説明

複合発電プラント及びその制御方法

【課題】目標燃料温度が高い場合でも、中圧蒸気を再熱蒸気に投入できる複合発電プラントの制御方法を提供すること。
【解決手段】中圧排熱回収部40で加熱された燃料加熱水を利用して、燃焼器14に供給される燃料を加熱する燃料加熱器15を備える複合発電プラントの制御方法であって、プラント起動時のガスタービン負荷上昇過程において、再熱蒸気の圧力より高く設定した設定圧力に中圧蒸気の圧力を保持し、中圧蒸気の圧力を前記設定圧力に保持した状態において、前記燃料加熱器で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示した設定負荷に前記ガスタービンの負荷が到達したタイミング以後において、中圧蒸気の圧力の低減を開始し、中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、前記再熱蒸気系統への中圧蒸気の供給を開始する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービンに排熱回収ボイラを併設したガスタービン排熱利用による複合発電プラントの制御法に関する。
【背景技術】
【0002】
燃焼ガスによって駆動されるガスタービンと、ガスタービン排熱によって蒸気を発生する排熱回収ボイラと、排熱回収ボイラからの蒸気によって駆動される蒸気タービンを備える複合発電プラントには、排熱回収ボイラで加熱した水(以下、燃料加熱水と称することがある)を利用してガスタービンの燃料(燃料ガス)を加熱する燃料加熱器を有するものがある。このようにガスタービン排熱を利用して加熱した燃料を燃焼器に供給すると、プラントの熱効率を向上させることができる。
【0003】
この種の複合発電プラントには、それぞれ圧力の異なった蒸気を発生する3つの排熱回収部(低圧排熱回収部、中圧排熱回収部及び高圧排熱回収部)を有するいわゆる再熱三重圧式の排熱回収ボイラを備えたものがあり、その中圧排熱回収部の節炭器(中圧節炭器)で加熱した水の一部を燃料加熱水として利用しているものがある(特許文献1等参照)。このプラントの中圧節炭器で加熱された水は、中圧蒸発器に接続された中圧ドラムと燃料加熱器とにそれぞれ供給されている。中圧ドラムに供給された水は、中圧蒸発器で蒸発した後に中圧過熱器でさらに加熱され、高圧蒸気タービンから排出された蒸気(低温再熱蒸気)と合流して中圧蒸気タービンの作動流体として利用されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−200816号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、燃料加熱器の出口における燃料の温度には目標温度(目標燃料温度)がある。目標燃料温度はガスタービンの安定燃焼の条件となっているため、複合発電プラントを正常に運用するには、燃料を目標燃料温度まで上昇させる必要がある。
【0006】
しかし、目標燃料温度は、燃料の成分によって変化するため、燃料の採掘地等の変更に伴って変化することがある。そのため、燃料の成分が変化して目標燃料温度が相対的に高くなると、燃料成分の変化前と同じ制御では燃料加熱水の温度を充分に上昇させることができず、燃料を目標燃料温度まで加熱することが難しくなる場合がある。例えば、プラント起動時のガスタービン負荷上昇過程では、排ガス温度が低いために燃料加熱水をすみやかに加熱することができず、早い段階で燃料を目標燃料温度まで加熱することが特に難しくなる。
【0007】
特許文献1のように燃料加熱水を中圧節炭器で加熱している場合、プラント起動時のガスタービン負荷上昇過程における燃料加熱水の温度を上昇させる方法としては、中圧ドラム内の圧力を上昇させるものがある。このように中圧ドラム内の圧力を上昇させると、中圧ドラム内の飽和温度が上昇して中圧蒸発器で発生する蒸気量が低減するので、中圧蒸発器における熱交換量が低減する。これにより中圧蒸発器の下流に設置された中圧節炭器に高温の排ガスを流通させることができるので、中圧節炭器における熱交換量を増大させることができ、燃料加熱水の温度を上昇させることができる。
【0008】
しかし、このように中圧ドラム内の圧力を上昇させると、中圧蒸気の圧力が再熱蒸気圧力よりも上昇してしまう。中圧蒸気は、再熱蒸気の圧力が中圧蒸気の圧力に到達したときに再熱蒸気に混入され、中圧蒸気タービンへ供給され始めるのであるが、上記のように中圧蒸気の圧力が上昇すると、中圧蒸気を再熱蒸気に投入できない。
【0009】
本発明の目的は、目標燃料温度が高い場合でも、中圧蒸気を再熱蒸気に投入できる複合発電プラントの制御方法を提供することである。
【課題を解決するための手段】
【0010】
(1)本発明は、上記目的を達成するために、圧縮空気と燃料を燃焼して燃焼ガスを発生する燃焼器と、前記燃焼器からの燃焼ガスによって駆動されるガスタービンと、前記ガスタービンの排熱を利用して圧力の異なる蒸気を発生する高圧排熱回収部及び中圧排熱回収部を有する排熱回収ボイラと、前記高圧排熱回収部で発生した高圧蒸気によって駆動される高圧蒸気タービンと、前記高圧蒸気タービンから排出された再熱蒸気及び前記中圧排熱回収部で発生した中圧蒸気が流通する再熱蒸気系統と、前記再熱蒸気系統から供給される蒸気によって駆動される中圧蒸気タービンと、前記中圧排熱回収部で加熱された燃料加熱水を利用して、前記燃焼器に供給される燃料を加熱する燃料加熱器とを備える複合発電プラントに用いられる複合発電プラントの制御方法であって、プラント起動時のガスタービン負荷上昇過程において、再熱蒸気の圧力より高く設定した設定圧力に中圧蒸気の圧力を保持し、中圧蒸気の圧力を前記設定圧力に保持した状態において、前記燃料加熱器で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示した設定負荷に前記ガスタービンの負荷が到達したタイミング以後において、中圧蒸気の圧力の低減を開始し、中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、前記再熱蒸気系統への中圧蒸気の供給を開始するものとする。
【0011】
(2)上記(1)において、好ましくは、前記ガスタービンの負荷が前記設定負荷に到達したタイミングを知得するために、前記燃焼器における燃焼形態の切換タイミング、前記燃焼器への燃料供給量が設定値に達したタイミング、前記ガスタービンへ供給される燃焼ガスの温度が設定値に達したタイミング又は圧縮機の入口案内翼の開度が設定値に達したタイミングのうちいずれかを利用するものとする。
【0012】
(3)また、本発明は、上記目的を達成するために、空気を圧縮する圧縮機と、前記圧縮機からの圧縮空気と燃料を燃焼して燃焼ガスを発生する燃焼器と、前記燃焼器からの燃焼ガスによって駆動されるガスタービンと、前記ガスタービンの排熱を利用して圧力の異なる蒸気を発生する高圧排熱回収部、中圧排熱回収部及び低圧排熱回収部を有する排熱回収ボイラと、前記高圧排熱回収部で発生した高圧蒸気によって駆動される高圧蒸気タービンと、前記高圧蒸気タービンから排出された再熱蒸気が流通する再熱蒸気系統と、前記中圧排熱回収部で発生した中圧蒸気が流通する系統であって、前記再熱蒸気系統と接続された中圧蒸気系統と、前記中圧蒸気系統に設けられ、中圧蒸気の圧力を調節する圧力調節弁と、前記中圧蒸気系統に設けられ、前記中圧排熱回収部から前記再熱蒸気系統への蒸気の供給を制御する開閉弁と、前記再熱蒸気系統から供給される蒸気によって駆動される中圧蒸気タービンと、前記低圧排熱回収部で発生した低圧蒸気によって駆動される低圧蒸気タービンと、前記中圧排熱回収部で加熱された燃料加熱水を利用して、前記燃焼器に供給される燃料を加熱する燃料加熱器と、前記圧力調節弁と前記開閉弁を制御する制御装置とを備え、前記制御装置は、プラント起動時のガスタービン負荷上昇過程において、前記圧力調節弁を制御することで、再熱蒸気の圧力より高く設定した設定圧力に中圧蒸気の圧力を保持し、中圧蒸気の圧力を前記設定圧力に保持した状態において、前記燃料加熱器で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示した設定負荷に前記ガスタービンの負荷が到達したタイミング以後において、前記圧力調節弁を制御することで中圧蒸気の圧力を前記設定圧力から徐々に低減し、中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、前記開閉弁を開くとともに前記圧力調節弁を閉じるものとする。
【発明の効果】
【0013】
本発明によれば、目標燃料温度が高い場合でも、中圧蒸気タービンに中圧蒸気を投入させることが可能になり、正常なプラント運用を行うことができる。
【図面の簡単な説明】
【0014】
【図1】本発明の実施の形態に係る複合発電プラントの概略図。
【図2】本発明の実施の形態に係る複合発電プラントの制御フロー図。
【図3】図2の制御を行った際の中圧蒸気の圧力変化図。
【図4】中圧蒸気の圧力を設定圧力Aに保持した際に中圧排熱回収部40を流通する作動媒体とガスタービン排ガスの温度変化図。
【図5】本発明の実施の形態に係る燃焼器14におけるNOx濃度とガスタービン負荷の関係の概略図。
【図6】本発明の実施の形態に係る燃焼器14への燃料供給量とガスタービン負荷の関係の概略図。
【図7】本発明の実施の形態に係る燃焼ガス温度とガスタービン負荷の関係の概略図。
【図8】本発明の実施の形態に係る圧縮機35の入口案内翼開度とガスタービン負荷の関係の概略図。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態を図面を用いて説明する。
【0016】
図1は本発明の実施の形態に係る複合発電プラントの概略図である。この図に示す複合発電プラントは、ガスタービン設備100と、排熱回収ボイラ11と、蒸気タービン設備120と、発電機39と、復水器22と、制御装置90を主に備えている。
【0017】
ガスタービン設備100は、空気を圧縮(高圧化)する圧縮機35と、燃料を加熱する燃料加熱器15と、圧縮機35からの圧縮空気と燃料加熱器15で加熱された燃料とを燃焼して燃焼ガスを発生する燃焼器14と、燃焼器14からの燃焼ガスによって駆動されるガスタービン12を備えている。
【0018】
燃料加熱器15には、排熱回収ボイラ11における中圧排熱回収部40で加熱された水(燃料加熱水)が流通する燃料加熱水管23が接続されている。燃料加熱器15は、この燃料加熱水管23から供給される燃料加熱水と燃料とを熱交換することで燃料を加熱している。燃料加熱器15の出口における燃料の温度には、燃料の成分に応じて目標温度(目標燃料温度)が設定されている。この目標燃料温度は、プラント起動時のガスタービン12の安定燃焼の条件となっている。なお、目標燃料温度としては、所定の範囲にわたる値を採用しても良い。
【0019】
燃料加熱水管23上には、燃料加熱器15の下流側の位置に調節弁26が設置されている。調節弁26は燃料加熱器15に供給される燃料加熱水の量を調節するもので、調節弁26の開度を調節すると燃料加熱器における交換熱量を調整できるため燃料温度を調節することができる。また、燃料加熱器15と燃焼器14を接続する管路には、燃焼器14への燃料供給量を調節する調節弁29が取り付けられている。燃料加熱管23における下流側の端部は復水器22と接続されており、燃料加熱器15で燃料の加熱に利用された水は復水器22に戻されている。
【0020】
排熱回収ボイラ11は、ガスタービン12からの排ガスを利用して、それぞれ圧力の異なる蒸気を発生する高圧排熱回収部30と、中圧排熱回収部40と、低圧排熱回収部50を有している。すなわち、排熱回収ボイラ11は、いわゆる再熱三重圧式のものである。
【0021】
高圧排熱回収部30は、高圧節炭器31(第1高圧節炭器31a、第2高圧節炭器31b及び第3高圧節炭器31c)と、高圧ドラム32と、高圧蒸発器33と、高圧過熱器34を備えている。第1高圧節炭器31aは、復水器22からの給水を排ガスを利用して加熱している。第2高圧節炭器31bは、第1高圧節炭器31aに対して排ガス流通方向の上流側に設置されており、第1高圧節炭器31aで加熱された水を加熱している。第3高圧節炭器31cは、第2高圧節炭器31bに対して排ガス流通方向の上流側に設置されており、第2高圧節炭器31bで加熱された水を加熱している。高圧ドラム32には、第3高圧節炭器31cで加熱された水が供給されている。高圧蒸発器33は、第3高圧節炭器31cに対して排ガス流通方向の上流側に設置されており、高圧ドラム32から供給される水を蒸発させている。高圧加熱器34は、高圧蒸発器33に対して排ガス流通方向の上流側に設置されており、高圧蒸発器33からの蒸気(高圧蒸気)を加熱している。高圧過熱器34は高圧蒸気管35と接続されている。高圧過熱器34で加熱された高圧蒸気は、高圧蒸気管35を介して高圧蒸気タービン13に供給され、高圧蒸気タービン13を駆動している。高圧蒸気管35には、高圧蒸気タービン13に供給される蒸気量を調節する調節弁24が設置されている。
【0022】
中圧排熱回収部40は、中圧節炭器41(第1中圧節炭器41a及び第2中圧節炭器41b)と、中圧ドラム42と、中圧蒸発器43と、中圧過熱器44を備えている。第1中圧節炭器41aは、復水器22からの給水を排ガスを利用して加熱している。第2中圧節炭器41bは、第1中圧節炭器41aに対して排ガス流通方向の上流側に設置されており、第1中圧節炭器41aで加熱された水を加熱している。第2中圧節炭器41bは、さらに燃料加熱水管23及び中圧ドラム42に接続されており、燃料加熱水管23及び中圧ドラム42に加熱した水を供給している。中圧蒸発器43は、第4中圧節炭器41bに対して排ガス流通方向の上流側に設置されており、中圧ドラム42から供給される水を蒸発させている。中圧過熱器44は、中圧蒸発器43に対して排ガス流通方向の上流側に設置されており、中圧蒸発器43からの蒸気(中圧蒸気)を加熱している。中圧蒸発器43は中圧蒸気系統70における第1中圧蒸気管45と接続されている。
【0023】
中圧蒸気系統70は、第1中圧蒸気管45と、第2中圧蒸気管46と、第3中圧蒸気管47を備えている。
【0024】
第1中圧蒸気管45は、第2中圧蒸気管46及び第3中圧蒸気管47と接続されている。
【0025】
第2中圧蒸気管46は、再熱蒸気系統60(後述)に中圧蒸気を供給するもので、再熱蒸気系統60における低温再熱蒸気管61と接続されている。第2中圧蒸気管46には、開閉弁(電動弁または空気作動弁などの自動弁)18と、圧力センサ49が設置されている。開閉弁18は、制御装置90と接続されており、制御装置90からの制御信号に基づいて開閉する。中圧蒸気系統70と再熱蒸気系統60は、開閉弁18が開くと接続され、開閉弁18が閉まると遮断される。圧力センサ49は、中圧蒸気の圧力を検出するもので、第2中圧蒸気管46上において、第1中圧蒸気管45の接続位置と開閉弁18の設置位置との間に設置されている。圧力センサ49は、制御装置90と接続されており、検出した中圧蒸気の圧力を制御装置90に送信している。
【0026】
第3中圧蒸気管47は、復水器22と接続されており、中圧蒸気を復水器22に排出する。第3中圧蒸気管47には、圧力調節弁19が取り付けられている。圧力調節弁19は、中圧蒸気の圧力及び中圧ドラム42内の圧力を調節するためのものである。開閉弁18を閉じた状態(すなわち、中圧蒸気系統70と再熱蒸気系統60を遮断した状態)で圧力調節弁19の開度を変更すると、中圧蒸気の圧力及び中圧ドラム42内の圧力を変更することができる。中圧ドラム42内の圧力を変更すると、中圧ドラム42内の飽和温度を変化させることができる。
【0027】
低圧排熱回収部50は、低圧節炭器51と、低圧ドラム52と、低圧蒸発器53と、低圧過熱器54を備えている。
【0028】
低圧節炭器51は、復水器22からの給水を排ガスを利用して加熱している。低圧ドラム52には、低圧節炭器51で加熱された水が供給されている。低圧蒸発器53は、低圧節炭器51に対して排ガス流通方向の上流側に設置されており、低圧ドラム52から供給される水を蒸発させている。低圧過熱器54は、低圧蒸発器53に対して排ガス流通方向の上流側に設置されており、低圧蒸発器53からの蒸気(低圧蒸気)を加熱している。低圧蒸発器53は低圧蒸気管55と接続されている。
【0029】
蒸気タービン設備120は、高圧蒸気タービン13と、中低圧蒸気タービン28を備えている。
【0030】
高圧蒸気タービン13は、高圧蒸気管35を介して供給される高圧蒸気によって駆動される。高圧蒸気タービン13から排出された蒸気(再熱蒸気)は再熱蒸気系統60に導入されている。
【0031】
再熱蒸気系統60は、低温再熱蒸気管61と、再熱器62と、高温再熱蒸気管63を備えている。低温再熱蒸気管61は、高圧蒸気タービン13から排出された蒸気(低温再熱蒸気)が流通するもので、高圧蒸気タービン13と再熱器62を接続している。また、低温再熱蒸気管61には、圧力センサ69が設置されている。圧力センサ69は、低温再熱蒸気の圧力を検出するもので、制御装置90と接続されている。圧力センサ69で検出された低温再熱蒸気の圧力は制御装置90に送信されている。また、既述のように低温再熱蒸気管61には第2中圧蒸気管46が接続されており、再熱蒸気系統60内に中圧蒸気を混入可能になっている。再熱器62は、排熱回収ボイラ11内に設置されており、低温再熱蒸気管61を流通してきた低温再熱蒸気を排ガスを利用して加熱している。高温再熱蒸気管63は、再熱器62で加熱された高温再熱蒸気が流通するもので、再熱器62と低中圧蒸気タービン28における中圧蒸気タービンを接続している。
【0032】
中低圧蒸気タービン28における中圧蒸気タービンは、高温再熱蒸気管63と接続されており、再熱蒸気系統60から供給される蒸気(高温再熱蒸気)によって駆動される。一方、中低圧蒸気タービン28における低圧蒸気タービンは、低圧蒸気管55と接続されており、低圧排熱回収部50で発生した低圧蒸気によって駆動される。
【0033】
発電機39は、ガスタービン12、高圧蒸気タービン13及び中低圧蒸気タービン28と連結されており、これらから与えられる駆動力(回転力)を電力に変換している。なお、本実施の形態では、ガスタービン12、高圧蒸気タービン13及び中低圧蒸気タービン28はすべて同軸上に配置されているが、ガスタービン12と蒸気タービン13,28をそれぞれ異なる軸上に配置し、それぞれに発電機を取り付けても良い。
【0034】
制御装置90は、図1に示した複合発電プラントを制御するためのもので、本実施の形態では、中圧蒸気及び低温再熱蒸気の圧力並びにガスタービン負荷に基づいて、開閉弁18の開閉及び圧力調節弁19の開度の制御を主に行っている。
【0035】
次に上記のように構成される複合発電プラントの制御について説明する。図2は本発明の実施の形態に係る複合発電プラントの制御フロー図を示しており、図3は図2の制御を行った際の中圧蒸気の圧力変化図である。なお、図3中の点線は、中圧ドラム42内の圧力を上昇させなかった場合(従来技術)の圧力変化を示している。
【0036】
プラント起動時にガスタービン負荷の上昇過程が開始されると、制御装置90は、図2に示す制御を開始し、開閉弁18を閉じた状態で圧力調節弁19を制御して、中圧蒸気系統70を流通する中圧蒸気の圧力を設定圧力Aに保持する(S210)。ここで、設定圧力Aとは、再熱蒸気の圧力よりも高く設定された圧力の値であり、ガスタービン負荷上昇過程における中圧蒸気の圧力(圧力センサ49の検出値)が再熱蒸気の圧力(圧力センサ69の検出値)よりも高く保持されるように設定されている。このように中圧蒸気の圧力を設定圧力Aに設定すると、図3に示すように中圧ドラム42内の圧力が上昇するので、中圧ドラム42の飽和温度が上昇する。中圧ドラム42の飽和温度が上昇すると、中圧蒸発器43での蒸気発生量が減少し、中圧節炭器41に高温の排ガスが流れるようになるので、中圧節炭器41における熱交換量を増加させることができる。このように中圧節炭器41における熱交換量を増加させると、中圧節炭器41の出口における給水温度が上昇するので、燃料加熱水の温度を上昇させることができる。
【0037】
図4は中圧蒸気の圧力を設定圧力Aに保持した際に中圧排熱回収部40を流通する作動媒体(水又は蒸気)とガスタービン排ガスの温度変化図である。なお、図4中の点線は中圧蒸気の圧力(すなわち中圧ドラム42内の圧力)を上昇させなかった場合の温度変化を示している。この図に示すように、中圧蒸気の圧力上昇後の温度変化グラフは、圧力上昇前のものを左上にずらしたものに相当していることが分かる。
【0038】
S210において中圧蒸気の圧力を設定圧力Aに保持したら、制御装置90は、ガスタービン負荷が設定負荷L1以上に達したか否かを判定する(S220)。ここで、設定負荷L1とは、中圧蒸気の圧力を設定圧力Aに保持した状態において、燃料加熱器15で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示したものである。すなわち、ガスタービ負荷の上昇過程において、中圧蒸気の圧力が設定圧力Aに保持されかつガスタービン負荷が設定負荷L1以上に保持されている場合には、燃料加熱器15で燃料を目標燃料温度まで加熱することができるので、ガスタービン12の安定燃焼の条件を満たすことができる。
【0039】
ところで、S220におけるガスタービン負荷の判定に関し、ガスタービンと蒸気タービンが異なる軸上に配置されているときには、ガスタービン負荷を直接測定することができるのでその測定値を用いれば良い。しかし、本実施の形態にようにガスタービン12、高圧蒸気タービン13及び中低圧蒸気タービン28が同軸上に配置されているときには、ガスタービン負荷を直接測定することが難しい。そこで、本実施の形態では、ガスタービン負荷が設定負荷L1に達したことを判定する際には、他の指標を利用して間接的にガスタービン負荷を知得している。
【0040】
ガスタービン負荷を間接的に知得するための指標としては、燃焼器14における燃焼形態の切換タイミングがある。これは、ガスタービン負荷の上昇過程では、窒素酸化物濃度(NOx濃度)を抑制するために、ガスタービン負荷に応じて燃焼器14における燃焼形態を切換えていくが、この燃焼形態の切換タイミングをガスタービン負荷の知得に用いる方法である。図5は本発明の実施の形態に係る燃焼器14におけるNOx濃度とガスタービン負荷(GT負荷)の関係の概略図である。この図に示した例では、無負荷から定格負荷に至るまでに3つの燃焼形態(M1,M2,M3)に切り換えており、NOx濃度が最低となるM3がその最終形態となっている。したがって、例えば、図5に示すように、M2からM3への切換タイミングから所定時間tが経過した時にガスタービン負荷が設定負荷L1に到達することが判明していれば、当該切換タイミングからt時間後にS220からS230に移行するように制御すれば良い。
【0041】
S220においてガスタービン負荷が設定負荷L1に達したことが判定されたら、そのタイミング以後において、制御装置90は、圧力調節弁19を制御して、中圧蒸気の圧力を設定圧力から徐々に低減することを開始する(S230)。このように圧力調節弁19を制御すると、図3に示すように中圧蒸気の圧力が徐々に低下する。
【0042】
S230において中圧蒸気の圧力の低減を開始したら、制御装置90は、中圧蒸気の圧力が再熱蒸気の圧力まで低下したか否かを判定する(S240)。この判定には、制御装置90に入力される圧力センサ49及び圧力センサ69の検出値を用いて比較すれば良い。なお、ここでは、中圧蒸気と再熱蒸気の圧力差が所定の設定値以内に収まったときに、両者の圧力が等しくなったとみなしてS250に移るように構成しても良い。
【0043】
S240で中圧蒸気と再熱蒸気の圧力が等しくなったと判定されたら、制御装置90は、開閉弁18を開き(S250)、圧力調節弁19を閉じる(開度をゼロにする)(S260)。このように開閉弁18及び圧力調節19を操作すると、中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、はじめて再熱蒸気系統60への中圧蒸気の供給を開始することができる。これにより、圧力が再熱蒸気と同程度になった中圧蒸気を再熱蒸気系統60に供給することができるので、中圧蒸気を利用して中圧蒸気タービンを駆動することができる。なお、S250とS260の処理は、上記と逆の順番に行っても良いし、同時に行っても良い。
【0044】
以上の説明から明らかなように、本実施の形態によれば、目標燃料温度の上昇に伴って中圧蒸気の圧力を上昇させた場合であっても、当該目標燃料温度まで燃料を加熱するのに必要な熱量を確保した後遅滞なく、中圧蒸気の圧力を再熱蒸気の圧力まで低減することができる。これにより燃料の目標燃料温度が高い場合でも、中圧蒸気タービンに中圧蒸気を供給することが可能になる。また、本実施の形態によれば、従来よりも目標燃料温度が高い燃料を利用することができるので、プラントの運用幅を広げることができる。さらに、本実施の形態によれば、実際の目標燃料温度と計画値との間に誤差が生じた場合にもその誤差分を吸収することもできる。
【0045】
なお、S220においてガスタービン負荷を間接的に知得するための指標としては、上記で説明した燃焼切換タイミングの他にも、(1)燃焼器14への燃料供給量(図6参照)、(2)ガスタービン12へ供給される燃焼ガス温度(図7参照)、(3)圧縮機35の入口案内翼開度(図8参照)が利用可能である。
【0046】
図6は本発明の実施の形態に係る燃焼器14への燃料供給量とガスタービン負荷の関係の概略図である。この図に示すように、燃焼器14への燃料供給量は、ガスタービン負荷の上昇に伴って概ね単調に増加している。したがって、ガスタービン負荷と燃料供給量を対応させることができるので、燃料供給量からガスタービン負荷を間接的に知得することができる。図6に示した例では、燃料供給量が設定値Q1に達したタイミングでガスタービン負荷が設定負荷L1に到達するので、燃料供給量が設定値Q1に達したタイミング以後にS230に移行すれば良い。なお、燃料供給量を知得するには、例えば、調節弁29の開度を利用すれば良い。
【0047】
図7は本発明の実施の形態に係る燃焼ガス温度とガスタービン負荷の関係の概略図である。この図に示すように、燃焼ガス温度もガスタービン負荷の上昇に伴って概ね単調に増加している。したがって、ガスタービン負荷と燃焼ガス温度を対応させることができるので、燃焼ガス温度からガスタービン負荷を間接的に知得することができる。図7に示した例では、燃焼ガス温度が設定値T1に達したタイミングでガスタービン負荷が設定負荷L1に到達するので、燃焼ガス温度が設定値T1に達したタイミング以後にS230に移行すれば良い。なお、燃焼ガス温度は、直接測定することができないので、演算により間接的に導出することとなる。ガスタービンを部分負荷運転しているときの燃焼ガス温度は、例えば、ガスタービン入口の空気量、大気圧、大気温度、燃料供給量及び燃料発熱量等から算出することができるし、ガスタービンを定格負荷運転しているときの燃焼ガス温度は、例えば、排気温度、圧縮機出口圧力及び大気圧等から算出することができる。
【0048】
図8は本発明の実施の形態に係る圧縮機35の入口案内翼開度とガスタービン負荷の関係の概略図である。この図に示すように、所定のガスタービン負荷を超えた領域では、圧縮機35の入口案内翼開度も、ガスタービン負荷の上昇に伴って概ね単調に増加している。したがって、ガスタービン負荷と入口案内翼開度を対応させることができるので、入口案内翼開度からガスタービン負荷を間接的に知得することができる。図8に示した例では、入口案内翼開度が設定値P1に達したタイミングでガスタービン負荷が設定負荷L1に到達するので、入口案内翼開度が設定値P1に達したタイミング以後にS230に移行すれば良い。
【符号の説明】
【0049】
11 排熱回収ボイラ
12 ガスタービン
13 高圧蒸気タービン
15 燃料加熱器
18 開閉弁
19 圧力調節弁
22 復水器
23 燃料加熱水管
28 低中圧蒸気タービン
30 高圧排熱回収部
35 圧縮機
40 中圧排熱回収部
41a,41b,41c 中圧節炭器
42 中圧ドラム
43 中圧蒸発器
44 中圧過熱器
49 圧力センサ(中圧蒸気用)
50 低圧排熱回収部
60 再熱蒸気系統
69 圧力センサ(再熱蒸気用)
70 中圧蒸気系統
90 制御装置
100 ガスタービン設備
120 蒸気タービン設備
L1 設定負荷(ガスタービン負荷)
Q1 設定値(燃料供給量)
T1 設定値(燃焼ガス温度)
P1 設定値(入口案内翼開度)

【特許請求の範囲】
【請求項1】
圧縮空気と燃料を燃焼して燃焼ガスを発生する燃焼器と、
前記燃焼器からの燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンの排熱を利用して圧力の異なる蒸気を発生する高圧排熱回収部及び中圧排熱回収部を有する排熱回収ボイラと、
前記高圧排熱回収部で発生した高圧蒸気によって駆動される高圧蒸気タービンと、
前記高圧蒸気タービンから排出された再熱蒸気及び前記中圧排熱回収部で発生した中圧蒸気が流通する再熱蒸気系統と、
前記再熱蒸気系統から供給される蒸気によって駆動される中圧蒸気タービンと、
前記中圧排熱回収部で加熱された燃料加熱水を利用して、前記燃焼器に供給される燃料を加熱する燃料加熱器とを備える複合発電プラントに用いられる複合発電プラントの制御方法であって、
プラント起動時のガスタービン負荷上昇過程において、再熱蒸気の圧力より高く設定した設定圧力に中圧蒸気の圧力を保持し、
中圧蒸気の圧力を前記設定圧力に保持した状態において、前記燃料加熱器で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示した設定負荷に前記ガスタービンの負荷が到達したタイミング以後において、中圧蒸気の圧力の低減を開始し、
中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、前記再熱蒸気系統への中圧蒸気の供給を開始することを特徴とする複合発電プラントの制御方法。
【請求項2】
請求項1記載の複合発電プラントの制御方法において、
前記ガスタービンの負荷が前記設定負荷に到達したタイミングを知得するために、
前記燃焼器における燃焼形態の切換タイミング、前記燃焼器への燃料供給量が設定値に達したタイミング、前記ガスタービンへ供給される燃焼ガスの温度が設定値に達したタイミング又は圧縮機の入口案内翼の開度が設定値に達したタイミングのうちいずれかを利用することを特徴とする複合発電プラントの制御方法。
【請求項3】
空気を圧縮する圧縮機と、
前記圧縮機からの圧縮空気と燃料を燃焼して燃焼ガスを発生する燃焼器と、
前記燃焼器からの燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンの排熱を利用して圧力の異なる蒸気を発生する高圧排熱回収部、中圧排熱回収部及び低圧排熱回収部を有する排熱回収ボイラと、
前記高圧排熱回収部で発生した高圧蒸気によって駆動される高圧蒸気タービンと、
前記高圧蒸気タービンから排出された再熱蒸気が流通する再熱蒸気系統と、
前記中圧排熱回収部で発生した中圧蒸気が流通する系統であって、前記再熱蒸気系統と接続された中圧蒸気系統と、
前記中圧蒸気系統に設けられ、中圧蒸気の圧力を調節する圧力調節弁と、
前記中圧蒸気系統に設けられ、前記中圧排熱回収部から前記再熱蒸気系統への蒸気の供給を制御する開閉弁と、
前記再熱蒸気系統から供給される蒸気によって駆動される中圧蒸気タービンと、
前記低圧排熱回収部で発生した低圧蒸気によって駆動される低圧蒸気タービンと、
前記中圧排熱回収部で加熱された燃料加熱水を利用して、前記燃焼器に供給される燃料を加熱する燃料加熱器と、
前記圧力調節弁と前記開閉弁を制御する制御装置とを備え、
前記制御装置は、
プラント起動時のガスタービン負荷上昇過程において、前記圧力調節弁を制御することで、再熱蒸気の圧力より高く設定した設定圧力に中圧蒸気の圧力を保持し、
中圧蒸気の圧力を前記設定圧力に保持した状態において、前記燃料加熱器で燃料が目標燃料温度まで加熱されるタイミングをガスタービン負荷で示した設定負荷に前記ガスタービンの負荷が到達したタイミング以後において、前記圧力調節弁を制御することで中圧蒸気の圧力を前記設定圧力から徐々に低減し、
中圧蒸気の圧力が再熱蒸気の圧力まで低下したときに、前記開閉弁を開くとともに前記圧力調節弁を閉じることを特徴とする複合発電プラント。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−27036(P2011−27036A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2009−174141(P2009−174141)
【出願日】平成21年7月27日(2009.7.27)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】