。磁気スペーシングをより小さくするためには、磁気ヘッドの浮上量をより低下させるとともに、磁気記録媒体において磁性層上に形成される最上面となる保護層の薄膜化が要求される。また、保護層の膜質は、ステップカバレッジが良好であることが要求される。
【0004】
保護層を薄膜化させるためには、膜厚当たりの薄膜の耐久性および耐腐食性を向上させることが不可欠である。そのような保護層は、例えば、スパッタ法、CVD法、イオンビーム蒸着法などが用いられて形成される。
【0005】
また、磁気ヘッドにおいては、例えば、特許文献2にも示されるように、硬質非晶質炭素膜としてのテトラヘドラルアモルファスカーボン(ta−C)の保護層を形成することが提案されている。そのような保護層は、例えば、特許文献1乃至3にも示されるような、フィルター付陰極真空アーク放電蒸着法(Filtered Cathodic Vacuum Arc:FCVA)(以下、FCVA法ともいう)が用いられて成膜されることも提案されている。FCVA法は、ダイヤモンド成分に対するグラファイト成分の比率が低く、耐食性・耐摩耗性に優れた膜質が得られることが分かってきた。
【0006】
【特許文献1】特開2007−26506号公報
【特許文献2】特開2002−212713号公報
【特許文献3】特表2007−501331号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、FCVA法は、表面の凹凸の非常に少ない試料では、膜質の良さを最大限に発揮できるものの、表面に比較的大きな凹凸パターン(ピット列)のある磁気記録媒体においては、CVD法と比べてステップカバレッジが悪い場合がある。これにより、高記録密度に対応した次世代のハードディスク技術であるディスクリートトラックメディア(DTM)、または、パターンドメディア方式を用いた比較的大きい表面凹凸の磁気記録媒体には、適用できない虞がある。
【0008】
FCVA法において、薄膜の密着力を高める対策としては、特許文献2にも示されるように、薄膜が形成される基板を、その基板の法線方向をプラズマビームの入射方向に対して所定の傾斜角度αだけ傾けて配設するとともに、基板を回転させることが提案されている。このような方法においては、その傾斜角度αを10°から80°の範囲内の一定の角度で固定して成膜する場合、傾斜角度が低角度で成膜されたとき、保護層のステップカバレッジが悪くなり、一方、傾斜角度が高角度で成膜されたとき、形成される保護層の真下に既に形成されている磁性層のダメージ、例えば、結晶粒間のカーボンの進入、あるいは、結晶の破壊等を避けることができない場合がある。即ち、いずれの条件でも、ステップカバレッジ向上、および、磁性層のダメージ低減の両立を図ることは難しい。
【0009】
また、薄膜の密着力を高める他の対策としては、特許文献3にも示されるように、炭素プラズマ流の基板の表面に対する入射角度(傾斜角度)を炭素被膜の形成中に、15°から45°の範囲内の選択された複数の所定の角度ごとにそれぞれ、傾斜角度を固定して成膜することが提案されている。しかし、保護層の膜厚と対応させずに傾斜角度を段階的に変化させるのでは、ステップカバレッジ向上、および、磁性層のダメージ低減の両立は困難である。
【0010】
以上の問題点を考慮し、本発明は、真空蒸着法を用いた磁気記録媒体用薄膜の成膜方法およびそれが用いられる成膜装置であって、比較的大きい表面凹凸が形成される磁気記録層上であっても、FCVA法により、ステップカバレッジ、および、耐食性・耐摩耗性に優れた磁気記録媒体用薄膜を成膜できる磁気記録媒体用薄膜の成膜方法およびそれが用いられる成膜装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述の目的を達成するために、本発明に係る磁気記録媒体用薄膜の成膜方法は、プラズマビーム形成部からのプラズマビームが供給される成膜室に回動可能に配される基板ホルダーに、磁気記録層が形成された記録媒体用基板を配置し、記録媒体用基板の磁気記録層の表面の法線とプラズマビームの入射方向に対し直交する平面とのなす傾斜角を、磁気記録層の表面に形成されたta−Cの薄膜の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変化させることを含むことを特徴とする。
【0012】
また、本発明に係る成膜装置は、プラズマビーム形成部からのプラズマビームが供給される成膜室と、成膜室に回動可能に配され、磁気記録層が形成された磁気記録媒体用基板を着脱可能に把持する基板ホルダーと、基板ホルダーにより把持された磁気記録媒体用基板の磁気記録層の表面の法線とプラズマビームの入射方向に対し直交する平面とのなす傾斜角を、連続的に変更するチルト機構部と、基板ホルダーにより把持された磁気記録媒体用基板を基板ホルダーの回転軸線回りに回動させる回動機構部と、チルト機構部に、傾斜角を磁気記録媒体用基板の磁気記録層の表面に形成されたta−Cの薄膜の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変更するように動作させるとともに、回動機構部に前記基板ホルダーを回動させる動作を行わせる制御部と、を備えて構成される。
【発明の効果】
【0013】
以上の説明から明らかなように、本発明に係る磁気記録媒体用薄膜の成膜方法およびそれが用いられる成膜装置によれば、成膜中、記録媒体用基板の磁気記録層の表面の法線とプラズマビームの入射方向に対し直交する平面とのなす傾斜角を、磁気記録層の表面に形成されたta−Cの薄膜の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変化させる工程を含むので比較的大きい表面凹凸が形成される磁気記録層上であっても、FCVA法により、ステップカバレッジ、および、耐食性・耐摩耗性に優れた磁気記録媒体用薄膜を成膜できる。
【発明を実施するための最良の形態】
【0014】
図2は、本発明に係る磁気記録媒体用薄膜の成膜方法の一例が適用された成膜装置の構成を概略的に示す。
【0015】
図2に示される装置は、フィルター付陰極真空アーク放電蒸着法(Filtered Cathodic Vacuum Arc:FCVA)を用いて、後述する磁気記録媒体に形成される保護層28Ldを成膜する成膜装置とされる。
【0016】
磁気記録媒体28は、図4に部分的に拡大されて示されるように、例えば、ディスクリートトラックメディア(DTM)方式のディスクリートトラック28Pを、記録面に同心円上に有している。
【0017】
磁気記録媒体28は、基体28Laと、基体28Laの一方の表面に所定の膜厚でCr系合金で形成される下地層28Lbと、下地層28Lb上に積層される磁気記録層としての磁性層28Lcと、磁性層28Lcに積層される保護層28Ldとを含んで構成されている。磁気記録媒体28は、その中央に透孔を有している。
【0018】
基体28Laは、例えば、樹脂材料としての高耐熱ポリオレフィン樹脂(Tg(ガラス転移点):140℃)で、直径φ95mm、厚さ1.27mmの円盤状に成形される。
【0019】
基体28Laを成形するにあたっては、例えば、スタンパーを固定した金型が装備される最大射出成形圧力70tの射出成形装置が用いられる場合、成形条件としての樹脂温度、射出速度型締め圧力、固定側/可動側の金型温度が、それぞれ、320℃、120mm/s、90kg/cm2、110℃/110℃に設定される。
【0020】
そのスタンパーは、円周状に幅100nm、深さ50nmの凹凸を付けたものが使用される。
【0021】
磁性層28Lcは、例えば、Co系合金、Pt等で所定の厚さに形成されている。
【0022】
保護層28Ldは、例えば、薄膜である厚さ約3nmの硬質非晶質炭素膜(保護膜)としてのテトラヘドラルアモルファスカーボン(ta−C)により形成されている。そして、保護層28Ldを作製した後に、ソルベイ・ソレクシス社製の潤滑剤(Z−Tetraol)が1.0nmの膜厚で、Dip法により保護層28Ldの表面に塗布されている。
【0023】
従って、基体28Laの成形後に、上述の下地層28Lb、磁性層28Lcおよび保護層28Ldが順次、成膜されることにより、磁気記録媒体28が得られることとなる。
【0024】
成膜装置10は、図2に示されるように、プラズマ発生部、磁気フィルタ部、および、ビームスキャニング装置を含んでなるプラズマビーム形成部12と、プラズマビーム形成部12に連結され、プラズマビーム形成部12からのプラズマビームIoを基板ホルダー20に保持される基板上に形成された磁性層28Lcの表面に向けて導く真空チャンバー14とを含んで構成されている。
【0025】
プラズマ発生部においては、アーク電源において、炭素棒から成るストライカー(トリガー)電極が用いられ、アーク放電が開始されることにより、陰極のグラファイトターゲット(純度99.999%)が、アーク蒸発される。このときのアーク電流は、例えば、120A、アーク電圧は、例えば、30Vに設定される。これにより、アーク蒸発によって、電子、およびカーボンイオンが発生し、その他に、中性パーティクル粒子等も発生する。
【0026】
磁気フィルタ部において、上述の中性パーティクル粒子等は、円弧状の磁気フィルター(電磁石コイル)で取り除かれることによって、電子、およびカーボンイオンのみからなるプラズマビームIoが、ビームスキャニング装置により偏向走査されながら真空チャンバー14内に導かれる。これにより、プラズマビームIoが基体28La上に形成された磁性層28Lcの表面に到達する。このようにして保護層28Ldとしてカーボンイオンのみから形成されるカーボン膜が、Hを含まず、緻密なテトラヘドラルアモルファスカーボン(ta−C)膜となって形成されることとなる。なお、アーク電源、磁気フィルタ部に併設されるバイアス電源、ビームスキャニング装置に併設される電源の制御は、それぞれ、図示が省略される電源制御部により、制御される。
【0027】
真空チャンバー14は、成膜室14Cを形成するハウジング14Hにおけるプラズマビーム形成部12から離隔する方向にある一方の端部に排気口14aを有している。排気口14aには、図示が省略される吸引手段としての真空ポンプが接続されている。真空ポンプは、図示が省略されるポンプ制御部により制御される。これにより、成膜室14C内の圧力が、所定の負圧となるまで真空ポンプにより吸引されることとなる。
【0028】
成膜室14Cにおける排気口14aの近くには、到来するプラズマビームIoに衝突するように基板ホルダー20が配されている。基板ホルダー20は、保護層が形成されていない半完成品としての磁気記録媒体を後述のサンプル基板チャック26を介して着脱可能に保持するものとされる。サンプル基板チャック26は、図3(A),(B)、および(C)に示されるように、保護層28Ldが形成されていない半完成品の記録媒体用基板28’を着脱可能に把持する三つ爪チャックを協働して形成するプレート22および24を主な要素として備えている。プレート22は、一方の端面を切欠くようにその中央部に円弧状の基板収容部22aを有している。基板収容部22aの内周部には、記録媒体用基板28’における円周方向の端面で当接する爪部CHが2箇所に所定の間隔をもって形成されている。また、プレート22における一方の端面には、プレート24の位置決め用孔に嵌合される位置決めピン22Pが所定の間隔をもって設けられている。プレート24は、一方の端面を切欠くように円弧状の基板収容部24aを有している。基板収容部24aの内周部の中央部には、記録媒体用基板28’における円周方向の端面で当接する爪部CHが形成されている。プレート22の一方の端面とプレート24における対向する一方の端面との間には、プレート22および24を互いに離隔する方向に付勢するスプリングSPが設けられている。
【0029】
記録媒体用基板28’をサンプル基板チャック26により把持するにあたっては、図3(C)に示されるように、プレート22および24を互いに離隔した状態で、記録媒体用基板28’が、2箇所の爪部CHに当接するようにプレート22の基板収容部22aの内周部に配された後、次に、図3(A)および(B)に示されるように、プレート24がスプリングSPの付勢力に抗してプレート24に近接せしめられることによって、記録媒体用基板28’は、3箇所の爪部CHにより把持されることとなる。
【0030】
これにより、その磁性層28Lcがプレート22および24における基板収容部22aおよび24aの周縁に広がる平坦面に対し略平行となり、また、記録媒体用基板28’における円周方向の端面と基板収容部22aおよび24aの内周部との間に、所定の隙間CLが形成されることとなる。
【0031】
記録媒体用基板28’を把持したサンプル基板チャック26は、プレート22および24が互いに近接した状態で後述の基板ホルダー20の基板収容室20Aに挿入され、ロック機構(不図示)により固定される。
【0032】
基板ホルダー20は、ハウジング14Hの内周部に支持される基板ホルダー基台36の一端部に設けられている。基板ホルダー20は、その回転軸線に対し直交する一方の端面に対し略平行に基板収容室20Aを内部に有している。これにより、基板収容室20Aに固定されたサンプル基板チャック26および記録媒体用基板28’は、基板ホルダー20の一方の端面に対し略平行に配置されることとなる。
【0033】
基板ホルダー20は、図1に概略的に示されるように、後述するホルダー回転機構部、および、チルト機構部を備えている。ホルダー回転機構部は、基板ホルダー20を図1の矢印の示す方向に、回転可能に支持する回転ステージ30を備えている。回転ステージ30は、基板ホルダー基台36に回動可能に支持されている。また、回転ステージ30は、図示が省略される歯車伝達機構を介して減速機構付き駆動用モータにより、駆動制御される。その駆動用モータの回転制御は、後述の制御ユニット40により制御される。
【0034】
チルト機構部は、基板ホルダー基台36における回転ステージ30の支持部34に回動可能に連結されるピニオンギア支持体32と、ピニオンギア支持体32の一端に回動可能に設けられるピニオンギア38に噛合うギア列41aを有するギアプレート41とを含んで構成されている。
【0035】
ピニオンギア38には、図示が省略される駆動用モータの出力軸が連結されている。その駆動用モータは、後述の制御ユニット40により制御される。これにより、駆動用モータが作動状態とされる場合、ピニオンギア38が一方向に回動され、ギアプレート41のギア列41aに沿って移動せしめられるのでピニオンギア支持体32は、回転ステージ30を伴って基板ホルダー基台36に対し所定の速度で支持部34を中心として傾きながら所定の角度まで回動せしめられる。一方、ピニオンギア38が他方向に回動されるとき、ピニオンギア支持体32は、初期位置まで戻されることとなる。
【0036】
なお、真空引きの方向にパーティクルは移動するので、パーティクル発生位置と排気口14aとの中間に、基板ホルダー20を位置させないことが好ましい。
【0037】
基板ホルダー20の周辺には、浮遊するカーボン粒子の付着を抑制するために基板ホルダー20、ホルダー回転機構部、および、チルト機構部の全体を包囲するようにカバー部材18が設けられている。カバー部材18は、その一端がハウジング14Hの内周部に固定されている。カバー部材18は、成膜時の温度で変形および変質のない材料が好ましいため、母材として、例えば、ステンレス鋼材が使用される。
【0038】
保護層との密着性を確保して早期剥離を防ぐため、カバー部材18における表面を粗面化したり、アルミナ溶射などの表面処理をカバー部材18における表面に施すことが好ましい。保護層が成膜されるステージに関わる可動部は、全て覆うことが好ましく、形状は円筒形などのシンプルなものが好ましい。これは、カバー部材18の洗浄が簡単迅速にできるようにするためである。
【0039】
さらに、カバー部材18に付着した皮膜が剥離したとしても、それが基板成膜面に到達しないように、基本ホルダー20の前方となる位置が、カバー部材18が存在しない位置となるように配置しておくことが好ましい。
【0040】
斯かる構成に加えて、本発明に係る成膜装置の一例には、上述のホルダー回転機構部、および、チルト機構部の駆動制御を行う制御ユニット40を備えている。制御ユニット40は、上述のホルダー回転機構部およびチルト機構部にワイヤーハーネスを介して電気的に接続されている。ワイヤーハーネスの一端は、ハウジング14Hの開口部14THに設けられるハーメチックシール16を介して外部から成膜室14C内に導入されている。
【0041】
制御ユニット40は、制御用データを格納するデータ格納部40Mを備えている。データ格納部40Mには、一枚の記録媒体用基板28’について所定の各厚さの保護層を形成するのに要される成膜完了時間をあらわすデータ、成膜初期段階の最小傾斜角度、チルト機構部におけるピニオンギア支持体32の移動速度、および、最大傾斜角度をあらわすデータ、基板ホルダー20の成膜完了時間あたり設定回転数をあらわすデータ等が格納されている。傾斜角度θは、図2において、プラズマビームIoの入射方向に対して直交する平面の基板ホルダー20の回転軸線に対してなす角度をいう。
【0042】
また、制御ユニット40には、図示が省略されるホストコンピュータからの成膜開始指令信号Csおよび成膜終了指令信号Cfが供給される。
【0043】
成膜室14Cにおいて、基板ホルダー20に装着されたサンプル基板チャック26内の記録媒体用基板28’の磁性層28Lc上に所定の膜厚の保護層を形成するにあたっては、プラズマビームIoが成膜室14Cに到来する状態において、先ず、制御ユニット40は、成膜開始指令信号Csに基づいて予め設定された保護層の所定の膜厚に対応する成膜完了時間のデータを読み出し、斯かるデータを参照して上述の成膜初期段階の最小傾斜角度、最大傾斜角度、ピニオンギア支持体32の移動速度、および、基板ホルダー20の成膜完了時間あたりの回転数を設定する。最小傾斜角度は、成膜初期段階の保護層の膜厚に応じて例えば、0°を超え10°未満の範囲の比較的小さな角度に設定される。また、最大傾斜角度θは、成膜後期の段階および成膜終了した保護層の膜厚に応じて80°に設定される。成膜完了時間は、例えば、約1分間に設定される。ただし、最大傾斜角度は、80°に限定されるものではない。
【0044】
基板ホルダー20の成膜完了時間あたりの回転数は、例えば、3回転に設定される。なお、斯かる例に限られることなく、その回転数は、3回転を超える6回転までの値であってもよい。
【0045】
次に、制御ユニット40は、設定された最小傾斜角度、最大傾斜角度、ピニオンギア支持体32の移動速度をあらわすデータに基づいて駆動制御信号を形成し、それをチルト機構部における駆動用モータに供給する。また、制御ユニット40は、設定された基板ホルダー20の成膜完了時間あたりの回転数をあらわすデータに基づいて駆動制御信号を形成し、それをホルダー回転機構部における駆動用モータに供給する。
【0046】
これにより、基板ホルダー20に装着されたサンプル基板チャック26内の記録媒体用基板28’の傾斜角度θは、時間の経過とともに比較的小さな角度から80°近傍まで徐々に連続的に増大することとなる。即ち、基板ホルダー20は、その中心軸線の回りを回転しながら記録媒体用基板28’の磁性層の表面のプラズマビームIoの入射方向となす角度を徐々に小とするように回動することとなる。成膜完了時、保護層28Ldの膜厚が、例えば、約3nmに到達することとなる。従って、磁気記録媒体28が得られることとなる。
【0047】
続いて、成膜終了指令信号Cfが供給されるとき、制御ユニット40は、基板ホルダー20を初期の位置に戻すべく、駆動制御信号を形成し、それをチルト機構部における駆動用モータに供給する。また、制御ユニット40は、ホルダー回転機構部における駆動用モータへの駆動制御信号の供給を停止する。
【0048】
従って、成膜初期段階において、保護層の初期層は比較的低角の範囲で成膜することが好ましく、傾斜角度θが、比較的低角の範囲でプラズマビームIo(イオンビーム)を入射させた方が磁性層に与えるダメージが小さい。その後、傾斜角度θを比較的高角の範囲に移動することで、ステップカバレッジを高めながら成膜することが可能となる。
【0049】
その際、徐々にダメージは多くなるものの、その分、保護層も成膜されていくので磁性層へのダメージは軽減される。この結果、磁性層へのダメージが少なく、ステップカバレッジの良い保護層の成膜が可能になる。
【0050】
このように、保護層の膜厚と対応して適切な傾斜角度θに連続的に変化させていくことで、ステップカバレッジ向上と磁性層のダメージ低減との両立が図れることとなる。
【0051】
本出願の発明者により、上述の成膜装置10によって得られた磁気記録媒体28の保護層28Ldの評価が、図8に示されるように、被覆性、磁性層の磁気特性としての保持力(Hc)、摩擦力、GHエラー数に関し、それぞれ、行われた。
【0052】
なお、基板ホルダー20の成膜完了時間あたりの回転数が、図7に示されるように、3回転(実施例1)または6回転(実施例2)に設定されて得られた磁気記録媒体28について、それぞれ、評価された。図7および図8に示される実施例1および実施例2の試料と、後述する比較例1〜比較例7の試料とは、全て保護層28Ldの成膜条件のみを変更したものである。その際、保護層28Ldの膜厚は、3nmで一定とした。
【0053】
磁気記録媒体28における保護層28Ldの被覆性評価の方法は、磁気記録媒体の保護層28Ldの表面上における所定の4箇所に、マイクロピペットで3%硝酸を1ml滴下し、60分間放置する。その後、浸透したこの液をピペットで回収し、ICP−MS(アジレント・テクノロジー製 Agilent7500a)で浸透した液の単位面積あたりの量の測定を行った。
【0054】
その4点における各値の平均値が図8に示されている。保護層の被覆性評価の良否としては、単位面積あたりの量は、0.7μg/m2以下が好ましく、良品と判定される。図8から明らかなように、本願発明における実施例1および2により得られた保護層は、被覆性評価において、良品であることが確認された。
【0055】
摩擦力(gf)の評価は、磁気記録媒体の保護層28Ldの表面に対し、φ2mmの直径を有するアルチック(Al2O3−TiC)材の球体を摺動させるPin−on試験(Drag試験)方法で行われた。その試験において、摩擦力は、歪センサにより検出される。摺動試験条件は、磁気記録媒体の回転数、試験半径位置、および、スライダ荷重が、それぞれ、700 rpm、25 mm、2.5 gfに設定される。
【0056】
摩擦力の良否の判定基準としては、0.6gf以下が好ましく、良品と判定される。
【0057】
図8から明らかなように、本願発明における実施例1および2により得られた保護層は、摩擦力(gf)の評価において、良品であることが確認された。
【0058】
磁性層の磁気特性の評価は、Hc(保持力)(Oe)が用いられて評価された。Hc(保持力)(Oe)は、所定のVSM(振動試料磁力計)(メーカー:東英工業株式会社、型式:VSM−P7−20型)により測定された。
【0059】
形成された磁性層28Lcは、通常の条件で作製すれば、3250(Oe)程度の値が出る磁性膜である。この値からの乖離が大きいほど、磁性膜のダメージが大きいことを示す。そのため、本測定においては、3250(Oe)に近い値ほど好ましく、良品と判定される。
【0060】
図8から明らかなように、本願発明における実施例1および2により得られた磁性層28Lcは、磁性層の磁気特性の評価において、良品であることが確認された。
【0061】
GHエラー数に関しては、GH(Glide Height)試験により評価される。
【0062】
GH試験は、ソニー・テクトロニクス製のハードディスク・メディアテスト・システム(DS3400−2型)が用いられ、ヘッドの浮上高さを5nmに設定し、測定範囲を半径20−45mm、PITCH:50μmの条件で設定し行われた。一条件につき、実施例1および2において、それぞれ、25枚のサンプルを採取し、その全てについて同様な試験を行い、その平均値をその条件におけるGHエラー数とした。
【0063】
GHエラー数の評価基準としては、磁気記録媒体の1面あたりのエラー個数が、5個以下であることが好ましく、良品であると判定される。
【0064】
図8から明らかなように、本願発明における実施例1および2により得られた磁気記録媒体は、GHエラー数の評価において、良品であることが確認された。
【0065】
従って、以上の結果から明らかなように、実施例1および実施例2において、成膜中に傾斜角度θを0°から80°まで変更し、かつ、基板ホルダーの回転を3回以上とした条件では、後述する比較例7の従来のCVD法よりも、摩擦力(gf)が1/3以下になり、被覆性に関しても同等、もしくは、向上するという結果が得られた。被覆性に関しては、基板ホルダーの回転を6回回転させることで、3回回転時の半分の溶出量になった。
【0066】
また、本願の発明者により、比較例1乃至7によりそれぞれ得られた磁気記録媒体において、上述と同様な条件および装置で、被覆性、磁性層の磁気特性としての保持力(Hc)、摩擦力、GHエラー数に関し、それぞれ、評価が行われた。
【0067】
なお、比較例5においては、成膜中、基板ホルダー20の傾斜角θが0°、または80°に、それぞれ、2回だけ周期的に一定時間、固定されて行われた。
【0068】
また、比較例6においては、図6に示されるような成膜装置が用いられて磁気記録媒体の保護層が作製された。図6に示される成膜装置は、図示が省略される吸引手段としての真空ポンプに接続されている排気口14’aを、図2に示される成膜装置における排気口14aの位置よりもプラズマビーム形成部12により近く、かつ、ハウジング14’Hにおいて成膜室14’C内の基板ホルダー20の真下の位置、即ち、プラズマビームIoの入射方向に沿ったハウジング14’Hの側壁に有している。また、基板ホルダー20の周囲には、図2に示される成膜装置10におけるカバー部材18に相当する部材が設けられていない。図6においては、図2に示される例における同一の構成要素について同一の符号を付して示し、その重複説明を省略する。
【0069】
比較例7においては、図示が省略されるプラズマCVD装置が用いられて磁気記録媒体が作製された。プラズマCVD装置においては、原料ガスがエチレンで、原料ガス流量が、30sccmに設定された。成膜時間が調整されて、保護層(カーボン膜)の厚さは、3nmとした。また、このとき、記録媒体用基板に−100Vのバイアス電位が印加された。
【0070】
比較例1乃至比較例4においては、図8から明らかなように、傾斜角θを変化させず、かつ、回転数が3回以下の回転条件(比較例2、3、4)、あるいは、傾斜角θを最大傾斜角80°まで変化させ、かつ、回転数が1回の回転条件(比較例1)においては、被覆性評価の結果が大幅に悪くなる結果が得られた。
【0071】
比較例5においては、傾斜角θが0°と最大傾斜角度80°までの間で周期的に変化され、かつ、回転数が3回の回転条件で、保護層が作製された、比較例5では、磁気特性(保持力Hc)の結果が顕著に低下し、かつ、記録媒体上に浮上するヘッドに衝突する突起物(GHエラー数)が顕著に多くなる傾向が認められた。比較例5において、保護層における初期層を比較的低角で成膜しなければ、磁性層のダメージが大きくなるため磁気特性が低下しまうこと、および、傾斜角θを周期的に変化させるとき、パーティクル(カーボン粒子)が発生しやすくなる傾向が認められた。
【0072】
そして、媒体上に浮上する記録ヘッドに衝突する突起物(GHエラー数)の評価においては、実施例1および実施例2、比較例7においては、一枚あたり5個未満であったが、比較例6では、GHエラー数が急増する傾向にあった。
【0073】
以上の結果、FCVAの成膜手法で、膜厚さに応じて傾斜角θを連続的に可変状態(0→80°)で、かつ、基板ホルダーおよび記録媒体用基板を成膜時間あたり3回以上回転させながら成膜することで、非磨耗量を大幅に低減でき、かつ、被覆性も同等もしくは向上させることができた。さらに、成膜室14Cにおける真空中に、可動式基板ホルダー(可動部)を設置することで、発生するパーティクル(カーボン粒子)は、真空引き装置の配置とカバー部材の設置とを適切に設定することにより、従来と同等にできることを見出した。
【0074】
なお、本発明に係る成膜装置における上述の一例においては、カバー部材18が設けられているが、斯かる例に限られることなく、例えば、図5に示されるように、カバー部材18が設けられていない成膜装置10’であってもよい。図5においては、図2に示される例における同一の構成要素について同一の符号を付して示し、その重複説明を省略する。
【図面の簡単な説明】
【0075】
【図1】本発明に係る磁気記録媒体用薄膜の成膜方法の一例が適用された成膜装置の要部を概略的に示す構成図である。
【図2】図1に示される成膜装置の全体構成を概略的に示す構成図である。
【図3】(A)は、サンプル基板チャックを記録媒体用基板とともに示す平面図であり、(B)は、(A)に示される例の側面図であり、(C)は、サンプル基板チャックの動作説明に供される図である。
【図4】本発明に係る磁気記録媒体用薄膜の成膜方法の一例が適用される磁気記録媒体の部分断面図である。
【図5】本発明に係る磁気記録媒体用薄膜の成膜方法の一例が適用された成膜装置の他の一例の構成を示す構成図である。
【図6】比較例において用いられた成膜装置の構成を概略的に示す構成図である。
【図7】本発明に係る磁気記録媒体用薄膜の成膜方法の各実施例、各比較例における成膜条件をそれぞれ示す表である。
【図8】本発明に係る磁気記録媒体用薄膜の成膜方法の各実施例、各比較例において得られた磁気記録媒体の評価結果を示す表である。
【符号の説明】
【0076】
10 成膜装置
12 プラズマビーム形成部
14C 成膜室
18 カバー部材
20 基板ホルダー
28 磁気記録媒体
28Ld 保護層
28Lc 磁性層
40 制御ユニット
Io プラズマビーム

【特許請求の範囲】
【請求項1】
プラズマビーム形成部からのプラズマビームが供給される成膜室に回動可能に配される基板ホルダーに、磁気記録層が形成された記録媒体用基板を配置し、
前記記録媒体用基板の磁気記録層の表面の法線と前記プラズマビームの入射方向に対し直交する平面とのなす傾斜角を、該磁気記録層の表面に形成されたta−Cの薄膜の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変化させることを含むことを特徴とする磁気記録媒体用薄膜の成膜方法。
【請求項2】
前記最小傾斜角および最大傾斜角度は、それぞれ、0°を超え、80°未満の範囲にある値に設定されることを特徴とする請求項1記載の磁気記録媒体用薄膜の成膜方法。
【請求項3】
前記基板ホルダーが、成膜中、回転せしめられることを特徴とする請求項1または請求項2記載の磁気記録媒体用薄膜の成膜方法。
【請求項4】
前記基板ホルダーにおける成膜完了時間あたりの回転数が、成膜中、少なくとも3回以上に設定されることを特徴とする請求項3記載の磁気記録媒体用薄膜の成膜方法。
【請求項5】
プラズマビーム形成部からのプラズマビームが供給される成膜室と、
前記成膜室に回動可能に配され、磁気記録層が形成された磁気記録媒体用基板を着脱可能に把持する基板ホルダーと、
前記基板ホルダーにより把持された前記磁気記録媒体用基板の磁気記録層の表面の法線とプラズマビームの入射方向に対し直交する平面とのなす傾斜角を、連続的に変更するチルト機構部と、
前記基板ホルダーにより把持された前記磁気記録媒体用基板を該基板ホルダーの回転軸線回りに回動させる回動機構部と、
前記チルト機構部に、前記傾斜角を前記磁気記録媒体用基板の磁気記録層の表面に形成されたta−Cの薄膜の膜厚の増大に応じて最小傾斜角度から最大傾斜角度まで連続的に変更するように動作させるとともに、前記回動機構部に前記基板ホルダーを回動させる動作を行わせる制御部と、
を具備して構成される磁気記録媒体用薄膜の成膜装置。
【請求項6】
前記基板ホルダー、チルト機構部、および、回動機構部の周囲を包囲するカバー部材が、前記成膜室に備えられることを特徴とする請求項5記載の磁気記録媒体用薄膜の成膜装置。
【請求項7】
前記成膜室は、該成膜室の圧力が負圧となるように吸引手段により、前記プラズマビーム形成部に対し離隔する方向の端部の位置で該成膜室に設けられた前記排気口を介して吸引されることを特徴とする請求項5記載の磁気記録媒体用薄膜の成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−283044(P2009−283044A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2008−132245(P2008−132245)
【出願日】平成20年5月20日(2008.5.20)
【出願人】(503361248)富士電機デバイステクノロジー株式会社 (1,023)
【Fターム(参考)】