説明

試料の検査方法

【課題】電子顕微鏡における試料の検査方法を提供する。
【解決手段】試料キャリア500は、パッド505,508と接続する電極504,507を有する。領域A上に試料は設けられる。前記試料を前記試料キャリア上に設けた後、前記試料上に伝導性パターンが堆積される。それにより前記試料の特定部分に電圧又は電流を印加することが可能となる。前記試料上への前記パターンの堆積は、たとえばビーム誘起堆積又はインクジェットプリントによって行われて良い。前記試料内での電子部品-たとえばレジスタ、キャパシタ、インダクタ、及びFETのような能動素子-の構成についても教示する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は粒子光学装置による試料の検査方法に関する。当該装置は前記試料を粒子ビームによって検査する。当該方法は、
− 電極を備えた試料キャリアを供する工程、
− 試料を供する工程、
− 前記試料キャリア上に前記試料を設ける工程、
− 前記試料を当該粒子光学装置へ導入する工程、
− 前記試料中に電圧差又は電流を誘起する工程、
− 前記試料に前記粒子ビームを照射する工程、及び、
− 前記試料を透過する粒子を検出する工程、
を有する。
【0002】
本発明はまた、本発明による方法を実行するように備えられた試料キャリアにも関する。
【背景技術】
【0003】
係る方法は特許文献1から既知である。
【0004】
透過電子顕微鏡(TEM)では、薄い試料に、たとえば80-300keVのエネルギーを有する電子ビームが照射される。その試料はこれらの電子を透過させるのに十分な程度に薄い。これらの電子の一部は試料中で吸収され、別な一部の電子は断線散乱され(つまり方向は変化するがエネルギーはほとんど変化しない)、そしてまた別な一部の電子は非弾性散乱される(つまり方向もエネルギーも変化する)。試料を透過する電子から、その試料からの情報を収集することができる。そのような情報は、その試料の空間依存する透過、空間依存する散乱、及び/又は空間依存するエネルギー損失であって良い。
【0005】
また、たとえば試料から反射される電子から、又は1次ビームによる照射に応じてその試料から放出される2次電子を収集することによって、他の情報を収集することができることにも留意して欲しい。係る2次電子は典型的には0-50eVのエネルギーを有する。また光子-X線のような-が、試料と1次ビームとの衝突によって集められる結果、元素の情報が得られる。一般的には試料は、支持用の試料キャリア-グリッドとしても知られている-の上に設けられる。そのグリッドは典型的には銅でできた穴の開いたホイルで、直径3.05mmで厚さが20〜50μmである。試料はグリッドの棒によって支持されるが、その試料の一部分-グリッドの穴を覆う部分-を電子ビームによって検査することが可能である。試料キャリアは試料ホルダ内に設けられる。その試料ホルダは、電子ビームに対する試料の位置を設定するのに用いられる。そのように試料の位置が設定されることで、その試料の関心領域を検査用ビームの中心に位置することができる。多くのTEMは、非集束ビーム又は集束ビームを試料に照射し、その際そのビームはその試料全体にわたって走査される。後者の場合、その装置は、走査型透過電子顕微鏡(STEM)と呼ばれる。本願においては、透過電子顕微鏡には走査型透過電子顕微鏡も含まれる。
【0006】
特許文献1は、TEMで用いられる試料ホルダ及び試料キャリアについて開示している。その試料ホルダ及び試料キャリアは試料を加熱する一方で、たとえば同時にその試料に電流を流す。その試料ホルダは円筒形の貫通穴を有する。その円筒形の貫通穴の中にその試料キャリアが設けられて良い。その円筒形の貫通穴はその試料キャリアを載せる縁部を有する。その試料ホルダは、その試料キャリアを備えるその試料ホルダの少なくとも一部を加熱する加熱ワイヤをさらに有する。その試料キャリアは、その試料ホルダの円筒形の貫通穴に適合する円筒形の外径を有する。その試料キャリアはさらに電子の通過を妨害しない円筒形の穴をさらに有する。その試料は、円筒形の軸に垂直な管の壁内に設けられた刻み目(indents)に設けられて良い。その試料キャリアは電極を備えた挿入部をさらに有する。その挿入部は、その軸の周りを取り囲む試料キャリアの透過するのを妨害しないように、その軸の周りで開いている。その電極はその試料の一部と接触する。そのようにして、その試料の一部の間に電圧差又は電流を誘起することができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第5091651号明細書
【特許文献2】米国特許出願公開第2008179518号明細書
【特許文献3】国際公開第00/22670パンフレット
【非特許文献】
【0008】
【非特許文献1】笠間丈史他、米国材料学会プロシーディングス、第907E巻、2006年
【非特許文献2】関谷毅他、米国科学アカデミー紀要(PNAS)、第105巻、第13号、2008年、pp.4976-4980
【非特許文献3】クリーマー(J.F.Creemer)他、ウルトラマイクロスコピー(Ultramicroscopy)誌、第108巻、2008年、pp.993-998
【発明の概要】
【発明が解決しようとする課題】
【0009】
既知の試料ホルダ/試料キャリアの組合せの問題は、試料と接続する位置が構成上固定されることである。そのため、電流又は電圧が誘起可能な試料の一部の位置はキャリア/ホルダの設計によって固定されていて、かつこれらの位置を変化させるにはキャリア及び/又はホルダも変化させることになる。またこれらの領域を決定することができる精度は、試料及び/又はその試料の部位の典型的な寸法−試料の部位であれば典型的には数nm未満−と比較してもかなり粗い。TEMの光学的分解能は典型的には約0.1nm(古い長さの単位では1Å)であることに留意して欲しい。
【0010】
ある特定の用途では、試料の一部と電気的に接触する操作可能なプローブを用いることによって、試料の特定部分間に電圧差を誘起することが知られている(非特許文献1参照のこと)。特許文献1は、試料が2つの電極間で挟まれるサイドエントリー型試料ホルダについて記載している。これらの電極のうちの1つは、可動コンタクトを形成するエッチングされたWの針であって良い。この設計の問題は、ミクロンスケールの精度でのプローブの位置設定は時間のかかるプロセスであることである。またそのプローブは一般的には、試料の1点にしか接触しないので、そのプローブ直近での電流密度が意図せずして大きくなってしまう恐れがある。
【0011】
ミクロンスケールの精度での試料上での電極の容易で自在性を有する位置設定が必要となる。
【課題を解決するための手段】
【0012】
上記目的のため、本発明による方法は、試料を試料キャリア上に設けた後であって前記試料に粒子ビームを照射する前に、前記試料に伝導性又は半導体性のパターンを堆積し、かつ前記パターンの少なくとも一部は前記試料キャリアの電極と電気的に接触している、ことを特徴とする。
【0013】
本発明は、前記試料自体及び前記試料キャリアの一部の上に伝導性又は半導体性のパターンを形成することによって、前記試料キャリア上の電極から前記試料上の関心領域への電気的接続が可能になるという知見に基づいている。
【0014】
本発明による方法の実施例では、前記伝導性若しくは半導体性のパターン及び/又は電極を堆積する工程はビーム誘起堆積又はインクジェットプリントを有する。高解像度インクジェットプリントは、非特許文献2に記載されているように、5μm以下の解像度で供給されることが知られている。伝導性インクを用いてパターンを堆積することによって、部位差のサイズがたとえば5μm未満でかつさらに良好な位置の精度を有する高解像度パターンを試料及び試料キャリア上に堆積することが可能である。ビーム誘起堆積を用いることによって、さらに小さな部位のサイズ及びさらに高い位置精度を得ることも可能である。ビーム誘起堆積では、集束粒子ビーム−たとえばイオンビーム又は電子ビーム−が吸着した流体からの堆積を誘起するのに用いられる。この流体−所謂前駆体−は、たとえばガス注入システムによって、粒子ビーム装置の排気された試料チャンバ内に導入され、かつ試料へ向かうように導かれる。この方法それ自体はイオン顕微鏡の当業者には、ガス注入システムとして知られている。適切なガス注入システムはたとえば特許文献2の図3及び図4並びにこれらに対応する明細書の記載箇所に開示されている。これらの手法を用いることによって、サブミクロンの部位とサブミクロンの位置精度を有する構造を前記試料上に堆積することが可能となる。
【0015】
本発明による方法の他の実施例では、前記伝導性又は半導体性のパターンは、光学顕微鏡又は粒子光学顕微鏡による目印を用いることによって、前記試料に対して位置設定される。前記の試料(の部位)に対するパターンの位置設定は光学顕微鏡を用いて行われて良い。光学顕微鏡の代わりに、粒子光学顕微鏡−たとえば走査電子顕微鏡(SEM)、走査型透過電子顕微鏡(STEM)、透過電子顕微鏡(TEM)、又は集束イオンビーム装置(FIB)−が用いられても良い。前記粒子光学顕微鏡は、数nm〜サブnmの分解能で関心部位を可視化することができる。ビーム誘起堆積(BID)は、SEMであれば電子ビーム誘起堆積(EBID)が行われ、又はFIBであればイオンビーム誘起堆積(IBID)が行われて良いので、前述したように、サブミクロン分解能を有するパターンを、一の装置(たとえばSEM又はFIB)において、数nmの位置精度で堆積することが可能である。
【0016】
本発明による方法のさらに他の実施例では、当該方法は前記試料の少なくとも一面をミリングする工程をさらに有する。試料のミリングにより前記試料の形状の修正が可能になる。前記試料の形状の修正とはたとえば、前記試料の厚さを減少させることで、適切な厚さに到達するまで表面を除去することによって、前記試料が電子を透過させること、又は前記試料の表面下の部位を曝露することである。前記ミリングはたとえばFIBによるイオンビームミリングで行われて良い。適切な気体は増進エッチングによるミリングを増進するのに用いることができる。そのような方法自体はイオンビーム顕微鏡の当業者に知られている。前記伝導性又は半導体性のパターンは、前記の試料の少なくとも1面をミリングした後に堆積されることが好ましい。
【0017】
本発明による方法のさらに他の実施例では、半導体素子、レジスタ、若しくはキャパシタ、又は圧電部分が形成された前記電極と接続する。半導体素子−たとえばダイオード又はバリスタ−は、たとえば温度の測定、又は前記試料の特定部分を所定温度にまで加熱するのに用いられて良い。レジスタは、前記試料上に電位若しくは電位勾配を画定すること、前記試料を局所的に加熱すること、(温度依存するレジスタであれば)前記温度を測定すること、又は、(PTCであれば)前記試料の局所的な部分を特定温度に近づけること、に用いられて良い。同様にキャパシタはたとえば誘電特性を調べるのに用いることができる一方で、圧電素子は検査中に(つまり透過粒子を検出しながら)前記試料へ機械的応力を誘起するのに用いられて良い。半導体デバイス、レジスタ、キャパシタ、又は圧電部分は、供給された試料の一部であって良いし、又は前記試料上に形成されても良い。前記の試料上への半導体デバイス、レジスタ、キャパシタ、又は圧電部分の形成は、たとえば前記試料上の別な材料を用いたインクジェットプリント、又は適切な材料及び/若しくは適切な厚さの堆積されたパターンが用いられたビーム誘起堆積によって行われて良い。
【0018】
本発明による方法のさらに他の実施例では、前記試料は生体試料又は高分子である。特に絶縁性又は伝導性の低い試料は、該試料上に伝導性パターンを作製するのに適している。生体試料及び高分子は一般的には高抵抗率を示す。
【0019】
本発明による方法のさらに他の実施例では、前記電極及び/又は前記伝導性又は半導体性のパターンがTEM内に形成される。当業者に知られているように、TEM(又はSTEM)は、透過粒子を用いた試料像の生成に最適である。また他の分析手法も透過電子を用いた係る装置上で行われても良い。そのような方法はたとえば、電子エネルギー損失分光法である。前記試料が観察されている装置と同一の装置内に前記パターンを堆積することによって、前記試料の部位に対する位置の精度がサブnmの範囲である前記パターンは、最初に前記試料の像を生成し、関心部位を見つけ出し、その後同一の電子ビームを用いた電子ビーム誘起堆積による前記パターンの堆積によって行われる。それにより一の装置から他の装置へ参照フレームが移動することによる位置の不確実性が排除される。
【0020】
他の利点は、前記試料が大気曝露される必要がなくなることで、たとえばミリング後での前記試料の酸化、及び/又はたとえば前記の堆積されたパターンが回避される。たとえばTEM又はSTEM内でのビーム誘起堆積を可能にするため、前記電極及び/又は前記伝導性パターンは、前記電子顕微鏡内部の環境セル内に形成されることが好ましい。環境セル内には、非常に局在化した容積が前記試料を取り囲む。前記容積中では気体が収容されて良い。この気体はEBID用の前駆体気体であって良い。そのため集束電子ビームによる堆積が可能となる。その後前記気体は排出され、かつ前記試料の像はさらなる堆積を行うことなく生成可能である。
【0021】
本発明による方法のさらに他の実施例では、前記電極及び/又は前記伝導性若しくは半導体性パターンは、前記粒子光学装置内に前記試料を導入する前に堆積される。前記伝導性パターンのその場堆積が利点を有しているとはいえ、取り出してからの堆積もスループットを増大させることが可能である。特に通常の光学顕微鏡によって前記パターンの位置を設定し、かつたとえばインクジェットプリント法によって前記パターンを堆積するとき、パターンを迅速に生成することができる。前記の試料の位置設定のための自動の部位認識はこのことをさらに促進させることが可能である。
【0022】
本発明による方法のさらに他の実施例では、当該方法は、前記試料上に前記伝導性又は半導体性のパターンを形成する前に、絶縁性パターンを形成する工程をさらに有する。前記絶縁性パターンは、前記伝導性パターンの少なくとも一部と前記試料との間に隔離層を形成する。前記試料が十分に隔離されていないが伝導性が弱いものであるか、又は、前記試料の一部が伝導性であるときには、前記試料上に前記伝導性又は半導体性のパターンを形成する前に、絶縁層を形成することが必要となるものと思われる。このようにして、前記パターンを前記試料又は前記試料の一部から隔離することができる。ただし前記パターンが前記試料と接触することのできる関心領域は除く。
【0023】
本発明の態様では、試料を運ぶ試料キャリアであって、当該試料キャリアの少なくとも一部は試料を取り付ける又は支持する1つ以上の端部を有するシートとして形成され、当該試料キャリアは電極を有し、前記電極は前記1つ以上の端部にまで延在し、かつ試料ホルダと接続するための接触パッドを形成する領域にまで延在する、ことを特徴とする。
【0024】
試料キャリアは典型的には金属−たとえばCu−の薄いシート及び1つ以上の端部を有する。前記1つ以上の端部全体にわたって試料は設けられ、前記端部は凹部の一部であるか、又は前記試料が接合する縁部の一部である。ここで前記試料キャリア上に電極を形成することによって、前記電極の一の終端部は前記端部で終端し、かつ前記電極の他の終端部は接触パッドで終端する。前記試料キャリアと協働する試料ホルダは前記電極と容易に接触することが可能で、前記電極は前記試料キャリア上に設けられた試料上に形成された前記伝導性又は半導体性のパターンと接触する。前記試料キャリアはまた微小電気機械システム(MEMS)技術によって作製されて良い。MEMS技術では、前記シートはたとえば半導体で形成され、かつ前記凹部及び電極はたとえばリソグラフィプロセスによって形成される。前記凹部、又は、前記試料が前記シートの外側端部に取り付けられる場所は、電子を透過するホイル−たとえば薄いカーボンホイル又は薄いシリコン窒化物ホイル−内で延在して良い。このようにして試料は電子を透過するホイルによって完全に支持することが可能となる。この透明ホイルは凹部によって形成される穴を覆って良いが、前記の試料が設けられる外側端部から延在しても良い。
【0025】
本発明による他の試料キャリアでは、前記試料キャリアは環境セル及び前記電極として形成される。前記電極は前記環境セルへ向かって延在する。前記試料が設けられる前記電極は前記前記環境セル内に存在する。高圧状態にある電子顕微鏡内の試料を調査するために環境セル−マイクロリアクタとも呼ばれる−を用いることは非特許文献3(特に図1)から既知である。非特許文献3は特許文献2に記載された環境セルの実施例について開示している。ここで一の終端部に試料が設けられる電極を前記環境セルに追加することによって、環境セルとしての形態をとる試料キャリアが形成される。環境セル内では、電子顕微鏡で生じる通常の圧力よりもはるかに高い圧力で試料を調査することができる。また環境セルを用いることで、試料への前駆体気体の供給が可能となる。これにより伝導性又は半導体性のパターンをその場で堆積することが可能となる。接触パッドは環境セルの外側に設けられることで、試料キャリアと協働する試料ホルダに対して接近可能となることが好ましい。
【図面の簡単な説明】
【0026】
【図1】1a及び1bは従来技術に係る試料キャリアを概略的に図示している。
【図2】2a及び2bは上に試料が設けられている従来技術に係る試料キャリアを概略的に図示している。
【図3】従来技術に係る試料キャリアの断面を概略的に図示している。
【図4a】本発明による試料キャリアの第1実施例を概略的に図示している。
【図4b】上に試料が設けられている図4aの試料キャリアを概略的に図示している。前記試料上には伝導性パターンが堆積されている。
【図5a】本発明による試料キャリアの第2実施例を概略的に図示している。
【図5b】試料が取り付けられている図4aの試料キャリアの詳細を概略的に図示している。
【図5c】試料に堆積された伝導性パターンの詳細を表す図5bの詳細を概略的に図示している。
【図6】TEMで用いられる従来技術に係る環境セルを概略的に図示している。
【図7A】本発明の方法で用いられる環境セルを図示している。
【図7B】伝導性パターンが接続可能な電極を表す図7aの環境セルの一部を概略的に図示している。
【発明を実施するための形態】
【0027】
ここで図を参照しながら本発明について説明する。図中、同一の参照番号は対応する構成要素を表す。
【0028】
図1aはTEMで用いられる従来技術に係る試料キャリアを概略的に図示している。そのような試料キャリアは−一般的には「グリッド」として知られている−たとえばSPIサプライズ(SPI Supplies)から市販されている。グリッドは、厚さが約30μm以下でかつ外径Dが約3.05mmの薄い金属ホイルからなる。その金属はたとえばCu、Ni、Au、メッキしたCu、又はメッキしたNiであって良い。グリッドの外側部分は金属環である。環の穴はたとえば柵又はメッシュの形態をとる支持構造を有する。様々な柵又はメッシュを有するグリッドが考えられ得る。そのようなグリッドは通常フォトリソグラフィプロセスによって作製される。また金属の代わりにカーボンコーティングされたプラスチックを用いることも知られていることに留意して欲しい。そのようなグリッド上に設けられる試料は、そのグリッド間の凹部全体にわたって設けられるので、支持される。
【0029】
図1bは別な種類の従来技術に係る試料キャリアを概略的に図示している。図中、試料はその試料キャリアの外側端部に取り付けられている。試料キャリアは金属−たとえばCu−の薄いシートであって、試料が接合可能な複数の外側端部1を有する。
【0030】
図2aは図1aの従来技術に係る試料キャリア上に設けられた試料を概略的に図示している。試料102は一般的には、試料キャリアのホイル中に形成された1つ以上の凹部104全体にわたって設けられる。図2bは図2aの従来技術に係る試料キャリア上に設けられた試料を概略的に図示している。試料103−たとえば半導体ウエハから取り出される試料−は典型的には、最大径がたとえば数十μmでかつ厚さがたとえば30〜50nmのタイル又はV字形状のものである。よって典型的な試料はたとえば厚さが30nmの10*20μmである。試料と試料キャリアとの接合は、その試料と試料キャリアとが接合する部分の上に材料103を堆積することによって実現される。接合はたとえば接着剤を堆積することによって行われて良いが、通常は材料103がビーム誘起堆積(BID)によって堆積される。そのような試料の調製、その操作、及び従来技術に係る試料キャリアへの係る試料の接合は当業者には既知である。このようにして、試料の一部は試料キャリアによって支持されず、自由に検査される。この型の試料キャリアは、半導体ウエハから取り出された薄い試料103を検査するときに用いられる。
【0031】
図3は図1aの従来技術に係る試料キャリアの断面を概略的に図示している。その試料キャリア上には試料が設けられている。試料102は支持構造301上に存在している。支持構造301はたとえば、凹部104を有する柵、六角形、又は長方形若しくは正方形のメッシュであって良い。試料キャリアは回転対称軸304を有する。試料キャリアは典型的には外径が3.05mmである外環302を有するが、他のサイズが用いられることも知られている。試料キャリアの厚さは典型的には30μm以下である。TEMで試料を検査するとき、たとえば60〜300keVの調節可能なエネルギーを有する電子ビーム303が試料に照射される。試料に照射されるビームは平行ビームであっても良いし、又は集束ビームであっても良い。電子の一部は試料に吸収され、電子の別な一部はビームから遠ざかるように散乱され、かつ電子のさらに別の一部は妨害されずに試料を透過する。試料を透過する電子(散乱される電子も散乱されない電子も含む)は検出器によって検出されることで、たとえば試料の像を生成することができる。試料の厚さは1μm程度であって良いが、通常は最高の画質のためにはるかに薄い試料が用いられる。たとえば半導体ウエハから取り出された試料を検査するとき−これは半導体産業において日常的に行われている−、試料は通常50nm未満にまで薄くされる。試料及び/又は試料キャリアの帯電を防止するため、試料キャリアは一般的には金属ホイルか、又は伝導性を与えるためのカーボンコーティングによって覆われた非伝導性材料−たとえばプラスチック−のホイルである。領域104では電子が透過することが可能なので、試料の検査は試料キャリアによって支持されていない領域104で行われることが好ましいことに留意して欲しい。従って、軸付近でのグリッド−一般的には試料が設けられている−の透過率は高くなければならない。電子ビームを遮断することなく壊れやすい試料の支持を改善するように、カーボンの薄膜又はカーボンコーティングされたプラスチック膜が、柵又はメッシュの間の凹部104を覆うのに用いられるようなグリッドが用いられることにも留意して欲しい。
【0032】
図4aは本発明による試料キャリア400を概略的に図示している。試料キャリアは、絶縁材料又は伝導性の弱い材料−たとえばSi−の薄い長方形部分401で構成される。長方形部分は、妨害せずに粒子を通過させる多数の開口部104、及び試料が試料キャリア上に設けられたときにその試料を支持する多数の柵を有する。長方形部分の表面は部分的にメタライズされることで、2つの電極403と404が形成され、かつ、ギャップ405a、405b、406、及び407によって互いに絶縁される。ギャップ406と407が試料キャリアの各異なる側部に設けられているので、柵の一部のメタライゼーションは電極404の一部であり、かつ柵の別な一部のメタライゼーションは電極403の一部である。試料キャリアはMEMS技術によって作製されることが好ましい。MEMS技術では、半導体材料のチップ内をエッチングすることによって開口部が形成される。しかし他の作製方法が用いられても良い。この結果、構造はたとえば多数の柵全体にわたって試料を支持することが可能となる。図は長方形の試料キャリア401を図示しているが、これは円形ディスク又はその一部を含む如何なる形状を有しても良いことに留意して欲しい。長方形はMEMSとの相性が良いが、逆に従来技術に係る試料ホルダ及び試料キャリアとの相性が要求されるときには円形ディスクが好まれる。2つの電極403と404しか有していない試料キャリアが図示されているとはいえ、3つ以上の電極を有する試料キャリアを作製することも可能であることにさらに留意して欲しい。電極間の絶縁部分は帯電を防止するために伝導性の弱いコーティング−たとえばカーボンコーティング−によって覆われて良いことに留意して欲しい。柵の側壁415及び/又は試料キャリアの他の側部414も同様に帯電を防止するためにわずかな伝導性を示すコーティングで覆われて良い。
【0033】
図4bは図4aの試料キャリアを概略的に図示している。その試料キャリア上には試料が設けられ、かつ伝導性パターンが堆積されている。試料408は試料キャリア400上に設けられている。伝導性トラック409と410は、たとえばインクジェットプリント法又はビーム誘起堆積法を用いて、試料上に伝導性材料−たとえばAu−を堆積することによって形成される。いずれのトラックも関心領域413付近に一の終端部を有する一方で、トラック409の他の終端部は位置411で電極404と接続し、かつトラック410の他の終端部は位置412で電極403と接続する。このようにして、電極の電気信号を関心領域へ送ることができる。たとえば高度に局在化した加熱を生じさせる関心領域全体にわたって若しくはその付近、又は、温度を測定するデバイス全体にわたって若しくはその付近のトラック間に抵抗性材料膜が堆積されて良いことに留意して欲しい。そのようなデバイスは温度依存するレジスタであって良いが、ダイオード又は他の半導体デバイスであっても良い。図は正しい縮尺でないことにさらに留意して欲しい。典型的には試料キャリアの外径は1mm以上の寸法を有する一方で、トラックは5μm以下の最小寸法を有する。試料はそれ自体絶縁性であるたとえば生体試料若しくはポリマーであり、又は、試料はそれ自体部分的には伝導性部分を有する、ウエハから取り出された半導体試料であり、又は別なそのような試料は局所的若しくは全体的に伝導性を有して良いことに留意して欲しい。そのような場合、試料上に伝導性パターンを形成する前に試料上に絶縁材料のパターンを設けることで、その伝導性パターンを試料(の一部)から絶縁することが魅力的であると考えられる。
【0034】
伝導性パターン(試料キャリアから関心領域へ電気信号を送るため)及び/又は絶縁性パターン(伝導性パターンを試料から絶縁するため)及び/又は抵抗性パターン(たとえば局所的加熱のため)の形成は、たとえばインクジェットプリント法、(光子、電子、又はイオンのビームを用いた)ビーム誘起堆積法によって行われて良い。
【0035】
ビーム誘起堆積法は当業者には周知の手法である。ビーム誘起堆積法を実行する装置はたとえば本願出願人であるFEIカンパニーから市販されている。電子ビーム誘起堆積法(EBID)用の装置−走査電子顕微鏡(SEM)用の鏡筒が備えられている−、又はイオンビーム誘起堆積法(IBID)用の装置−集束イオンビーム(FIB)用の鏡筒が備えられている−が市販されている。同様にFIB鏡筒とSEM鏡筒を併せ持つ装置も市販されている。その目的のため、特許文献3の図3及び図4に図示された気体注入システムが、前駆体気体の噴流を試料及び試料チャンバへ導入する。前駆体気体分子は試料及び試料キャリア表面に吸着する。試料キャリア及び試料を局所的に照射することによって、吸着した前駆体分子は分解して、伝導性の残基が試料及び試料キャリアに残される。この堆積方法では、多くの目的のため、広範囲にわたる材料が基板又は試料上に堆積可能である。そのような材料には、Al、Au、アモルファスカーボン、ダイアモンドライクカーボン、Co、Cr、Cu、Fe、GaAs、GaN、Ge、Mo、Nb、Ni、Os、Pd、Pt、Rh、Ru、Re、Si、Si3N4、SiOx、TiOx、及びWが含まれる。堆積するのに選ばれる材料は用途に依存する。用途には、下地の標的表面の組成及び意図した堆積の目的が含まれる。
【0036】
一般的に用いられている堆積気体は、たとえばW、Pt、及びAuを堆積するために分解する前駆体化合物を含む。たとえばW-ヘキサカルボニルがタングステン(W)の堆積に用いられて良く、メチルシクロペンタジエニルPtトリメチルが白金(Pt)の堆積に用いられ、かつジメチルAuアセチルアセトネートは金(Au)の堆積に用いられて良い。堆積用の多くの前駆体気体−事実上有機も無機も−が知られている。FIBはまた試料をミリングするのに集束イオンビームを用いても良いことに留意して欲しい。エッチングを増進させる前駆体気体−たとえばXeF2及びH2O−が知られている。GISはそのような気体を導入するのにも用いられて良い。その結果その装置のミリング能力が増強する。このようにして、パターンはサブミクロンの精度で堆積できるだけではなく、試料は少なくとも局所的に、TEMでの検査に必要な厚さ及び/又はサイズにまで削除することができる。
【0037】
図5aは本発明による試料キャリア500を概略的に図示している。図5aは図1bの派生型と考えて良い。厚さがたとえば30〜100μmの半円状ディスク501がたとえば金属−Cuのような−から作られる。この薄いCuのシート上では、絶縁層502と503が形成される。これらの絶縁層上では、2つの伝導性トラック504と507が形成される。トラック504は試料が設けられるべき位置で終端する終端部506を有する一方で、そのトラックの他の端部は、試料ホルダがそのトラックと接触可能なパッド505内で終端する。同様にトラック507は、試料が設けられるべき終端部509及びホルダによって接触されるべきパッド508を有する。
【0038】
図5bは図5aの領域Aを概略的に図示している。試料キャリア501の材料及びその試料キャリアの伝導性トラック509と506が図示されている。試料103は、試料と試料キャリアとの間の接合部上に材料105を堆積することによってその試料キャリアと接合する。これは、たとえば接着剤の滴下物を堆積することによって、又はビーム誘起堆積法(BID)によって行われて良い。試料を設けた後、伝導性トラック511、512、及び513が試料上に堆積され、トラック511は試料キャリア上のトラック509と接触し、トラック512は試料キャリアのホイルと接触し、かつトラック513はその試料キャリア上のトラック506と接触する。このようにして電圧及び/又は電流を関心領域Bへ印加することができる。
【0039】
図5cは図5bに図示された関心領域Bを概略的に図示している。図5cは、伝導性トラック511と512は互いに近接し、かつ絶縁層514はこの領域全体にわたって設けられている様子を図示している。この上部には、伝導性トラック513が設けられている。このようにして、能動素子−たとえば電界効果型トランジスタ(FET)−が試料上に局所的に作製されて良い。同様に層514はたとえば抵抗層−局所ヒーターとして機能する−であって良い。他多くの用途が考えられる。そのような用途には、受動素子(FET、トランジスタ、及びLEDのようなフォトニック素子)、及びたとえば圧電素子のような他の素子の局所的な利用が含まれる。電極と直接接触する事が可能なこれらの素子に加えて、局所的効果の調査は、たとえばインダクタ(磁極片)によって生成される磁束を案内する磁性材料を局所的に生成することによって、又は高誘電率の材料を生成することによって改善することができる。
【0040】
TEMで行われる堆積プロセスの間、如何なるプロセス工程の間においても試料を大気に曝露することなく、その試料のミリング、伝導性パターンの堆積、及び一の装置内でのその試料のすべての検査を行うことが可能である。このことによりたとえば、曝露による酸化又は他の化学変化が回避される。伝導性パターンを堆積するため、試料付近での圧力は、TEMにおいて通常許容されうる圧力よりも大きくなければならない。
【0041】
試料周辺の容積がBID等の実行にとって十分高い圧力を有するTEMが存在する。そのようなTEM−「環境TEM」又はETEMとしても知られている−は本願出願人であるFEIから市販されている。差動排気開口部は、試料付近での気体の漏れを、そのような高圧が許容されないTEMの他の領域に制限する。試料周辺の圧力は、湿気を含む試料を、たとえば温度4℃でかつ水蒸気の圧力(分圧)が約8mbarで調査できるのに十分な高さであって良い。
【0042】
他の解決法は、所謂環境セル内で試料を調査することである。係る反応容器の内部容積はたとえば1barの圧力を有して良く、他方外部はたとえば10-3mbar以下である。この値は、試料が存在するTEMの真空チャンバの典型的な圧力である。環境セルは、電子ビームを通過させることのできる電子透過窓をさらに有する。
【0043】
図6は、非特許文献3の図1に図示されている従来技術に係る環境セルを概略的に図示している。非特許文献3は特許文献2に記載された環境セルの実施例を開示している。開示されている環境セル600は2つのSi構造物−ダイとも呼ばれる−601と602を有し、2つのSi構造物601と602は互いに融合される。細いギャップが2つのダイ間にチャンバ603を画定する。チャンバ603内には試料が設けられて良い。そのチャンバは電子を透過させる薄い窓604と605を有する。気体流入口606及び気体流出口607は、環境セルが真空中−好適にはTEMの試料チャンバ内−に設けられるときに、気体をチャンバへ収容することを可能にする。試料は複数のダイのうちの一の電子を透過する窓上に設けられる。その後他のダイがその試料全体にわたって設けられる。続いて2つのダイを1つになるように結合、融合、又は単純に押圧することによって、外部に対するチャンバ603の気密性封止が実現される。非特許文献3の図1bに図示されているように、気体流入口及び気体流出口も同様に、専用試料ホルダのポートと結合する。作動中、試料を検査するためにTEM内にて用いられる電子ビームは、電子を透過する窓及び該窓の間に設けられた試料を通り抜ける。前記環境セルはたとえば高圧−たとえば大気圧又は少なくとも試料の脱水が回避される圧力−での試料の観察に用いられる。
【0044】
図7aは本発明による方法で用いられる環境セルを概略的に図示している。当該環境セルは図6からの派生型と考えて良い。動作時において電子ビーム方向に対して下流に位置するダイ、つまりダイ702は、試料が設けられるべき位置の付近に終端部704と706を有するメタライゼーションパターンを有する。このメタライゼーションパターンは2つの電極を形成する。その2つの電極は、環境セル外部の試料ホルダと接触するためのパッド705と707で終端する。
【0045】
図7bは図7aの環境セルの一部を概略的に図示している。その環境セルの一部は、伝導性パターンが接続可能な電極704と706を図示している。図7bは図6aに図示されたダイ702を図示している。電極704と706は、小さなギャップによって隔てられた構造物708と709内で終端しているので、電極704と706は互いに絶縁されている。
【0046】
電極全体にわたって(又は電極に近接するように)試料を設け、その後第1ダイにわたって第2ダイを設けて結合させることによって、その試料は環境セル内に設けられる。そのセルは続いて試料ホルダ上に設けられる。その試料ホルダは、環境セルを気体流入口及び気体流出口(これは単なる従来技術に係るものである)に接続し、かつさらに電極704及び706とも接続する。環境セルを保持する試料ホルダ続いてTEM内に導入されて良い。可視化用にTEMを用いることで、関心部位を発見することができる。続いてEBID前駆体が気体流入口を介して環境セル内に導入される。その結果、試料全体にわたって走査される集束電子ビームは堆積を引き起こす。このようにして、TEMは伝導性パターンをその場で形成することができる。(環境セルの排出口を排気しながら前駆体気体の流れを止めることで)前駆体気体を取り除くことによって、TEMはさらなる堆積を行うことなく試料を可視化することができる。可視化を行いながら電流又は電圧を関心地点に印加することができる。従来技術に係る環境セルは電気コンタクトをも有することに留意して欲しい。しかしこれらは、複数のダイのうちの一の上に形成される電気ヒーター及び温度センサとの接触を形成するのに用いられ、かつ試料が設けられるべき位置の近くには形成されない。この従来技術に係る環境セルのために用いられる試料ホルダは、本発明による試料キャリアと協働するホルダの一例である。
【符号の説明】
【0047】
1 外側端部
102 試料
103 材料
104 凹部
301 支持構造
302 外環
303 電子ビーム
304 回転対称軸
400 試料キャリア
401 薄い長方形部分
403 電極
404 電極
405a ギャップ
405b ギャップ
406 ギャップ
407 ギャップ
408 試料
409 伝導性トラック
410 伝導性トラック
411 位置
412 位置
414 側部
415 側壁
500 試料キャリア
501 半円状ディスク
502 絶縁層
503 絶縁層
504 伝導性トラック
505 パッド
506 終端部
507 伝導性トラック
508 パッド
509 (伝導性トラックの)終端部
511 伝導性トラック
512 伝導性トラック
513 伝導性トラック
514 絶縁層
600 環境セル
601 Si構造物
602 Si構造物
603 チャンバ
604 窓
605 窓
606 気体流入口
607 気体流出口
700 試料キャリア
702 ダイ
704 電極(終端部)
705 接触パッド
706 電極(終端部)
707 接触パッド
708 構造
709 構造

【特許請求の範囲】
【請求項1】
粒子ビームによって試料を検査する装置によって試料を検査する方法であって、
当該方法は:
電極を備えた試料キャリアを供する工程、
試料を供する工程、
前記試料キャリア上に前記試料を設ける工程、
前記試料を当該粒子光学装置へ導入する工程、
前記試料中に電圧差又は電流を誘起する工程、
前記試料に前記粒子ビームを照射する工程、及び、
前記試料を透過する粒子を検出する工程、
を有し、
前記試料キャリア上に前記試料を設けた後であって前記粒子ビームを前記試料に照射する前に、少なくとも一部が前記試料キャリアの電極と接触する伝導性又は半導体性パターンが前記試料に堆積される、
ことを特徴とする方法。
【請求項2】
前記の伝導性又は半導体性パターン及び/又は電極を堆積する工程が、ビーム誘起堆積又はインクジェットプリント法を有する、請求項1に記載の方法。
【請求項3】
前記伝導性又は半導体性パターンは、光学顕微鏡又は粒子光学顕微鏡による目印を用いることによって前記試料に対して位置合わせされる、請求項1又は2に記載の方法。
【請求項4】
前記試料のうちの少なくとも一面をミリングする工程をさらに有する、請求項1乃至3のうちのいずれか1項に記載の方法。
【請求項5】
前記伝導性若しくは半導体性パターン及び/又は前記電極は、前記試料の少なくとも一面をミリングした後に形成される、請求項3に記載の方法。
【請求項6】
半導体デバイス、レジスタ、キャパシタ、又は圧電部分が形成された電気電極と接続する、請求項1乃至5のうちのいずれか1項に記載の方法。
【請求項7】
前記半導体デバイス、レジスタ、キャパシタ、又は圧電部分が前記試料の一部である、請求項6に記載の方法。
【請求項8】
前記半導体デバイス、レジスタ、キャパシタ、又は圧電部分が前記試料上に形成される、請求項6に記載の方法。
【請求項9】
前記試料が生体試料又はポリマーである、請求項1乃至8のうちのいずれか1項に記載の方法。
【請求項10】
前記電極及び/又は前記伝導性若しくは半導体性パターンは透過電子顕微鏡内で形成される、請求項2乃至9のうちのいずれか1項に記載の方法。
【請求項11】
前記電極及び/又は前記伝導性若しくは半導体性パターンは環境セル内で形成される、請求項2乃至10のうちのいずれか1項に記載の方法。
【請求項12】
前記電極及び/又は前記伝導性若しくは半導体性パターンは、前記粒子光学装置内に前記試料を導入する前に堆積される、請求項2乃至11のうちのいずれか1項に記載の方法。
【請求項13】
前記試料上に前記伝導性又は半導体性パターンを形成する前に前記試料上に絶縁パターンを形成する工程を有する請求項1乃至13のうちのいずれか1項に記載の方法であって、
前記絶縁パターンは、前記伝導性又は半導体性パターンの少なくとも一部と前記試料との間に絶縁層を形成する、方法。
【請求項14】
試料を運ぶ試料キャリアであって、
当該試料キャリアの少なくとも一部は、前記試料の一部と付着する又は支持する1つ以上の端部を有するシートとして形成され、
当該試料キャリアは前記1つ以上の端部にまで延在する電極を有し、かつ
前記電極は、該電極が試料ホルダと接触するための接触パッドを形成する領域にまで延在する、
ことを特徴とする、試料キャリア。
【請求項15】
前記1つ以上の端部は試料が設けられるべき場所を取り囲む、請求項14に記載の試料キャリア。
【請求項16】
前記1つ以上の端部は試料が設けられるべき場所を部分的に取り囲む、請求項14に記載の試料キャリア。
【請求項17】
前記の試料が設けられるべき場所は当該試料キャリアの外側部分である、請求項16に記載の試料キャリア。
【請求項18】
前記の試料が設けられるべき場所は、端部であってかつ電子を透過する薄膜全体にわたっている、請求項14乃至17のいずれか1項に記載の試料キャリア。
【請求項19】
環境セルとして形成される請求項14乃至18のいずれか1項に記載の試料キャリアであって、
前記電極が延在し、かつ前記試料が設けられるべき前記端部は、前記環境セル内である、
試料キャリア。
【請求項20】
前記電極は真空曝露されることが意図された地点に形成される、請求項19に記載の試料キャリア。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5a】
image rotate

【図5b】
image rotate

【図5c】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate


【公開番号】特開2011−23349(P2011−23349A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2010−156809(P2010−156809)
【出願日】平成22年7月9日(2010.7.9)
【出願人】(501233536)エフ イー アイ カンパニ (87)
【氏名又は名称原語表記】FEI COMPANY
【住所又は居所原語表記】7451 NW Evergreen Parkway, Hillsboro, OR 97124−5830 USA
【Fターム(参考)】