説明

車両のシフトバイワイヤ制御装置

【課題】シフトバイワイヤ制御に関する異常が検出された場合に、安全性を確保し運転者の利便性悪化を抑制する車両の制御装置を提供する。
【解決手段】第1受信判定手段142と第2受信判定手段144との片方のみが異常検出手段132の異常検出結果を得た旨の判定をした場合には、動力伝達許可手段146は動力伝達許可を駆動力制限手段154に与え、その許可によって駆動力制限手段154は、車両の駆動力を制限する駆動力制限制御を実行する。その後、駆動力回復手段156は、例えば、駆動力制限制御の開始時から所定の駆動力制限時間time_df経過後に、車両の駆動力を正常時よりは低い中間駆動力FMDにまで上昇させる。このようにすれば、駆動力制限制御により車両の駆動力が制限されたことを運転者に認識させ安全性確保を図りつつ、その後に上記駆動力の制限が緩和されて運転者の利便性悪化を抑制することが可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両のシフトバイワイヤ制御装置の異常が検出された場合に用いられるフェールセーフ技術に関するものである。
【背景技術】
【0002】
車両の変速制御等のための電気的な制御信号が伝達される所謂シフトバイワイヤ(SBW)を採用した車両のシフトバイワイヤ制御装置が従来から知られている。例えば、特許文献1に記載の車両のシフトバイワイヤ制御装置がそれである。その特許文献1に記載の車両のシフトバイワイヤ制御装置は、複数のシフトバイワイヤ制御回路と、それらとは別の制御回路から構成され上記シフトバイワイヤ制御回路を監視するための監視制御手段と、その監視制御手段からの指令に基づき上記複数のシフトバイワイヤ制御回路が実行する制御を個別に許可もしくは禁止する許否手段とを備えている。
【0003】
上記特許文献1の車両のシフトバイワイヤ制御装置によれば、上記複数のシフトバイワイヤ制御回路の一部に異常が生じた場合に、上記監視制御手段は、異常なシフトバイワイヤ制御回路と正常なシフトバイワイヤ制御回路とを識別する。更に、上記許否手段は、上記監視制御手段の識別結果に基づいて、上記正常なシフトバイワイヤ制御回路に対してはその制御の継続を許可し、上記異常なシフトバイワイヤ制御回路に対してはその制御を禁止する。そして、このような場合において上記監視制御手段はエンジントルクを低下させ或いはエンジンを停止させるエンジン出力制限を実施する。
【特許文献1】特開2006−335157号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記特許文献1の車両のシフトバイワイヤ制御装置では、上記複数のシフトバイワイヤ制御回路の一部に異常が生じた場合には上記エンジン出力制限が実施されるので、車両走行における安全性は向上するが、このエンジン出力制限が長く継続すると運転者の利便性が悪化(低下)する。しかし、上記特許文献1のシフトバイワイヤ制御装置は、上記エンジン出力制限の継続期間等に何ら制限をせずにそれを実施するものであり、運転者の利便性が必要以上に悪化するおそれがあった。なお、この課題は未公知である。
【0005】
本発明は、以上の事情を背景としてなされたものであり、その目的とするところは、シフトバイワイヤ制御に関する異常(フェール、故障)が検出された場合に、車両走行における安全性を確保しつつ運転者の利便性が悪化(低下)することを抑制する車両のシフトバイワイヤ制御装置を提供することにある。
【課題を解決するための手段】
【0006】
かかる目的を達成するために、請求項1に係る発明では、(a)車両走行に関する制御信号を出力する第1制御部と、その制御信号に基づき車両走行に関する制御を実行する第2制御部と、前記制御信号を前記第1制御部と第2制御部との間で伝達する通信経路とを、含む車両のシフトバイワイヤ制御装置であって、(b)前記通信経路は、互いに並列な第1経路と第2経路とを含み、(c)前記第1制御部は、前記シフトバイワイヤ制御装置の異常を検出する異常検出手段を含み、(d)前記第2制御部は、前記第1経路および第2経路の一方の通信経路を介しては前記異常を示す前記異常検出手段の異常検出結果を得ずに他方の通信経路を介してその異常検出結果を得た場合には、車両が駆動力を発生できる状態において、何れの通信経路を介しても前記異常検出結果を得ていない場合の正常時駆動力よりも低く前記車両の駆動力を制限する駆動力制限制御を実行する駆動力制限手段と、その駆動力制限制御の開始から所定の駆動力制限時間経過後に前記車両の駆動力を前記正常時駆動力よりも低く前記駆動力制限制御時の駆動力よりも高い駆動力とする駆動力回復制御を実行する駆動力回復手段とを、含むことを特徴とする。
【0007】
また、請求項2に係る発明では、前記駆動力回復手段は、前記駆動力回復制御において、前記駆動力制限制御の開始後に、時間経過に従って所定の変化割合で前記車両の駆動力を上昇させることを特徴とする。
【0008】
また、請求項3に係る発明では、前記駆動力回復手段は、前記駆動力回復制御において、車速が高いほど前記車両の駆動力が速く上昇するように前記変化割合を変更することを特徴とする。
【0009】
また、請求項4に係る発明では、前記駆動力制限制御時の駆動力は、車両走行を可能とし出来るだけ低く設定された所定の車両の駆動力であることを特徴とする。
【0010】
また、請求項5に係る発明では、(a)前記第2制御部は、前記他方の通信経路を介して前記異常検出結果を得た場合には、前記駆動力制限手段による前記駆動力制限制御の実行に先立って動力伝達経路を遮断する動力遮断手段を含み、(b)駆動力制限手段は、前記一方の通信経路を介しては前記異常検出結果を得ずに他方の通信経路を介してその異常検出結果を得たことが所定時間継続した場合に、前記動力遮断手段に前記動力伝達経路を遮断することを中止させ、且つ、前記駆動力制限制御を実行することを特徴とする。
【発明の効果】
【0011】
請求項1に係る発明の車両のシフトバイワイヤ制御装置によれば、前記通信経路は、互いに並列な第1経路と第2経路とを含み、前記第1制御部は、前記シフトバイワイヤ制御装置の異常を検出する異常検出手段を含む。更に、前記第2制御部は、(a)前記第1経路および第2経路の一方の通信経路を介しては前記異常を示す前記異常検出手段の異常検出結果を得ずに他方の通信経路を介してその異常検出結果を得た場合には、車両が駆動力を発生できる状態において、何れの通信経路を介しても前記異常検出結果を得ていない場合の正常時駆動力よりも低く前記車両の駆動力を制限する駆動力制限制御を実行する駆動力制限手段と、(b)その駆動力制限制御の開始から所定の駆動力制限時間経過後に前記車両の駆動力を前記正常時駆動力よりも低く前記駆動力制限制御時の駆動力よりも高い駆動力とする駆動力回復制御を実行する駆動力回復手段とを、含むので、上記異常検出結果が得られた場合に、車両走行における安全性を確保するため上記駆動力が制限されたことを運転者に認識させ得る猶予を設けた上で、その駆動力はその制限が緩和されて上記正常時駆動力に近付けられることとなる。その結果として、車両走行における安全性を確保しつつ運転者の利便性が悪化することを抑制することが可能である。
【0012】
請求項2に係る発明の車両のシフトバイワイヤ制御装置によれば、前記駆動力回復手段は、前記駆動力回復制御において、前記駆動力制限制御の開始後に、時間経過に従って所定の変化割合で前記車両の駆動力を上昇させるので、その車両の駆動力が急に変化することが無く、その車両の駆動力の上昇時において充分な安全性を確保できる。
【0013】
運転者は、通常、車両の近くに障害物等があれば車速を低く抑え、そのような障害物等が無く安全性が充分に高ければ車速を上昇させるものである。この点、請求項3に係る発明の車両のシフトバイワイヤ制御装置によれば、前記駆動力回復手段は、前記駆動力回復制御において、車速が高いほど前記車両の駆動力が速く上昇するように前記変化割合を変更するので、上記シフトバイワイヤ制御装置の異常が車両走行に現れたとしても充分な安全性を確保できると車速に基づき判断できる場合には、その車速に応じて早期に車両の駆動力に対する制限が緩和され、車両走行における安全性を確保しつつ運転者の利便性を向上させ得る。
【0014】
請求項4に係る発明の車両のシフトバイワイヤ制御装置によれば、前記駆動力制限制御時の駆動力は、車両走行を可能とし出来るだけ低く設定された所定の車両の駆動力であるので、車両走行における安全性を確保した上で車両を走行可能にすることができる。
【0015】
前記第1経路と第2経路との何れか一方の通信経路自体が正常で、他方の通信経路自体が異常である場合には、前記異常検出手段が上記シフトバイワイヤ制御装置の異常を検出していないにも拘わらず、上記他方の通信経路を介してのみ前記異常検出結果が得られることがある。この点、請求項5に係る発明の車両のシフトバイワイヤ制御装置によれば、(a)前記第2制御部は、前記他方の通信経路を介して前記異常検出結果を得た場合には、前記駆動力制限手段による前記駆動力制限制御の実行に先立って動力伝達経路を遮断する動力遮断手段を含み、(b)駆動力制限手段は、前記一方の通信経路を介しては前記異常検出結果を得ずに他方の通信経路を介してその異常検出結果を得たことが所定時間継続した場合に、前記動力遮断手段に前記動力伝達経路を遮断することを中止させ、且つ、前記駆動力制限制御を実行する。従って、上記一方の通信経路を介して継続して上記異常検出結果を得なかったことに基づき前記異常検出手段が前記異常を検出していないと判断でき、その判断をすることができるまでは上記動力伝達経路の遮断により、充分な車両の安全確保をすることができる。
【0016】
ここで、好適には、前記請求項1における所定の駆動力制限時間とは、車両走行における安全性を確保する目的で車両の駆動力が制限されたことを運転者に認識させるために設けられた猶予時間である。
【0017】
また、好適には、前記請求項2における所定の変化割合とは、車両走行における安全性確保と運転者の利便性向上とを両立するように予め設定された車両の駆動力の時間変化率である。
【0018】
また、好適には、前記請求項5における所定時間とは、前記異常検出手段が前記シフトバイワイヤ制御装置の異常を検出していないと判断するための時間であって、詳細に言えば、前記異常検出結果を伝達していない通信経路を介してその所定時間以上継続して上記異常検出結果が得られなかったとすれば、上記異常検出手段は上記異常を検出してはいないと判断できる正常状態確定時間である。
【発明を実施するための最良の形態】
【0019】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【実施例】
【0020】
図1は、FF(フロントエンジン・フロントドライブ)車両などの横置き型の車両用動力伝達装置8の骨子図である。図1において、車両用動力伝達装置8は、流体継手であるトルクコンバータ12と、そのトルクコンバータ12に連結された自動変速機14とを備えており、上記トルクコンバータ12は、ガソリンエンジンやディーゼルエンジン等の内燃機関によって構成された走行用駆動力源(原動機)としてのエンジン10に連結されている。このような構成により、エンジン10の出力は、トルクコンバータ12、自動変速機14を経て、図示しない差動歯車装置から駆動輪(前輪)へ伝達されるようになっている。
【0021】
自動変速機14はエンジン10から駆動輪への動力伝達経路の一部を構成している。そして、自動変速機14は、シングルピニオン型の第1遊星歯車装置20を主体として構成されている第1変速部22と、シングルピニオン型の第2遊星歯車装置26およびダブルピニオン型の第3遊星歯車装置28を主体として構成されている第2変速部30とを同軸線上に有し、入力軸32の回転を変速して出力歯車34から出力する。入力軸32は入力部材に相当するもので、本実施例ではトルクコンバータ12のタービン軸であり、出力歯車34は出力部材に相当するもので、差動歯車装置を介して左右の駆動輪を回転駆動する。なお、自動変速機14は中心線に対して略対称的に構成されており、図1では中心線の下半分が省略されている。
【0022】
上記第1変速部22を構成している第1遊星歯車装置20は、サンギヤS1、キャリアCA1、およびリングギヤR1の3つの回転要素を備えており、サンギヤS1が入力軸32に連結されて回転駆動されるとともに、リングギヤR1が第3ブレーキB3を介して回転不能にケース36に固定されることにより、中間出力部材としてのキャリアCA1が入力軸32に対して減速回転させられる。また、第2変速部30を構成している第2遊星歯車装置26および第3遊星歯車装置28は、一部が互いに連結されることによって4つの回転要素RM1〜RM4が構成されており、具体的には、第3遊星歯車装置28のサンギヤS3によって第1回転要素RM1が構成され、第2遊星歯車装置26のリングギヤR2および第3遊星歯車装置28のリングギヤR3が互いに連結されて第2回転要素RM2が構成され、第2遊星歯車装置26のキャリアCA2および第3遊星歯車装置28のキャリアCA3が互いに連結されて第3回転要素RM3が構成され、第2遊星歯車装置26のサンギヤS2によって第4回転要素RM4が構成されている。上記第2遊星歯車装置26および第3遊星歯車装置28は、キャリアCA2およびCA3が共通の部材にて構成されているとともに、リングギヤR2およびR3が共通の部材にて構成されており、且つ第2遊星歯車装置26のピニオンギヤが第3遊星歯車装置28の第2ピニオンギヤを兼ねているラビニヨ型の遊星歯車列とされている。
【0023】
上記第1回転要素RM1(サンギヤS3)は第1ブレーキB1によって選択的にケース36に連結されて回転停止させられ、第2回転要素RM2(リングギヤR2、R3)は第2ブレーキB2によって選択的にケース36に連結されて回転停止させられ、第4回転要素RM4(サンギヤS2)は第1クラッチC1を介して選択的に前記入力軸32に連結され、第2回転要素RM2(リングギヤR2、R3)は第2クラッチC2を介して選択的に入力軸32に連結され、第1回転要素RM1(サンギヤS3)は前記第1遊星歯車装置20のキャリアCA1に一体的に連結され、第3回転要素RM3(キャリアCA2、CA3)は前記出力歯車34に一体的に連結されて回転を出力するようになっている。
【0024】
上記クラッチC1、C2およびブレーキB1、B2、B3(以下、特に区別しない場合は単に「クラッチC」、「ブレーキB」という)は、多板式のクラッチやブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置(油圧式摩擦係合要素)であり、図3に示す油圧制御回路40によってそれぞれ係合解放制御されることにより、シフトレバー66(図3参照)のシフト操作位置に応じて図2に示すように前進6段、後進1段の各ギヤ段(各変速段)が成立させられる。図2の「1st」〜「6th」は前進の第1速ギヤ段〜第6速ギヤ段を意味しており、「Rev」は後進ギヤ段であり、各ギヤ段に対応する自動変速機14の変速比γ(=入力軸回転速度Nin/出力軸回転速度Nout)は、前記第1遊星歯車装置20、第2遊星歯車装置26、および第3遊星歯車装置28の各ギヤ比ρ1、ρ2、ρ3によって適宜定められる。図2の「○」は係合、空欄は解放を意味している。上記入力軸回転速度Ninは入力軸32の回転速度であり、上記出力軸回転速度Noutは出力歯車34の回転速度である。
【0025】
図3は、クラッチCおよびブレーキBの各油圧アクチュエータの作動を制御するリニアソレノイドバルブSL1〜SL4等に関する回路図であって、油圧制御回路40の要部を示す回路図である。
【0026】
図3において、クラッチC1、C2、およびブレーキB1の各油圧アクチュエータ(油圧シリンダ)42、44、46には、油圧供給装置52から出力されたDレンジ圧(前進レンジ圧、前進油圧)PDがそれぞれリニアソレノイドバルブSL1、SL2、SL3により調圧されて供給され、ブレーキB3の油圧アクチュエータ50には、油圧供給装置52から出力されたライン油圧PL1がリニアソレノイドバルブSL4により調圧されて供給されるようになっている。なお、ブレーキB2の油圧アクチュエータ48には、第2ブレーキコントロールバルブ54の出力油圧およびリバース圧(後進レンジ圧、後進油圧)PRのうち何れか供給された油圧がシャトル弁56を介して供給される。
【0027】
油圧供給装置52は、エンジン10によって回転駆動される機械式のオイルポンプ58から発生する油圧を元圧としてライン油圧PL1(第1ライン油圧PL1)を調圧する例えばリリーフ型のプライマリレギュレータバルブ(第1調圧弁)60、第1調圧弁60によるライン油圧PL1の調圧のために第1調圧弁60から排出される油圧を元圧としてライン油圧PL2(第2ライン油圧PL2、セカンダリ圧PL2)を調圧するセカンダリレギュレータバルブ(第2調圧弁)62、アクセル開度Acc或いは電子スロットル弁の開度θTHで表されるエンジン負荷等に応じたライン油圧PL1、PL2に調圧されるために第1調圧弁60および第2調圧弁62へ信号圧PSLTを供給するリニアソレノイドバルブSLT、ライン油圧PL1を元圧としてモジュレータ油圧PMを一定値に調圧するモジュレータバルブ64、およびワイヤ(電線)を介して電気的に連結されるシフトレバー66の操作に伴いSBWアクチュエータ68(図7参照)が作動させられて油路が切り換えられることにより入力されたライン油圧PL1をシフトレバー66が「D」ポジション或いは「B」ポジションへ操作されたときにはDレンジ圧PDとして出力し或いは「R」ポジションへ操作されたときにはリバース圧PRとして出力するマニュアルバルブ70等を備えており、ライン油圧PL1、PL2、モジュレータ油圧PM、Dレンジ圧PD、およびリバース圧PRを供給する。
【0028】
リニアソレノイドバルブSL1〜SL4、SLTは、基本的には何れも同じ構成であり、電子制御装置104により独立に励磁、非励磁され、各油圧アクチュエータ42、44、46、50の油圧が独立に調圧制御されてクラッチC1、C2、ブレーキB1、B3の係合圧が制御される。そして、自動変速機14は、例えば図2の係合作動表に示すように予め定められた係合装置が係合されることによって各変速段が成立させられる。また、自動変速機14の変速制御においては、例えば変速に関与するクラッチCやブレーキBの解放と係合とが同時に制御される所謂クラッチ・ツウ・クラッチ変速が実行される。例えば、図2の係合作動表に示すように2速→3速のアップシフトでは、ブレーキB1が解放されると共にブレーキB3が係合され、変速ショックを抑制するようにブレーキB1の解放過渡油圧とブレーキB3の係合過渡油圧とが適切に制御される。このように、自動変速機14の係合装置(クラッチC、ブレーキB)がリニアソレノイドバルブSL1〜SL4により各々制御されるので、係合装置の作動の応答性が向上される。或いはまた、その係合装置の係合/解放作動の為の油圧回路が簡素化される。
【0029】
シフトレバー66は例えば運転席の近傍に配設され、図4に示すように、車両前後(縦)方向に配列された3つの「R」ポジション、「N」ポジション、「D」ポジションと、それに平行に配列された手動操作用の「+」ポジション、「B」ポジション、「−」ポジションとへH型パターンで操作されるようになっている。本実施例では、P位置へ操作してパーキングロックするためのP操作釦72が別スイッチとして設けられている。
【0030】
上記「R」ポジションは自動変速機14の出力歯車34の回転方向を逆回転とするための後進走行ポジション(位置)であり、「N」ポジションは自動変速機14内の動力伝達が遮断されるニュートラル状態とするための中立ポジションであり、「D」ポジションは自動変速機14の変速を許容する変速範囲(Dレンジ)で第1ギヤ段「1st」〜第6ギヤ段「6th」の総ての前進ギヤ段を用いて自動変速制御を実行させる前進走行ポジションであり、「B」ポジションはギヤ段の変化範囲を制限する複数種類の変速レンジすなわち高車速側のギヤ段が異なる複数種類の変速レンジを切り換えることにより手動変速が可能な前進走行ポジションである。P操作釦72の操作により選択される「P」ポジションは自動変速機14内の動力伝達経路を解放しすなわち自動変速機14内の動力伝達が遮断されるニュートラル状態(中立状態)とし且つ図示しないパーキングロック機構によって機械的に出力歯車34の回転を阻止(パーキングロック)するための駐車ポジションである。
【0031】
上記「B」ポジションにおいては、シフトレバー66の操作毎に変速範囲をアップ側にシフトさせるための「+」ポジション、シフトレバー66の操作毎に変速範囲をダウン側にシフトさせるための「−」ポジションが備えられている。例えば、「B」ポジションにおいては、「6」レンジ〜「L」レンジの何れかがシフトレバー66の「+」ポジション或いは「−」ポジションへの操作に応じて変更される。また、「B」ポジションにおける「L」レンジは第1ギヤ段「1st」にて第2ブレーキB2を係合させて一層エンジンブレーキ効果が得られるためのエンジンブレーキレンジでもある。
【0032】
上記「D」ポジションは自動変速機14の変速可能な例えば図2に示すような第1速ギヤ段乃至第6速ギヤ段の範囲で自動変速制御が実行される制御様式である自動変速モードを選択するシフトポジションでもあり、「B」ポジションは自動変速機14の各変速レンジの最高速側ギヤ段を超えない範囲で自動変速制御が実行されると共にシフトレバー66の手動操作により変更された変速レンジ(すなわち最高速側ギヤ段)に基づいて手動変速制御が実行される制御様式である手動変速モードを選択するシフトポジションでもある。
【0033】
図3に戻り、クラッチC1の油圧アクチュエータ42の手前、すなわちリニアソレノイドバルブSL1と油圧アクチュエータ42との間には、走行中の何らかの故障によって突然に自動変速機14の動力伝達経路が遮断される(トルク抜け)ことを防止するフェールセーフバルブ74が配設されている。フェールセーフバルブ74は、例えばリニアソレノイドバルブSL1の故障によって油圧アクチュエータ42へ油圧を供給することができなくなったとき、Dレンジ圧PDを油圧アクチュエータ42へ供給することにより、走行中の自動変速機14の動力伝達遮断(トルク抜け)を防止する。なお、走行中に自動変速機14の動力伝達経路が遮断されると、車両が不安定となり、車両操作性が低下する可能性があるため、フェールセーフバルブ74が配設される。
【0034】
図5は、前記フェールセーフバルブ74の近傍を拡大して示す回路図である。フェールセーフバルブ74は、リニアソレノイドバルブSL1から係合油圧PC1が供給される入力ポート76と、Dレンジ圧PDが供給される入力ポート78と、クラッチC1の油圧アクチュエータ42に接続される出力ポート80と、図示しないスプールとを備えており、スプールには、リニアソレノイドバルブSL1から出力されるクラッチC1の係合油圧PC1、リニアソレノイドバルブSL2から出力されるクラッチC2の係合油圧PC2、およびスプリング82のスプリング力FS1がそれぞれ一方向へ作用させられると共に、リニアソレノイドバルブSL3から出力されるブレーキB1の係合油圧PB1、リニアソレノイドバルブSL4から出力されるブレーキB3の係合油圧PB3、およびリニアソレノイドバルブSLTから出力される信号圧PSLT或いはその関連圧が上記一方向とは反対の他方向へ作用させられるようになっている。
【0035】
本実施例の自動変速機14では、前進走行時において、図2に示すようにクラッチC1の係合油圧PC1およびクラッチC2の係合油圧PC2の少なくとも一方が常に出力される。また、ブレーキB1およびブレーキB3は、クラッチC1およびクラッチC2と対になる摩擦係合要素であり、第1変速段および第4変速段を除いた変速段(ギヤ段)において、何れか一方が係合される。なお、第1変速段において係合されるブレーキB2は、エンジンブレーキを作用させる第1変速段を成立させる際に係合させられるだけであるので、使用頻度が少ないため、本実施例では省略されている。
【0036】
そして、前進走行時において、係合油圧PC1および/または係合油圧PC2がフェールセーフバルブ74に入力された場合には、その係合油圧およびスプリング力FS1の付勢力によって、係合油圧PB1、係合油圧PB3、および信号油圧PSLTの関連圧による付勢力に抗って、スプールが一方向側へ移動させられる。これにより、入力ポート76と出力ポート80とが連通されて係合油圧PC1が油圧アクチュエータ42へ供給される。
【0037】
一方、例えばリニアソレノイドバルブSL1の故障によって係合油圧PC1が供給されなくなると、第1変速段〜第3変速段では係合油圧PC1および係合油圧PC2がフェールセーフバルブ74に供給されなくなるため、係合油圧PB1、係合油圧PB3、および信号油圧PSLTの関連圧による付勢力によってスプールが前記一方向側とは逆の他方向側に移動させられる。これにより、入力ポート78と出力ポート80とが連通されてDレンジ圧PDがクラッチC1の油圧アクチュエータ42へ供給される。すなわち、リニアソレノイドバルブSL1が故障して、油圧アクチュエータ42に係合油圧PC1が供給されなくなっても油圧アクチュエータ42へDレンジ圧PDが供給されて、走行中の突然のトルク抜けが回避される。
【0038】
図6は、第2ブレーキコントロールバルブ54の近傍を拡大して示す回路図である。第2ブレーキコントロールバルブ54は、Dレンジ圧PDが入力される入力ポート84と、ドレーンポート86と、シャトル弁56を通じてブレーキB2の油圧アクチュエータ48に接続される出力ポート88と、図示しないスプールとを備えており、スプールは、後述するコントロール圧PSLUによって一方向へ作用させられると共に、ブレーキB2の係合油圧PB2およびスプリング90のスプリング力FS2によって上記一方向とは反対の他方向へ作用させられるようになっている。
【0039】
そして、通常はスプリング90のスプリング力FS2によってスプールが他方向側へ付勢させられることにより、ドレーンポート86と出力ポート88とが連通させられるので、出力ポート88からは油圧アクチュエータ48へ係合油圧が供給されない。ここで、前記コントロール圧PSLUが第2ブレーキコントロールバルブ54へ供給されると、スプリング90による付勢力に抗ってスプールが一方向側へ移動させられ、Dレンジ圧PDが供給される入力ポート84と出力ポート88とが連通させられ、シャトル弁56を介して油圧アクチュエータ48へ係合油圧PB2が供給される。
【0040】
ここで、前記コントロール圧PSLUは、図示しないリニアソレノイドバルブSLUから出力されるものであり、第2ブレーキコントロールバルブ54の手前側に配設されたリレーバルブ92を通じて供給される。リレーバルブ92は、コントロール圧PSLUの供給先を前記第2ブレーキコントロールバルブ54またはトルクコンバータ12のロックアップクラッチL/Cを制御するためのロックアップコントロールバルブ98の何れかに選択的に切り換えるための切換弁であり、図示しない切換ソレノイドバルブSLから出力される切換圧PSLによってコントロール圧PSLUの供給先が切り換えられる。具体的には、リレーバルブ92は、コントロール圧PSLUが供給される入力ポート94と、第2ブレーキコントロールバルブ54に接続される出力ポート96と、ロックアップコントロールバルブ98に接続される出力ポート100と、図示しないスプールを備えており、スプールは、前記切換圧PSLによって一方向へ作用させられると共に、スプリング102のスプリング力FS3によって上記一方向とは反対の他方向へ作用させられるようになっている。
【0041】
そして、スプリング102がスプールを他方向側へ付勢するため、入力ポート94と出力ポート96とが連通される。これにより、コントロール圧PSLUが第2ブレーキコントロールバルブ54へ供給され、コントロール圧PSLUによってDレンジ圧PDが調圧されて油圧アクチュエータ48へ供給される。一方、切換ソレノイドバルブSLから切換圧PSLが出力されると、リレーバルブ92のスプールがスプリング102のスプリング力FS3に抗って一方向側に移動させられ、コントロール圧PSLUの供給先がロックアップクラッチの係合圧を制御するロックアップコントロールバルブ98へ切り換えられる。
【0042】
図7は、車両用動力伝達装置8において、運転者によるシフトレンジの変更指示に応じて、具体的には、運転者によるシフトレバー66の操作に応じて、マニュアルバルブ70のシフト位置を電気的に切り換え自動変速機14の変速制御を実行するシフトバイワイヤ制御装置103(シフトバイワイヤシステム103)の制御系統を説明するブロック線図であって、そのシフトバイワイヤ制御装置103の構成の要部を示す図である。
【0043】
図7において、シフトバイワイヤ制御装置103は、シフトレバー66とシフトポジションセンサ67とP操作釦72とを有するシフト操作装置65と、SBWアクチュエータ68と、シフトポジションセンサ118と、電子制御装置104などを備えている。運転者によってシフトレバー66のシフト位置が切り換えられると、シフトポジションセンサ67を介してそのシフト位置に応じた電気信号が電子制御装置104(SBW−ECU112)に入力される。そして、電子制御装置104(SBW−ECU112)によってSBWアクチュエータ68が制御され、切換シャフト106が軸心まわりに回転させられることにより、レバー108を介してマニュアルバルブ70のスプール110が機械的に一直線方向へ移動させられ、4箇所のシフト位置「P」、「R」、「N」、「D」に位置決めされて油路を切り換えるようになっている。
【0044】
電子制御装置104は、図7に示すように、車両走行に関する制御信号を出力する第1制御部として機能するSBW−ECU112と、上記制御信号に基づき車両走行に関する制御を実行する第2制御部として機能するECT−ECU114と、主としてエンジン10への燃料供給に関する制御を実行する第3制御部として機能するEFI−ECU116と、上記制御信号をSBW−ECU112とECT−ECU114との間で伝達する互いに並列な第1経路136及び第2経路138を含み上記ECU112,114,116を相互に接続する通信経路134(図8参照)などを備えている。例えば、SBW−ECU112は、シフトレバー66のシフト位置を検出しそれに基づきSBWアクチュエータ68を作動させ、また、検出したシフト位置情報などで例示される上記制御信号をECT−ECU114に出力する。また、ECT−ECU114は、上記車両走行に関する制御として、例えば、エンジン10の制御や自動変速機14の変速制御などを実行する。また、EFI−ECU116は、エンジン10の状態に応じて演算した基本噴射時間に各センサの信号による補正を加えて適正な燃料噴射となるよう制御する。
【0045】
SBW−ECU112とECT−ECU114とは、複数の独立したワイヤ(電線)で結ばれ、例えばSBWアクチュエータ68が故障したときなどに出力されるSBW異常信号SFL、シフトレバー66のシフト位置が「R」レンジに切り換えられたことを示すR信号、自動変速機14のシフトレンジを示すNSW信号、シフトレバー66のシフト位置が「D」レンジに切り換えられたことを示すD信号などの上記制御信号がそれぞれ独立した電線を介して通信される。また、SBW−ECU112とECT−ECU114とがEFI−ECU116を中継して情報通信可能となっている。ここで、SBW−ECU112とEFI−ECU116との間およびECT−ECU114とEFI−ECU116との間は、単一の通信線で複数の情報通信が可能な多重通信方式、所謂CAN通信が採用されている。このように、SBW−ECU112とECT−ECU114との間では、並列に設けられた2系統の通信経路134である第1経路136及び第2経路138を介して情報通信が行われることにより、その情報通信の信頼性向上が図られている。本実施例では図7に示すように、EFI−ECU116を介さずにSBW−ECU112とECT−ECU114との間を直接結ぶ通信経路134を第1経路136と表し、その第1経路136とは異なる通信経路134であってSBW−ECU112とECT−ECU114との間をEFI−ECU116を介して結ぶ通信経路134を第2経路138と表すこととする。
【0046】
図8は、電子制御装置104による制御機能の要部を説明する機能ブロック線図である。前述したSBWアクチュエータ68の故障などシフトバイワイヤ制御装置103に異常(フェール、故障)が生じる場合があり、そのような場合に備えて電子制御装置104の一部を構成するSBW−ECU(第1制御部)112は、シフトバイワイヤ制御装置103の異常を検出する異常検出手段132を備えている。シフトバイワイヤ制御装置103の異常とは、例えば、シフトレバー66のシフトポジションセンサ67から出力されるシフト位置に応じた電気信号(目標シフト位置信号)とSBWアクチュエータ68に設けられたシフトポジションセンサ118から出力されるシフト位置に応じた電気信号(実シフト位置信号)とに基づくシフト位置が互いに一致しない場合、すなわち、シフト操作装置65及び/又はSBWアクチュエータ68が故障した場合である。また、別の例として、シフト位置の検出装置として機能するシフトポジションセンサ67、118の少なくとも1つが誤作動した場合や、SBW−ECU112が自己診断機能を備えていればSBW−ECU112自身が故障した場合も、異常検出手段132に検出されるシフトバイワイヤ制御装置103の異常に含まれる。要するに、異常検出手段132に検出されるシフトバイワイヤ制御装置103の異常とは、シフトレンジを決定するための装置が故障した場合(状態)である。異常検出手段132は、このようなシフトバイワイヤ制御装置103の異常を検出した場合には、その異常を示す異常検出結果を表す制御信号すなわちSBW異常信号SFLをECT−ECU114に向けて出力する。そのとき、そのSBW異常信号SFLは、ECT−ECU114とSBW−ECU112との間の通信経路134を構成する第1経路136と第2経路138とのそれぞれを介して、ECT−ECU114へ伝達される。なお、SBW異常信号SFLについてその通信経路134を特に区別したい場合には、第1経路136を介してECT−ECU114へ伝達されるSBW異常信号SFLを「SBW異常信号S1FL」と表し、第2経路138を介してECT−ECU114へ伝達されるSBW異常信号SFLを「SBW異常信号S2FL」と表す。
【0047】
また、異常検出手段132は、上記シフトバイワイヤ制御装置103の異常を検出しない場合には上記SBW異常信号SFLをECT−ECU114へ出力しない。すなわち、異常検出手段132は、シフトポジションセンサ67、118のそれぞれの信号が示すシフト位置が互いに一致しその他の異常をも検出しない場合、言い換えれば、上記シフトバイワイヤ制御装置103の正常状態を検出している場合には、上記SBW異常信号SFLを出力せず正常時に通信される通常のシフト位置等を示す信号を出力し、これをもって、上記シフトバイワイヤ制御装置103の正常状態を示す正常検出結果をECT−ECU114へ出力したことになる。上記ような異常検出手段132の異常検出結果や正常検出結果は、並列に設けられた第1経路136と第2経路138とのぞれぞれによりECT−ECU114(動力伝達許可手段146)に伝達される。
【0048】
電子制御装置104の一部を構成するECT−ECU(第2制御部)114は、第1受信判定手段142と第2受信判定手段144とを含む動力伝達許可手段(許可手段)146と、エンジン10から駆動輪への動力伝達経路を遮断するための動力遮断手段148と、その動力遮断手段148が上記動力伝達経路の遮断を止めた後に車両の駆動力を制限するための駆動力制限手段154と、その駆動力制限手段154が上記車両の駆動力を制限した後にその制限を緩和して車両の駆動力を回復させるための駆動力回復手段156とを、備えている。
【0049】
第1受信判定手段142は、SBW−ECU112からの信号を第1経路136を介して受信する。そして、第1受信判定手段142は、第1経路136を介してSBW異常信号S1FLを受信した場合には、シフトバイワイヤ制御装置103に関する前記異常検出結果を得た旨の判定をする。一方、SBW異常信号S1FLを受信しない場合には、上記異常検出結果を得ていない旨の判定、言い換えれば、シフトバイワイヤ制御装置103に関する前記正常検出結果を得た旨の判定をする。
【0050】
第2受信判定手段144は、SBW−ECU112からの信号を第2経路138を介して受信する。そして、第2受信判定手段144は、第2経路138を介してSBW異常信号S2FLを受信した場合には、シフトバイワイヤ制御装置103に関する前記異常検出結果を得た旨の判定をする。一方、SBW異常信号S2FLを受信しない場合には、上記異常検出結果を得ていない旨の判定、言い換えれば、シフトバイワイヤ制御装置103に関する前記正常検出結果を得た旨の判定をする。
【0051】
更に、第2受信判定手段144が上記異常検出結果を得た旨の判定をした場合にはその判定時以降で、第1受信判定手段142は、上記正常検出結果を得た旨の判定を所定の正常状態確定時間time_nf(所定時間time_nf)継続した場合に、その旨を示す正常状態確定判定XNFを行う。一方、第1受信判定手段142が上記異常検出結果を得た旨の判定をした場合にはその判定時以降で、第2受信判定手段144は、上記正常検出結果を得た旨の判定を所定の正常状態確定時間time_nf(所定時間time_nf)継続した場合に、その旨を示す正常状態確定判定XNFを行う。
【0052】
要するに、第2受信判定手段144が上記異常検出結果(SBW異常信号S2FL)を得た旨の判定をし、且つ、第1受信判定手段142が上記正常検出結果を得た旨の判定をすることが上記正常状態確定時間time_nf(所定時間time_nf)継続した場合には、第1受信判定手段142は正常状態確定判定XNFを行う。一方、第1受信判定手段142が上記異常検出結果(SBW異常信号S1FL)を得た旨の判定をし、且つ、第2受信判定手段144が上記正常検出結果を得た旨の判定をすることが上記正常状態確定時間time_nf(所定時間time_nf)継続した場合には、第2受信判定手段144は正常状態確定判定XNFを行う。また、第1受信判定手段142と第2受信判定手段144との少なくとも何れかが上記異常検出結果(SBW異常信号SFL)を得た旨の判定をした後において、何らかの原因でSBW異常信号SFLが受信されなくなるなどして、第1受信判定手段142と第2受信判定手段144との両方が上記正常検出結果を得た旨の判定をすることが上記正常状態確定時間time_nf(所定時間time_nf)継続した場合には、第1受信判定手段142と第2受信判定手段144との両方が正常状態確定判定XNFを行う。なお、上記正常状態確定時間time_nfとは、その時間time_nf以上継続してSBW異常信号SFLが受信されなければ異常検出手段132はSBW異常信号SFLをECT−ECU114に向けて出力していないと判断できる予め実験的に設定された時間である。また、上記正常状態確定判定XNFを第1受信判定手段142と第2受信判定手段144との何れのものか区別する場合には、第1受信判定手段142のものを「正常状態確定判定X1NF」と表し、第2受信判定手段144のものを「正常状態確定判定X2NF」と表す。そして、それら何れのものか特に区別しない場合には、そのまま「正常状態確定判定XNF」と表す。
【0053】
動力遮断手段148は、ECT−ECU114が第1経路136及び/又は第2経路138を介してSBW異常信号SFLを受信した場合、すなわち、第1受信判定手段142及び/又は第2受信判定手段144が前記異常検出結果を得た旨の判定をした場合には、エンジン10から駆動輪への動力伝達経路を遮断する動力遮断制御を実行する。その動力遮断制御においては、車両の駆動力が発生しなければその達成方法に特に限定はないので、エンジン10の停止でもよいが、本実施例では、自動変速機14内の動力伝達経路が遮断される。ここで、ECT−ECU114が第1経路136及び第2経路138の一方を介しては上記異常検出結果(SBW異常信号SFL)を得ずに他方を介してその異常検出結果を得た場合には、駆動力制限手段154が後述の駆動力制限制御を実行することがあるが、その場合には、駆動力制限手段154によるその駆動力制限制御の実行に先立って、動力遮断手段148は上記動力遮断制御を実行する。言い換えれば、第1受信判定手段142及び第2受信判定手段144の一方が前記正常検出結果を得た旨の判定をしていたとしても、更に言えば、上記一方が正常状態確定判定XNFを行っていたとしても、他方が前記異常検出結果(SBW異常信号SFL)を得た旨の判定をした場合には、上記駆動力制限制御が実行されるのであればそれに先立って動力遮断手段148は上記動力遮断制御を実行し、また、上記駆動力制限制御が実行されないのであればそれに拘わらず動力遮断手段148は上記動力遮断制御を実行する。なお、前記車両の駆動力とは、車両を前進もしくは後進させる推力であり、駆動輪を回転させる駆動輪トルクと一対一の対応関係にある。
【0054】
動力遮断手段148は、上記動力遮断制御において、上述のように自動変速機14内の動力伝達経路を遮断するが、具体的には、何れの前進変速段も後進変速段も成立しないように、自動変速機14内の前進にかかる摩擦係合要素と後進にかかる摩擦係合要素との両方を解放する。すなわち、SBWアクチュエータ68によって制御されるマニュアルバルブ70のシフト位置(マニュアルバルブ位置)に拘わらず自動変速機14内の動力伝達経路が遮断されるように油圧制御回路40のソレノイドバルブが制御されるニュートラルパターン形成が行われる。なお、自動変速機14の油圧制御回路40は、上記ニュートラルパターン形成が可能なように、つまり、マニュアルバルブ70のシフト位置に拘わらず動力が遮断できるように構成されている。以下、自動変速機14の油圧制御回路40を一例に、マニュアルバルブ70のシフト位置に拘わらず自動変速機14内の動力伝達経路を遮断する動力遮断手段148の制御作動について説明する。
【0055】
先ず、自動変速機14の前進にかかる摩擦係合要素を解放して、前進への動力を遮断する制御について説明する。前進走行においては、図2に示すようにクラッチC1およびクラッチC2の少なくとも一方が係合されるに構成されている。すなわち、クラッチC1およびクラッチC2が自動変速機14の前進にかかる摩擦係合要素となる。図5に示すように、リニアソレノイドバルブSL1と油圧アクチュエータ42との間にフェールセーフバルブ74が設けられているため、例えばリニアソレノイドバルブSL1の故障によって係合油圧PC1が係合されない場合でも、フェールセーフバルブ74のスプールによって油路が切り換えられて入力ポート78からDレンジ圧PDが油圧アクチュエータ42に供給される。そこで、動力遮断手段148は、以下の制御を組み合わせることで自動変速機14の前進への動力を確実に遮断する。
【0056】
先ず、リニアソレノイドバルブSL1を制御することにより、クラッチC1の油圧アクチュエータ42に供給される係合油圧PC1を零に制御する。これにより、フェールセーフバルブ74のスプールが移動させられて入力ポート78と出力ポート80とが連通されてDレンジ圧PDが油圧アクチュエータ42へ供給される可能性があるので、リニアソレノイドバルブSL2によってクラッチC2の係合油圧PC2を例えば最大値に制御する。これにより、フェールセーフバルブ74が正常時の状態、すなわちリニアソレノイドバルブSL1に連結された入力ポート76と出力ポート80とが連通された状態とされ、クラッチC1の油圧アクチュエータ42へ油圧が供給されなくなり、クラッチC1が解放される。これにより、図2に示すように第1変速段〜第4変速段が成立されなくなる。
【0057】
また、リニアソレノイドバルブSL3を制御することにより、ブレーキB1の油圧アクチュエータ46に供給される係合油圧PB1を零に制御すると共に、リニアソレノイドバルブSL4を制御することにより、ブレーキB3の油圧アクチュエータ50に供給される係合油圧PB3を零に制御する。ここで、クラッチC2の係合油圧PC2を最大値に制御することでクラッチC2は係合されることとなるが、ブレーキB1およびブレーキB3の油圧アクチュエータ46、50には油圧が供給されないので第5変速段および第6変速段は成立されなくなる。さらに、リニアソレノイドバルブSLT(もしくはその関連圧)を最小圧に制御することで、フェールセーフバルブ74において、入力ポート78と出力ポート80との連通を確実に防止する、すなわちDレンジ圧PDの油圧アクチュエータ42への供給を防止する。
【0058】
これにより、マニュアルバルブ70のシフト位置に拘わらず自動変速機14の前進への動力が遮断される。具体的には、マニュアルバルブ70のシフト位置が「D」ポジションであれば上記制御によって前進への動力が遮断される。また、「R」ポジションであればDレンジ圧PDが供給されないため、リニアソレノイドバルブSL1およびリニアソレノイドバルブSL2へ元圧となるDレンジ圧PDが供給されないに伴い、クラッチC1およびクラッチC2へ係合油圧が供給されないので、自動変速機14の前進への動力が遮断される。また、「N」、「P」ポジションもDレンジ圧PDおよびレバース圧PRが供給されないので、前進への動力が遮断される。
【0059】
次に、自動変速機14の後進にかかる摩擦係合要素を解放して、後進への動力を遮断する制御について説明する。後進走行においては、図2に示すようにブレーキB2およびブレーキB3が係合されることで、後進への動力が駆動輪へ伝達される。すなわち、ブレーキB2およびブレーキB3が後進にかかる摩擦係合要素に対応しており、ブレーキB2およびブレーキB3のいずれか一方が解放されると自動変速機14の後進への動力が遮断される。そこで、動力遮断手段148は、切換ソレノイドバルブSLから切換圧PSLを出力(ON)すると共に、ソレノイドバルブSLUからコントロール圧PSLUを出力(ON)する。更に、リニアソレノイドバルブSL4を制御することにより、ブレーキB3の油圧アクチュエータ50の係合油圧PB3を零に制御する。
【0060】
このように制御されると、図6において、切換ソレノイドバルブSLの切換圧PSLによって、リレーバルブ92の入力ポート94と出力ポート100とが連通される、すなわちリニアソレノイドバルブSLUのコントロール圧PSLUがロックアップコントロールバルブ98に供給される。これより、第2ブレーキコントロールバルブ54には、コントロール圧PSLUが入力されない。そして、第2ブレーキコントロールバルブ54には、コントロール圧PSLUが入力されないため、スプリング90のスプリング力FS2によってスプールが移動させられ、ドレーンポート86と出力ポート88とが連通される、すなわちブレーキB2の油圧アクチュエータ48とドレーンポート86とが連通されて油圧アクチュエータ48に油圧が供給されない。これにより、自動変速機14の後進への動力が遮断される。
【0061】
ところが、マニュアルバルブ70が「R」ポジションに位置された状態では、リバース圧PRが供給されるため、ブレーキB2の油圧アクチュエータ48に油圧が供給されることとなる。しかし、動力遮断手段148は、ブレーキB3の油圧アクチュエータ50の係合油圧を零に制御することにより、第3ブレーキB3が解放されるので、自動変速機14の後進への動力が遮断される。これにより、マニュアルバルブ70のシフト位置に拘わらず自動変速機14の後進への動力が遮断される。具体的には、マニュアルバルブ70のシフト位置が「D」ポジションであれば、上記制御によって前進への動力が遮断され、「R」ポジションであれば、リバース圧PRがブレーキB2の油圧アクチュエータ48に供給されるものの、ブレーキB3が解放されるので後進への動力が遮断される。また、「N」、「P」ポジションもDレンジ圧PDおよびレバース圧PRが供給されないので、後進への動力が遮断される。
【0062】
このように、動力遮断手段148の上記の制御を実施することにより前記ニュートラルパターン形成を行い、それにより、マニュアルバルブ70のシフト位置(マニュアルバルブ位置)に拘わらず自動変速機14の前進および後進への動力が遮断される。
【0063】
上述のように動力遮断手段148は、第1受信判定手段142と第2受信判定手段144との判定に基づき、上記ニュートラルパターン形成すなわち前記動力遮断制御を実行するが、上記第1受信判定手段142と第2受信判定手段144との判定に加え車速Vを考慮して上記動力遮断制御を実行してもよい。そのようにした場合について説明すると、まず、図8に示すようにECT−ECU114は車速判定手段150を含んでおり、その車速判定手段150は、例えば自動変速機14の出力部材である出力歯車34の回転速度に基づいて車速Vを検出し、その車速Vが予め設定された所定車速V1以下か否かを判定する。その所定車速V1は、予め実験などによって求められ、低車速域に設定される。ここで、例えば中・高車速時において、自動変速機14内の動力伝達経路が遮断されると、駆動輪に伝達されるトルクが抜ける(トルク抜け)ため、車両が不安定となり、操作性が低下する可能性がある。また、本実施例では前述したように、SBW異常信号SFLが受信されると、上記動力遮断制御の実行により自動変速機14内の動力伝達経路が遮断される。そこで、車速Vが所定車速V1を超えていると上記動力遮断制御を禁止することで、トルク抜けによる車両の操作性低下を回避する。すなわち、所定車速V1は、走行中にエンジン10と駆動輪との間の動力伝達経路を遮断する動力遮断制御を実行しても車両の操作性が低下しない程度の低車速域に設定される。
【0064】
そして、車速Vが上記所定車速V1以下であると車速判定手段150により判定された場合において、動力遮断手段148は、前述したように第1受信判定手段142と第2受信判定手段144との判定に基づき、前記動力遮断制御を実行する。逆に言えば、車速Vが上記所定車速V1を超えている場合においては、動力遮断手段148は、第1受信判定手段142と第2受信判定手段144との判定に拘わらず、つまり、SBW異常信号SFLが受信されたか否かに拘わらず、前記動力遮断制御を実行しない。
【0065】
このようにして動力遮断手段148はフェールセーフ処理としての上記動力遮断制御を実行するが、その実行開始後に一定の条件のもとその動力遮断制御が中止(中断)させられて、車両走行可能なフェールセーフ処理に切り換えられることがある。なぜなら、異常検出手段132がSBW異常信号SFLをECT−ECU114に向けて出力していないにも拘わらず、第1経路136または第2経路138の異常(フェール、故障)によりSBW異常信号SFLと同じ信号がECT−ECU114へ伝達されることがあり、そのような場合には上記動力遮断制御によって車両走行を不可にすることまでは必要ないと考えられるからである。そこで、上記動力遮断制御の実行後において、それが中止され車両走行可能なフェールセーフ処理に切り換えられる制御に関して、以下に説明する。
【0066】
図8において、ECT−ECU114が第1経路136および第2経路138の一方の通信経路134を介しては前記異常検出手段132の異常検出結果(SBW異常信号SFL)を得ずに他方の通信経路134を介してその異常検出結果を得た場合、すなわち、第1受信判定手段142及び第2受信判定手段144の一方は前記正常検出結果を得た旨の判定をしているが、他方は上記異常検出結果を得た旨の判定をした場合には、動力伝達許可手段146は、エンジン10からの出力(動力)が前記駆動輪に伝達される車両走行の可能なフェールセーフ処理が実行されることを許可する動力伝達許可(駆動力制限制御実行許可)を駆動力制限手段154に与える、すなわち、車両の駆動力を発生させ得る後述の駆動力制限制御の実行を許可する。
【0067】
ここで、前述したように、ECT−ECU114が第1経路136及び/又は第2経路138を介してSBW異常信号SFLを受信した場合には、後述の駆動力制限制御が実行されるのであればそれに先立って動力遮断手段148が前記動力遮断制御を実行する。従って、本実施例において詳細には、ECT−ECU114が第1経路136および第2経路138の一方の通信経路134を介しては前記異常検出結果(SBW異常信号SFL)を得ずに他方の通信経路134を介してその異常検出結果を得たことが所定の正常状態確定時間time_nf(所定時間time_nf)継続した場合、すなわち、第1受信判定手段142及び第2受信判定手段144の一方は正常状態確定判定XNFを行ったが、他方は上記異常検出結果を得た旨の判定をしている場合に、動力伝達許可手段146は駆動力制限手段154に前記動力伝達許可を与える。
【0068】
そして、駆動力制限手段154は、動力伝達許可手段146から上記動力伝達許可を与えられた場合には、車両が駆動力を発生できる状態において、車両の正常時における駆動力である正常時駆動力FNMよりも低く上記車両の駆動力を制限する駆動力制限制御を実行する。すなわち、前記動力遮断制御の実行中であったとすれば車両が駆動力を発生できる状態ではないので、そのときには、駆動力制限手段154は、上記動力伝達許可を与えられた場合に、動力遮断手段148に上記動力遮断制御を中止させ、且つ、上記駆動力制限制御を実行する。要するに、上記動力遮断制御が実行されその後に上記駆動力制限制御が実行される場合には、前記正常状態確定時間time_nfが経過するまでは上記動力遮断制御が実行され、その正常状態確定時間time_nfが経過すると上記動力遮断制御に替えて上記駆動力制限制御が実行される。
【0069】
なお、前記正常時駆動力FNMとは、何れの通信経路134(第1経路136および第2経路138)を介しても前記異常検出結果(SBW異常信号SFL)をECT−ECU114が得ていない場合の車両の駆動力であって、例えば、アクセル開度Accや車速Vなどをパラメータとする予め定められた駆動力マップに基づいてECT−ECU114が車両の正常時に発揮させる車両の駆動力である。
【0070】
また、本実施例の駆動力制限制御において、車両の駆動力は、正常時駆動力FNMよりも低い所定の制限時駆動力FDPとされるが、これに限定されるものではない。この制限時駆動力FDPは、車両走行における安全性を確保する目的で上記車両の駆動力が制限されたことを運転者に認識させるための実験的に予め定められた車両の駆動力(駆動力制限値)であって、望ましくは、車両走行を可能とし出来るだけ低く設定された所定の車両の駆動力(駆動力制限値)である。そして、上記正常時駆動力FNMはアクセル開度Accなどに応じて変化するので、上記制限時駆動力FDPは、正常時駆動力FNMの変化に応じて変化し正常時駆動力FNMを基準として相対的に決定されることが望ましく、例えば、正常時駆動力FNMに1より小さい所定比率(正の小数)を乗じて得た駆動力値とされる。
【0071】
また、駆動力制限手段154は、上記駆動力制限制御において車両の駆動力を低く制限するため、車輪に備えられたブレーキ等に車両制動力を発揮させてもよいし、動力伝達経路の一部を構成している自動変速機14のクラッチCまたはブレーキBを滑らせてもよいが、本実施例では、アクセル開度Accに対するエンジン出力を正常時と比較して抑制することにより上記車両の駆動力を低く制限する。
【0072】
駆動力制限手段154により上記駆動力制限制御が実行された後において、駆動力回復手段156は、上記駆動力制限制御により前記正常時駆動力FNMに対し低下させられた車両の駆動力をその正常時駆動力FNM又はそれ未満の所定目標値に向けて上昇させる駆動力回復制御を実行する。つまり、駆動力回復手段156は、上記駆動力制限制御における車両の駆動力に対する制限量(=FNM−FDP)を減少させる制限量減少手段として機能する。その駆動力回復制御において車両の駆動力をどのように上昇させるかについては特に限定は無いが、例えば、上記駆動力回復制御は、上記駆動力制限制御の開始時から所定の駆動力制限時間time_df経過後に、上記車両の駆動力を正常時駆動力FNMよりも低く且つ上記駆動力制限制御時の駆動力よりも高い上記所定目標値としての中間駆動力FMDとする制御であってもよい。このとき、本実施例では、上記駆動力制限制御における車両の駆動力は前記制限時駆動力FDPとされるので、上記「駆動力制限制御時の駆動力」は制限時駆動力FDPである。また、上記駆動力制限時間time_dfは、車両走行における安全性を確保する目的で上記駆動力が制限されたことを運転者に認識させるための実験的に予め定められた猶予時間である。また、上記中間駆動力FMDは、車両走行における安全性を確保しつつ上記駆動力制限制御の実行中よりは運転者の利便性を向上させ得る実験的に予め定められた車両の駆動力である。上記正常時駆動力FNM及び制限時駆動力FDPは共にアクセル開度Accなどに応じて変化するので、上記中間駆動力FMDは、前記正常時駆動力FNMと制限時駆動力FDPとの差に応じて相対的に決定されるものであることが望ましく、例えば、中間駆動力FMDは、上記正常時駆動力FNMと制限時駆動力FDPとの差に1より小さい所定比率(正の小数)を乗じて得た駆動力値を、正常時駆動力FNMから減じて得たものとされる。
【0073】
また、駆動力回復手段156は、例えば、前記駆動力回復制御において、前記駆動力制限制御の開始後に、時間経過に従って前記正常時駆動力FNM又はそれ未満の所定目標値(例えば、上記中間駆動力FMD)に向けて所定の変化割合Rで上記車両の駆動力を上昇させてもよい。上記変化割合Rは、車両走行における安全性確保と運転者の利便性向上とを両立するように実験的に予め設定された車両の駆動力の時間変化率である。更に、駆動力回復手段156は、上記駆動力回復制御において、車速Vが高いほど車両の駆動力が速く上昇するように上記変化割合Rを変更してもよい。
【0074】
ところで、前記動力遮断制御が中止されて前記駆動力制限制御や駆動力回復制御が実行された場合において、それまでSBW異常信号SFLを伝達していなかった通信経路134(第1経路136又は第2経路138)を介してECT−ECU114がSBW異常信号SFLを受信する場合が考えられる。そこで、第1経路136または第2経路138を介してSBW異常信号SFLをECT−ECU114が受信しているときに上記動力遮断制御(ニュートラルパターン形成)が中止された場合においては、その動力遮断制御が中止された後に、その動力遮断制御が中止された原因である前記正常検出結果を得た旨の判定をしていた第1受信判定手段142又は第2受信判定手段144がSBW異常信号SFLを受信しそれにより前記異常検出結果を得た旨の判定をした場合には、動力伝達許可手段146は前記動力伝達許可を解除し、上記駆動力制限制御または駆動力回復制御が実行されているのであればそれが中止され、動力遮断手段148は上記動力遮断制御の実行を再開する。
【0075】
上記のように動力遮断制御の実行を再開させるか否かを判断するためには、その動力遮断制御が中止された原因である上記正常検出結果を得た旨の判定を、第1受信判定手段142と第2受信判定手段144との何れがしていたのか、逆に言えば、第1受信判定手段142と第2受信判定手段144との何れが前記異常検出結果(SBW異常信号SFL)を得た旨の判定をしたことにより上記動力遮断制御が上記中止前に実行されていたのかが判る必要がある。そこで、動力伝達許可手段146は、前述の機能に加え、動力遮断手段148により上記動力遮断制御が実行された場合には、その実行された動力遮断制御がSBW異常信号S1FL及びS2FLの何れの受信に起因したものかが判る履歴を記憶する。すなわち、前述したように、上記動力遮断制御は、一定の条件のもと中止されることがあるが、動力伝達許可手段146の記憶する上記履歴は、上記動力遮断制御が中止されたとすればその中止された動力遮断制御が、SBW異常信号S1FL及びS2FLの何れの受信に起因して実行されたものであったかが判る履歴である。具体的に説明すると、動力伝達許可手段146は、第1受信判定手段142が上記異常検出結果(SBW異常信号S1FL)を得た旨の判定をしたことに起因して上記動力遮断制御が実行された場合には、その動力遮断制御(前記ニュートラルパターン形成)がSBW異常信号S1FLに基づいて実行されたものであることを示す履歴を記憶している、すなわち、SBW異常信号S1FLによるニュートラルパターン形成履歴hst1_nを「ON」として記憶している。一方、動力伝達許可手段146は、第2受信判定手段144が上記異常検出結果(SBW異常信号S2FL)を得た旨の判定をしたことに起因して上記動力遮断制御が実行された場合には、その動力遮断制御(上記ニュートラルパターン形成)がSBW異常信号S2FLに基づいて実行されたものであることを示す履歴を記憶している、すなわち、SBW異常信号S2FLによるニュートラルパターン形成履歴hst2_nを「ON」として記憶している。そして、動力伝達許可手段146は、ニュートラルパターン形成履歴hst1_n,hst2_nを動力遮断手段148に出力し、動力遮断手段148は、そのニュートラルパターン形成履歴hst1_n,hst2_nに基づき上記動力遮断制御の実行を再開するか否かを決定する。なお、上記ニュートラルパターン形成履歴hst1_n,hst2_nの初期値は何れも「OFF」である。
【0076】
第1経路136と第2経路138との何れを介してもECT−ECU114がSBW異常信号SFLを前記正常状態確定時間time_nf継続して受信しなかった場合、すなわち、第1受信判定手段142と第2受信判定手段144との両方が前記正常状態確定判定XNFを行った場合には、動力遮断手段148は上記動力遮断制御を実行していればそれを中止し、駆動力制限手段154は前記駆動力制限制御を実行していればそれを中止し、動力回復手段156は前記駆動力回復制御を実行していればそれを中止する。その結果、車両の駆動力は前記正常時駆動力FNMに戻る、すなわち、フェールセーフ処理が中止される。更に、その場合に、動力伝達許可手段146は、ニュートラルパターン形成履歴hst1_n,hst2_nの両方を「OFF」とする。
【0077】
ここで好適には、動力遮断手段148は、上記動力遮断制御(ニュートラルパターン形成)を中止(中断)する場合においては、その中止後に車両の駆動力が上記正常時駆動力FNMに戻る場合であっても上記駆動力制限制御が実行される場合であっても、上記動力遮断制御の実行開始から予め定められた復帰保留時間time_rvが経過した後に、その動力遮断制御を中止する。要するに、その復帰保留時間time_rvが経過するまでは上記動力遮断制御が実行中であればそれは中止されず、それが中止されるのであれば上記復帰保留時間time_rvの経過後に中止されその後の処理が実行される。上記復帰保留時間time_rvとは、自動変速機14の摩擦係合要素の制御ハンチングを防止するために実験的に設定された猶予時間である。
【0078】
また好適には、動力遮断手段148は、上記動力遮断制御(ニュートラルパターン形成)を中止する場合においては、その中止後に車両の駆動力が上記正常時駆動力FNMに戻る場合であっても上記駆動力制限制御が実行される場合であっても、予め定められた復帰許可条件が成立した場合に、上記動力遮断制御を中止する。上記復帰許可条件とは、車両走行の安全性確保のために実験的に設定された上記動力遮断制御の中止を許可する条件であり、具体的には、上記フェールセーフ処理において自動変速機14内の動力伝達経路を動力伝達の遮断された動力伝達遮断状態から動力伝達の可能な動力伝達可能状態へと変更することを許可する実験的に設定された条件である。例えば、その復帰許可条件は、上記動力遮断制御を中止しても、言い換えれば、エンジン出力が前記駆動輪にまで伝達されたとしても、車両の挙動が不安定にはならない程度の低エンジントルクで且つ低車速である場合に成立する。
【0079】
図9乃至図11は、電子制御装置104の制御作動の要部、すなわち、SBW異常信号SFLに基づいてフェールセーフ処理としての前記動力遮断制御、駆動力制限制御、駆動力回復制御を実行する制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
【0080】
図9に示すように、先ず、動力伝達許可手段146に対応するステップ(以下、「ステップ」を省略する)SA1においては、SBW異常信号S1FLによるニュートラルパターン形成履歴hst1_nが「ON」であるか否かが判定される。このSA1の判定が肯定的である場合、すなわち、上記ニュートラルパターン形成履歴hst1_nが「ON」である場合には、SA2に移る。一方、このSA1の判定が否定的である場合には、SA8に移る。なお、SBW異常信号S1FLが全く受信されていないときのニュートラルパターン形成履歴hst1_n、すなわち、ニュートラルパターン形成履歴hst1_nの初期値は「OFF」である。
【0081】
第2受信判定手段144に対応するSA2においては、第2経路138を介してSBW異常信号S2FLが受信されたか否かに基づき、シフトバイワイヤ制御装置103に関する異常検出手段132の前記正常検出結果が得られたか否かが判定される。このSA2の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S2FLを受信していない場合には、SA3に移る。一方、このSA2の判定が否定的である場合には、図11のSA24に移る。
【0082】
第2受信判定手段144に対応するSA3においては、上記SA2の判定が肯定された時から前記正常状態確定時間time_nf(所定時間time_nf)継続して、ECT−ECU114が第2経路138を介して上記正常検出結果を得たか否かが判定される。上記SA2の判定が肯定された時から正常状態確定時間time_nf継続して、ECT−ECU114が第2経路138を介してSBW異常信号S2FLを受信しなかった場合、要するに、上記SA2の肯定的な判定が正常状態確定時間time_nf継続した場合には、SA3の判定は肯定される。このSA3の判定が肯定的である場合、すなわち、上記SA2の肯定的な判定が正常状態確定時間time_nf継続した場合には、前記正常状態確定判定X2NFが行われSA4に移る。一方、このSA3の判定が否定的である場合には、図11のSA24に移る。なお、SA3の判定が肯定されると、動力伝達許可手段146は駆動力制限手段154に前記動力伝達許可を与える。
【0083】
第1受信判定手段142に対応するSA4においては、第1経路136を介してSBW異常信号S1FLが受信されたか否かに基づき、シフトバイワイヤ制御装置103に関する異常検出手段132の前記正常検出結果が得られたか否かが判定される。このSA4の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S1FLを受信していない場合には、SA5に移る。一方、このSA4の判定が否定的である場合には、図10のSA15に移る。
【0084】
第1受信判定手段142に対応するSA5においては、上記SA4の判定が肯定された時から上記正常状態確定時間time_nf(所定時間time_nf)継続して、ECT−ECU114が第1経路136を介して上記正常検出結果を得たか否かが判定される。上記SA4の判定が肯定された時から正常状態確定時間time_nf継続して、ECT−ECU114が第1経路136を介してSBW異常信号S1FLを受信しなかった場合、要するに、上記SA4の肯定的な判定が正常状態確定時間time_nf継続した場合には、SA5の判定は肯定される。このSA5の判定が肯定的である場合、すなわち、上記SA4の肯定的な判定が正常状態確定時間time_nf継続した場合には、前記正常状態確定判定X1NFが行われSA6に移る。一方、このSA5の判定が否定的である場合には、図10のSA15に移る。
【0085】
動力遮断手段148に対応するSA6においては、後述のSA21またはSA25で実行された前記動力遮断制御の実行開始時から、すなわち、前記ニュートラルパターン形成時から前記復帰保留時間time_rvが経過したか否かが判定される。このSA6の判定が肯定的である場合、すなわち、上記動力遮断制御の実行開始時から上記復帰保留時間time_rvが経過した場合には、SA7に移る。一方、このSA6の判定が否定的である場合には、図10のSA15に移る。
【0086】
動力遮断手段148に対応するSA7においては、前記復帰許可条件が成立したか否かが判定される。このSA7の判定が肯定的である場合、すなわち、上記復帰許可条件が成立した場合には、図10のSA16に移る。一方、このSA7の判定が否定的である場合には、図10のSA15に移る。
【0087】
動力伝達許可手段146に対応するSA8においては、SBW異常信号S2FLによるニュートラルパターン形成履歴hst2_nが「ON」であるか否かが判定される。このSA8の判定が肯定的である場合、すなわち、上記ニュートラルパターン形成履歴hst2_nが「ON」である場合には、SA9に移る。一方、このSA8の判定が否定的である場合には、図11のSA19に移る。なお、SBW異常信号S2FLが全く受信されていないときのニュートラルパターン形成履歴hst2_n、すなわち、ニュートラルパターン形成履歴hst2_nの初期値は「OFF」である。
【0088】
第1受信判定手段142に対応するSA9においては、前記SA4と同じ判定が行われる。このSA9の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S1FLを受信していない場合には、SA10に移る。一方、このSA9の判定が否定的である場合には、図11のSA20に移る。
【0089】
第1受信判定手段142に対応するSA10においては、上記SA9の判定が肯定された時から上記正常状態確定時間time_nf(所定時間time_nf)継続して、ECT−ECU114が第1経路136を介して上記正常検出結果を得たか否かが判定される。上記SA9の判定が肯定された時から正常状態確定時間time_nf継続して、ECT−ECU114が第1経路136を介してSBW異常信号S1FLを受信しなかった場合、要するに、上記SA9の肯定的な判定が正常状態確定時間time_nf継続した場合には、SA10の判定は肯定される。このSA10の判定が肯定的である場合、すなわち、上記SA9の肯定的な判定が正常状態確定時間time_nf継続した場合には、前記正常状態確定判定X1NFが行われSA11に移る。一方、このSA10の判定が否定的である場合には、図11のSA20に移る。なお、SA10の判定が肯定されると、動力伝達許可手段146は駆動力制限手段154に前記動力伝達許可を与える。
【0090】
第2受信判定手段144に対応するSA11においては、前記SA2と同じ判定が行われる。このSA11の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S2FLを受信していない場合には、SA12に移る。一方、このSA11の判定が否定的である場合には、図10のSA18に移る。
【0091】
第2受信判定手段144に対応するSA12においては、上記SA11の判定が肯定された時から前記正常状態確定時間time_nf(所定時間time_nf)継続して、ECT−ECU114が第2経路138を介して上記正常検出結果を得たか否かが判定される。上記SA11の判定が肯定された時から正常状態確定時間time_nf継続して、ECT−ECU114が第2経路138を介してSBW異常信号S2FLを受信しなかった場合、要するに、上記SA11の肯定的な判定が正常状態確定時間time_nf継続した場合には、SA12の判定は肯定される。このSA12の判定が肯定的である場合、すなわち、上記SA11の肯定的な判定が正常状態確定時間time_nf継続した場合には、前記正常状態確定判定X2NFが行われSA13に移る。一方、このSA12の判定が否定的である場合には、図10のSA18に移る。
【0092】
動力遮断手段148に対応するSA13においては、前記SA6と同じ判定が行われる。このSA13の判定が肯定的である場合、すなわち、上記動力遮断制御の実行開始時から前記復帰保留時間time_rvが経過した場合には、SA14に移る。一方、このSA13の判定が否定的である場合には、図10のSA18に移る。
【0093】
動力遮断手段148に対応するSA14においては、前記SA7と同じ判定が行われる。このSA14の判定が肯定的である場合、すなわち、前記復帰許可条件が成立した場合には、図10のSA16に移る。一方、このSA14の判定が否定的である場合には、図10のSA18に移る。
【0094】
図10にて、動力遮断手段148と駆動力制限手段154と駆動力回復手段156とに対応するSA15及びSA18においては、前記動力遮断制御が実行されていればそれが中止され、車両走行を可能とするフェールセーフ処理としての前記駆動力制限制御やその後の前記駆動力回復制御が実行される。具体的には、図12のフローチャートが実行される。
【0095】
図12は、図10のSA15及びSA18における制御作動の要部、すなわち、車両走行を可能とするフェールセーフ処理を実行する制御作動を説明するフローチャートである。
【0096】
動力遮断手段148に対応するSB1においては、前記ニュートラルパターン形成が解除される。すなわち、上記動力遮断制御が実行されていればそれが中止され、既にその動力遮断制御が実行されていなければそれが継続される。SB1の次はSB2へ移る。
【0097】
なお好適には、SB1で上記動力遮断制御が中止されるのであれば、その動力遮断制御の実行開始から前記復帰保留時間time_rvが経過した後に、その動力遮断制御が中止される。また、好適には、SB1で上記動力遮断制御が中止されるのであれば、前記復帰許可条件が成立した場合にその動力遮断制御が中止される。更に、好適には、上記動力遮断制御の実行開始から復帰保留時間time_rvが経過した後であって上記復帰許可条件が成立した場合に、その動力遮断制御が中止される。
【0098】
駆動力制限手段154と駆動力回復手段156とに対応するSB2においては、前記駆動力制限制御が実行されて、その後に、前記駆動力回復制御が実行される。例えば、上記駆動力制限制御の実行により車両の駆動力が制限時駆動力FDPとされ、その後に、上記駆動力回復制御が実行される。その駆動力回復制御は、例えば、上記駆動力制限制御の開始時から所定の駆動力制限時間time_df経過後に、上記車両の駆動力を前記中間駆動力FMDとする制御であってもよい。また、上記駆動力制限制御の開始後に、時間経過に従って前記正常時駆動力FNM又はそれ未満の所定目標値に向けて前記変化割合Rで上記車両の駆動力を上昇させる制御であってもよい。なお、SB2においては、上記駆動力制限制御または駆動力回復制御が実行中であればそれが継続される。
【0099】
図10に戻り、動力遮断手段148と駆動力制限手段154と駆動力回復手段156とに対応するSA16においては、前記動力遮断制御(ニュートラルパターン形成)、駆動力制限制御、又は駆動力回復制御が実行されいればそれが中止される。すなわち、フェールセーフ処理から復帰して、車両の駆動力は前記正常時駆動力FNMに戻る。そして、自動変速機14では、正常時(通常時)における変速制御が実行され、正常時(通常時)の変速段(ギヤ段)が形成される。
【0100】
動力伝達許可手段146に対応するSA17においては、SBW異常信号S1FL,S2FLによるニュートラルパターン形成履歴hst1_n,hst2_nの両方が「OFF」とされる。
【0101】
図11にて、第1受信判定手段142に対応するSA19においては、第1経路136を介してSBW異常信号S1FLが受信されたか否かに基づき、シフトバイワイヤ制御装置103に関する異常検出手段132の前記異常検出結果が得られたか否かが判定される。ECT−ECU114が上記SBW異常信号S1FLを受信した場合には、上記異常検出結果が得られた旨を肯定する判定がなされる。
このSA19の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S1FLを受信した場合には、SA20に移る。一方、このSA19の判定が否定的である場合には、SA23に移る。
【0102】
車速判定手段150に対応するSA20においては、車速Vが前記所定車速V1以下であるか否かが判定される。このSA20の判定が肯定的である場合、すなわち、車速Vが所定車速V1以下である場合には、SA21に移る。一方、このSA20の判定が否定的である場合には、本フローチャートは終了する。
【0103】
動力遮断手段148に対応するSA21及びSA25においては、前記動力遮断制御が実行される。具体的には、前記ニュートラルパターン形成が行われる。また、既に上記動力遮断制御(ニュートラルパターン形成)が実行されている場合には、それが継続される。SA21の次はSA22へ移り、SA25の次はSA26へ移る。
【0104】
動力伝達許可手段146に対応するSA22においては、SBW異常信号S1FLによるニュートラルパターン形成履歴hst1_nが「ON」とされる。
【0105】
第1受信判定手段142に対応するSA23においては、第2経路138を介してSBW異常信号S2FLが受信されたか否かに基づき、シフトバイワイヤ制御装置103に関する異常検出手段132の前記異常検出結果が得られたか否かが判定される。ECT−ECU114が上記SBW異常信号S2FLを受信した場合には、上記異常検出結果が得られた旨を肯定する判定がなされる。このSA23の判定が肯定的である場合、すなわち、ECT−ECU114がSBW異常信号S2FLを受信した場合には、SA24に移る。一方、このSA23の判定が否定的である場合には、本フローチャートは終了する。
【0106】
車速判定手段150に対応するSA24においては、前記SA20と同様に、車速Vが前記所定車速V1以下であるか否かが判定される。このSA24の判定が肯定的である場合、すなわち、車速Vが所定車速V1以下である場合には、SA25に移る。一方、このSA24の判定が否定的である場合には、本フローチャートは終了する。
【0107】
動力伝達許可手段146に対応するSA26においては、SBW異常信号S2FLによるニュートラルパターン形成履歴hst2_nが「ON」とされる。
【0108】
図13は、図9乃至図12のフローチャートに示す制御作動を説明するためのタイムチャートであって、具体的には、所定車速V1以下の車速Vで走行中に、ECT−ECU114がSBW異常信号S1FLを受信し且つSBW異常信号S2FLを受信しない状態が継続した場合において、前記動力遮断制御と駆動力制限制御と駆動力回復制御とが順次実行された場合を例として、その場合の車両の駆動力の変化を説明するためのタイムチャートである。なお、通常はアクセル開度Accなどに応じて前記正常時駆動力FNMは変化するものであるが、図13では、理解を容易にするために、正常時駆動力FNMは一定であるものとして上記車両の駆動力変化を模式的に表している。
【0109】
A1時点は、ECT−ECU114がSBW異常信号S2FLを受信しない状態において、SBW異常信号S1FLを受信した時点を示している。これにより、tA1時点で図11のSA19の判定が肯定されてSA21にて前記動力遮断制御(ニュートラルパターン形成)が実行される。その結果、図13に示すようにtA1時点で、自動変速機14内の動力伝達経路が前記動力伝達遮断状態となって車両の駆動力が零になっている。
【0110】
A1時点から所定時間time_nf経過したtA2時点は、図12のSB1にて上記動力遮断制御が中止され、図12のSB2にて上記駆動力制限制御の実行開始により車両の駆動力が制限時駆動力FDPとされた時点を示している。上記SB1とSB2とが実行されたのは、tA1時点から前記正常状態確定時間time_nf(所定時間time_nf)継続して、ECT−ECU114がSBW異常信号S2FLを受信しなかったので、図9のSA3の判定が肯定され、更に、ECT−ECU114がSBW異常信号S1FLを受信しているので、図9のSA4の判定が否定されたからである。
【0111】
図13のtA3時点は、図12のSB2にて上記駆動力制限制御が終了した後に、前記駆動力回復制御の実行が開始された時点を示している。そして、その駆動力回復制御においては、例えば、tA3時点とtA4時点との間の実線で示すように車両の駆動力が、時間経過に従って前記正常時駆動力FNMに向けて前記変化割合Rで上昇さられる。従って、図13の実線で示すように車両の駆動力が変化する場合には、tA2時点とtA3時点との間が「駆動力制限制御時」であると言える。図13では、tA2時点とtA3時点との間にて車両の駆動力が制限時駆動力FDPで維持されているが、このように一定期間、車両の駆動力が制限時駆動力FDPで維持される必要は無く、上記駆動力制限制御の実行により車両の駆動力が制限時駆動力FDP(駆動力制限制御時の駆動力)とされた後、直ちに、上記駆動力回復制御の実行により車両の駆動力が上昇させられてもよい。
【0112】
ここで、上記駆動力回復制御における車両の駆動力の別の制御パターンが複数考えられる。例えば、上記駆動力回復制御では、図13の破線で示すように、上記駆動力制限制御の実行開始時(tA2時点)から前記駆動力制限時間time_df経過したtA3’時点で、上記車両の駆動力が前記中間駆動力FMDとされ、その後は図10のSA16にてフェールセーフ処理から復帰するまで、上記車両の駆動力が前記中間駆動力FMDで維持されてもよい。或いは、上記フェールセーフ処理から復帰するまで車両の駆動力が中間駆動力FMDで維持されずに、図13の一点鎖線で示すように、tA3’時点から有限時間経過した例えばtA4時点で、車両の駆動力が前記正常時駆動力FNMに戻されてもよい。このように、図13の破線で示すように車両の駆動力が変化する場合には、tA2時点とtA3’時点との間が「駆動力制限制御時」であると言える。
【0113】
また、別の例として、上記駆動力回復制御において、tA3時点とtA3’時点との間の実線で示すように車両の駆動力が、時間経過に従って前記変化割合Rで正常時駆動力FNM未満の所定目標値(例えば、中間駆動力FMD)に向けて上昇さられ、tA3’時点からは図13の破線に沿って上記所定目標値で維持されてもよい。
【0114】
図13では、前記駆動力制限制御の実行に先立ってtA1時点とtA2時点との間で前記動力遮断制御が実行されるが、その動力遮断制御が実行されないフェールセーフ処理であってもよい。そのように上記動力遮断制御が実行されずに上記駆動力制限制御が実行されるとすれば、例えば、図14に示すようにtA1時点(図13参照)に対応するtB1時点において、上記駆動力制限制御の実行により車両の駆動力が前記正常時駆動力FNMから前記制限時駆動力FDP(駆動力制限制御時の駆動力)へと低下させられ、その後に、前記駆動力回復制御の実行により車両の駆動力が上昇させられる。
【0115】
本実施例では次のような効果(A1)乃至(A14)がある。(A1)本実施例によれば、ECT−ECU114が第1経路136および第2経路138の一方の通信経路134を介しては前記異常検出手段132の異常検出結果を得ずに他方の通信経路134を介してその異常検出結果を得た場合には、動力伝達許可手段146は前記動力伝達許可を駆動力制限手段154に与える。そして、駆動力制限手段154は、その動力伝達許可を与えられた場合には、車両が駆動力を発生できる状態において、正常時駆動力FNMよりも低く上記車両の駆動力を制限する前記駆動力制限制御を実行する。更に、その駆動力制限制御の実行後、駆動力回復手段156は、前記駆動力回復制御を実行することにより、例えば、上記駆動力制限制御の開始時から所定の駆動力制限時間time_df経過後に、上記車両の駆動力を正常時駆動力FNMよりも低い中間駆動力FMDにまで上昇させる。このようにすれば、上記異常検出結果が得られた場合に、車両走行における安全性を確保するため上記車両の駆動力が制限されたことを運転者に認識させ得る猶予を設けた上で、その駆動力はその制限が緩和されて上記正常時駆動力FNMに近付けられることとなる。その結果として、車両走行における安全性を確保しつつ運転者の利便性が悪化することを抑制することが可能である。
【0116】
(A2)本実施例によれば、駆動力回復手段156は、例えば、前記駆動力回復制御において、前記駆動力制限制御の開始後に、時間経過に従って前記正常時駆動力FNM又はそれ未満の所定目標値(例えば、上記中間駆動力FMD)に向けて所定の変化割合Rで上記車両の駆動力を上昇させてもよい。そのようにすれば、その車両の駆動力が急に変化することが無く、その車両の駆動力の上昇時において充分な安全性を確保できる。
【0117】
(A3)運転者は、通常、車両の近くに障害物等があれば車速Vを低く抑え、そのような障害物等が無く安全性が充分に高ければ車速Vを上昇させるものである。この点、本実施例によれば、駆動力回復手段156は、上記駆動力回復制御において、時間経過に従って上記変化割合Rで上記車両の駆動力を上昇させる場合に、その変化割合Rを、車速Vが高いほど車両の駆動力が速く上昇するように変更してもよい。そのようにすれば、シフトバイワイヤ制御装置103の異常が車両走行に現れたとしても充分な安全性を確保できると車速Vに基づき判断できる場合には、その車速Vに応じて早期に車両の駆動力に対する制限が緩和され、車両走行における安全性を確保しつつ運転者の利便性を向上させ得る。
【0118】
(A4)本実施例によれば、前記駆動力制限制御において、制限時駆動力FDPは、望ましくは、車両走行を可能とし出来るだけ低く設定された所定の車両の駆動力(駆動力制限値)である。このようにすれば、車両走行における安全性を確保した上で車両を走行可能にすることができる。
【0119】
(A5)第1経路136と第2経路138との何れか一方の通信経路134自体が正常で、他方の通信経路134自体が異常である場合には、異常検出手段132がシフトバイワイヤ制御装置103の異常を検出していないにも拘わらず、ECT−ECU114が上記他方の通信経路134を介してのみ前記異常検出結果(SBW異常信号SFL)を得ることがある。この点、本実施例によれば、動力遮断手段148は、ECT−ECU114が第1経路136又は第2経路138を介してSBW異常信号SFLを受信した場合には、前記駆動力制限制御の実行に先立って、前記動力伝達経路を遮断する動力遮断制御を実行する。そして、ECT−ECU114が第1経路136および第2経路138の一方の通信経路134を介しては上記異常検出結果(SBW異常信号SFL)を得ずに他方の通信経路134を介してその異常検出結果を得たことが所定の正常状態確定時間time_nf(所定時間time_nf)継続した場合に、動力伝達許可手段146は駆動力制限手段154に対し前記動力伝達許可を与え、更に、駆動力制限手段154は、その動力伝達許可を与えられた場合には、動力遮断手段148に上記動力遮断制御を中止させ、且つ、上記駆動力制限制御を実行する。従って、上記一方の通信経路134を介して継続して上記異常検出結果を得なかったことに基づき異常検出手段132がシフトバイワイヤ制御装置103の異常を検出していないと判断でき、その判断をすることができるまでは前記動力遮断制御の実行による動力伝達経路の遮断により、充分な車両の安全確保をすることができる。また、上記一方の通信経路134を介して上記異常検出結果が得られないことが正常状態確定時間time_nf継続したことに基づき、シフトバイワイヤ制御装置103の異常が検出されていないと判断できた後は、車両が走行可能とされて、車両走行における安全性を確保しつつ運転者の利便性を向上させ得る。
【0120】
(A6)本実施例によれば、動力遮断手段148は、ECT−ECU114が第1経路136又は第2経路138を介してSBW異常信号SFLを受信した場合には、前記駆動力制限制御の実行に先立って、前記動力伝達経路を遮断する動力遮断制御を実行するので、第1経路136と第2経路138との何れを介しても、ECT−ECU114がSBW異常信号SFLを受信することになるのを待たずに、フェールセーフ処理としての上記動力遮断制御を早期に実行することができる。その結果として、早期に安全な車両状態が確保される。
【0121】
(A7)本実施例によれば、上記動力遮断制御の実行とは、エンジン10から駆動輪への動力伝達経路(自動変速機14内の動力伝達経路)を遮断するニュートラルパターン形成が行われることであるので、シフトバイワイヤ制御装置103の異常に起因して、運転者の意図に反した車両走行がなされる可能性を排除できる。
【0122】
(A8)本実施例によれば、好適には、動力遮断手段148は、前記動力遮断制御(ニュートラルパターン形成)を中止(中断)する場合においては、その中止後に車両の駆動力が正常時駆動力FNMに戻る場合であっても前記駆動力制限制御が実行される場合であっても、上記動力遮断制御の実行開始から予め定められた復帰保留時間time_rvが経過した後に、その動力遮断制御を中止する。このようにした場合には、上記動力遮断制御の実行開始後、全く時間を空けずにその実行が中止されることが無いことから、制御ハンチングを防止できる。
【0123】
(A9)本実施例によれば、好適には、動力遮断手段148は、上記動力遮断制御(ニュートラルパターン形成)を中止する場合においては、その中止後に車両の駆動力が正常時駆動力FNMに戻る場合であっても上記駆動力制限制御が実行される場合であっても、前記復帰許可条件が成立した場合に、上記動力遮断制御を中止する。このようにした場合には、上記動力遮断制御の中止に伴って車両走行が開始された場合にその時の安全性を向上させることが可能である。
【0124】
(A10)本実施例によれば、動力伝達許可手段146は、動力遮断手段148により上記動力遮断制御が実行された場合には、その実行された動力遮断制御がSBW異常信号S1FL及びS2FLの何れの受信に起因したものかが判るニュートラルパターン形成履歴hst1_n,hst2_nを記憶しており、更に、動力伝達許可手段146はその履歴hst1_n,hst2_nを動力遮断手段148に出力し、動力遮断手段148は、そのニュートラルパターン形成履歴hst1_n,hst2_nに基づき上記動力遮断制御の実行を再開するか否かを決定する。従って、第1経路136または第2経路138を介してSBW異常信号SFLをECT−ECU114が受信しているときに上記動力遮断制御が中止された場合において、動力遮断手段148は、上記動力遮断制御の実行を再開するか否かを容易に決定することができる。
【0125】
(A11)本実施例によれば、フェールセーフ処理としての前記ニュートラルパターン形成が行われると、SBWアクチュエータ68によって制御されるマニュアルバルブ70のシフト位置(マニュアルバルブ位置)に拘わらず自動変速機14内の動力伝達経路が遮断されるので、シフトポジションセンサ67、118のそれぞれの信号が示すシフト位置が互いに不一致であることに起因して上記マニュアルバルブ位置が不明確である場合であっても、確実に自動変速機14内の動力伝達経路を遮断することができ、安全性を確保することができる。
【0126】
(A12)本実施例によれば、上記ニュートラルパターン形成が行われた場合には、自動変速機14の前進にかかる摩擦係合要素(クラッチC1、クラッチC2)と後進にかかる摩擦係合要素(ブレーキB2、ブレーキB3)との両方を解放した状態となるので、上記マニュアルバルブ位置が前進位置および後進位置のどちらの位置にあっても、確実に自動変速機14内の動力伝達経路を遮断することができる。
【0127】
(A13)本実施例によれば、自動変速機14は、上記マニュアルバルブ位置に拘わらず動力遮断できる変速機であるので、そのマニュアルバルブ位置が何れの位置にあっても、確実に自動変速機14内の動力伝達を遮断することができる。
【0128】
(A14)本実施例によれば、車速Vが実験的に低車速域に設定された所定車速V1以下であると車速判定手段150により判定された場合において、動力遮断手段148は、第1受信判定手段142と第2受信判定手段144との判定に基づき、前記動力遮断制御(ニュートラルパターン形成)を実行するので、中・高車速域での動力遮断による突然のトルク抜けが防止される。なお、中・高車速域で動力伝達経路が遮断されると、車両が不安定となり、操作性が低下する可能性がある。そこで、中・高車速域では上記動力遮断制御が実行されないことで、上記車両の操作性低下が回避される。
【0129】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0130】
例えば、本実施例の図8において、電子制御装置104(ECT−ECU114)は動力遮断手段148を有するが、動力遮断手段148は無くてもよい。そのようにした場合においては、動力伝達許可手段146は、第1受信判定手段142及び第2受信判定手段144の一方は前記正常検出結果を得た旨の判定をしているが他方は上記異常検出結果を得た旨の判定をした場合には、上記一方が正常状態確定判定XNFを行うのを待たずに、直ちに前記動力伝達許可(駆動力制限制御実行許可)を駆動力制限手段154に与える。そして、車両の駆動力は、例えば図14のように変化する。
【0131】
また、本実施例においては、ECT−ECU(第2制御部)114は、動力伝達許可手段146と動力遮断手段148と駆動力制限手段154と駆動力回復手段156とを、それぞれ独立して備えているが、それぞれの手段146,148,154,156が互いに独立している必要は無く、例えば、それらの一部または全部が一つの駆動力制御手段を構成していても差し支えない。
【0132】
また、本実施例においては、SBW−ECU112とECT−ECU114との間の通信経路134は第1経路136及び第2経路138の2系統であったが、3系統以上の通信経路134であってもよい。
【0133】
また、本実施例においては、通信経路134の通信方式としては、所謂CAN通信などが一例として示されているが、その通信方式に限定は無い。また、第1経路136と第2経路138との通信方式が互いに同一であっても相違していても構わない。
【0134】
また、本実施例においては、第1経路136および第2経路138を伝達される信号は電気信号であるが、その伝達される信号は光信号などであってもよく、信号形式に限定は無い。
【0135】
また、本実施例においては、第1経路136と第2経路138との何れについても前記正常状態確定時間time_nfは同じ値であったが、各通信経路134ごとに異なる値とされてもよい。また、正常状態確定時間time_nfは、通信経路134の通信速度が速いほど短く設定されてもよい。
【0136】
また、本実施例において、第1経路136及び第2経路138の通信速度は、互いに同一であっても相違していてもよい。
【0137】
また、本実施例においては、異常検出手段132は、シフトバイワイヤ制御装置103の異常を検出した場合にはSBW異常信号SFLを出力し、シフトバイワイヤ制御装置103の正常状態を検出している場合にはSBW異常信号SFLを出力しないが、逆のパターンの信号出力、すなわち、シフトバイワイヤ制御装置103の正常状態を検出している場合にはその正常状態を示す信号を出力し、シフトバイワイヤ制御装置103の異常を検出した場合には上記正常状態を示す信号を出力しないものであってもよい。また、異常検出手段132は、シフトバイワイヤ制御装置103の異常および正常の何れを検出しても、それらの状態を示す信号をそれぞれ出力するものであってもよい。
【0138】
また、本実施例の図9乃至図11に示されるフローチャートにおいて、SA3,SA5,SA6,SA7,SA10,SA12,SA13,SA14,SA20,SA24はそれぞれ必須のステップではなく、それらのステップの一部または全部が無いフローチャートであってもよい。
【0139】
また、本実施例においては、動力遮断手段148は、ニュートラルパターン形成履歴hst1_n,hst2_nを記憶するが、そのような履歴hst1_n,hst2_nを記憶しないものであってもよい。
【0140】
また、本実施例においては、ニュートラルパターン形成は、油圧制御回路40を制御して前進および後進への変速段を成立させなくするものであったが、例えばトルクコンバータ12と自動変速機14との間の入力軸32に動力遮断用のクラッチを設けることにより、動力伝達経路を遮断する構成であってもよい。要するに、ニュートラルパターン形成は、エンジン10の回転が駆動輪に伝達されることを前進・後進に拘わらず遮断できるものであればよい。
【0141】
また、本実施例では、燃料の燃焼によって動力を発生するエンジン駆動車両であったが、例えば電動モータによって走行する電気自動車、或いは複数の走行用駆動力源を備えているハイブリッド車両など、種々の車両用のシフトバイワイヤ方式の制御装置(シフトバイワイヤ制御装置)に好適に適用される。すなわち本発明においては、走行用駆動力源や変速機の形式等は特に限定されない。例えば、有段式の変速機に限定されず、変速比γを連続的に変更可能なCVTなどの無段変速機であっても本発明を適用することができる。
【0142】
また、本実施例においては、自動変速機14が動力伝達経路の一部を構成していたが、この自動変速機14がない車両用動力伝達装置8も考え得る。また、自動変速機14が手動の変速機に置き換わっていてもよい。
【0143】
また、本実施例においては、車両用動力伝達装置8はFF車両用のものであったが、特に駆動方式に限定は無く、FR車両用や4輪駆動車両用であってもよい。
【0144】
また、シフトレバー66の形式は、本実施例に限定されず、例えば押しボタン式のスイッチやスライド式スイッチ等の複数種類のシフトポジションを選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類のシフトポジションを切り換えられる装置や足の操作により複数種類のシフトポジションが切り換えられる装置等であっても構わない。すなわち、シフト操作を電気信号に変換可能な構成であれば本発明を適用することができる。
【0145】
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【図面の簡単な説明】
【0146】
【図1】本発明が好適に適用される車両用動力伝達装置の骨子図である。
【図2】図1の自動変速機の複数のギヤ段と摩擦係合要素の係合解放状態との関係を説明する作動表を示す図である。
【図3】図1の車両用動力伝達装置が備えている油圧制御回路のうち油圧供給装置およびクラッチC1、C2、ブレーキB1〜B3に関連する部分を示す油圧回路図である。
【図4】図3のシフトレバーの操作位置を説明する図である。
【図5】図3の油圧回路図においてフェールセーフバルブの近傍を拡大して示す回路図である。
【図6】図3の油圧回路図において第2ブレーキコントロールバルブの近傍を拡大して示す回路図である。
【図7】図1の車両用動力伝達装置において、運転者によるシフトレンジの変更指示に応じて、具体的には、運転者によるシフトレバーの操作に応じて、マニュアルバルブのシフト位置を電気的に切り換え自動変速機の変速制御を実行するシフトバイワイヤ制御装置の制御系統を説明するブロック線図であって、そのシフトバイワイヤ制御装置の構成の要部を示す図である。
【図8】図7の電子制御装置による制御機能の要部を説明する機能ブロック線図である。
【図9】図7の電子制御装置の制御作動の要部、すなわち、SBW異常信号SFLに基づいてフェールセーフ処理としての前記動力遮断制御、駆動力制限制御、駆動力回復制御を実行する制御作動を説明するフローチャートであって、3つのセット図面のうちの第1図目である。
【図10】図7の電子制御装置の制御作動の要部、すなわち、SBW異常信号SFLに基づいてフェールセーフ処理としての前記動力遮断制御、駆動力制限制御、駆動力回復制御を実行する制御作動を説明するフローチャートであって、3つのセット図面のうちの第2図目である。
【図11】図7の電子制御装置の制御作動の要部、すなわち、SBW異常信号SFLに基づいてフェールセーフ処理としての前記動力遮断制御、駆動力制限制御、駆動力回復制御を実行する制御作動を説明するフローチャートであって、3つのセット図面のうちの第3図目である。
【図12】図10のSA15及びSA18における制御作動の要部、すなわち、車両走行を可能とするフェールセーフ処理を実行する制御作動を説明するフローチャートである。
【図13】図9乃至図12のフローチャートに示す制御作動を説明するためのタイムチャートであって、具体的には、所定車速以下の車速で走行中に、ECT−ECU(第2制御部)がSBW異常信号S1FLを受信し且つSBW異常信号S2FLを受信しない状態が継続した場合において、動力遮断制御と駆動力制限制御と駆動力回復制御とが順次実行された場合を例として、その場合の車両の駆動力の変化を説明するためのタイムチャートである。
【図14】図13とは車両の駆動力変化が異なる別の制御パターンを説明するためにその車両の駆動力変化を例示したタイムチャートであって、具体的には、動力遮断制御は実行されず、フェールセーフ処理として駆動力制限制御と駆動力回復制御とが順次実行された場合を例示したタイムチャートである。
【符号の説明】
【0147】
103:シフトバイワイヤ制御装置
112:SBW−ECU(第1制御部)
114:ECT−ECU(第2制御部)
132:異常検出手段
134:通信経路
136:第1経路
138:第2経路
148:動力遮断手段
154:駆動力制限手段
156:駆動力回復手段

【特許請求の範囲】
【請求項1】
車両走行に関する制御信号を出力する第1制御部と、該制御信号に基づき車両走行に関する制御を実行する第2制御部と、前記制御信号を前記第1制御部と第2制御部との間で伝達する通信経路とを、含む車両のシフトバイワイヤ制御装置であって、
前記通信経路は、互いに並列な第1経路と第2経路とを含み、
前記第1制御部は、前記シフトバイワイヤ制御装置の異常を検出する異常検出手段を含み、
前記第2制御部は、
前記第1経路および第2経路の一方の通信経路を介しては前記異常を示す前記異常検出手段の異常検出結果を得ずに他方の通信経路を介して該異常検出結果を得た場合には、車両が駆動力を発生できる状態において、何れの通信経路を介しても前記異常検出結果を得ていない場合の正常時駆動力よりも低く前記車両の駆動力を制限する駆動力制限制御を実行する駆動力制限手段と、
該駆動力制限制御の開始から所定の駆動力制限時間経過後に前記車両の駆動力を前記正常時駆動力よりも低く前記駆動力制限制御時の駆動力よりも高い駆動力とする駆動力回復制御を実行する駆動力回復手段とを、含む
ことを特徴とする車両のシフトバイワイヤ制御装置。
【請求項2】
前記駆動力回復手段は、前記駆動力回復制御において、前記駆動力制限制御の開始後に、時間経過に従って所定の変化割合で前記車両の駆動力を上昇させる
ことを特徴とする請求項1に記載の車両のシフトバイワイヤ制御装置。
【請求項3】
前記駆動力回復手段は、前記駆動力回復制御において、車速が高いほど前記車両の駆動力が速く上昇するように前記変化割合を変更する
ことを特徴とする請求項2に記載の車両のシフトバイワイヤ制御装置。
【請求項4】
前記駆動力制限制御時の駆動力は、車両走行を可能とし出来るだけ低く設定された所定の車両の駆動力である
ことを特徴とする請求項1乃至3のいずれか1項に記載の車両のシフトバイワイヤ制御装置。
【請求項5】
前記第2制御部は、前記他方の通信経路を介して前記異常検出結果を得た場合には、前記駆動力制限手段による前記駆動力制限制御の実行に先立って動力伝達経路を遮断する動力遮断手段を含み、
駆動力制限手段は、前記一方の通信経路を介しては前記異常検出結果を得ずに他方の通信経路を介して該異常検出結果を得たことが所定時間継続した場合に、前記動力遮断手段に前記動力伝達経路を遮断することを中止させ、且つ、前記駆動力制限制御を実行する
ことを特徴とする請求項1乃至4のいずれか1項に記載の車両のシフトバイワイヤ制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2009−293498(P2009−293498A)
【公開日】平成21年12月17日(2009.12.17)
【国際特許分類】
【出願番号】特願2008−147479(P2008−147479)
【出願日】平成20年6月4日(2008.6.4)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】