説明

透明ポリマーフィルムの製造方法と該方法により製造される透明ポリマーフィルム、位相差フィルム、偏光板、および液晶表示装置

【課題】発煙や油汚染を生じさせずに、レタデーションの発現性を調整できる透明ポリマーフィルムの製造方法を提供する。
【解決手段】数平均分子量500以上の高分子系可塑剤を含むポリマーフィルムを、Tc≦T<Tm0の条件を満たす温度T(単位;℃)で熱処理する[Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明ポリマーフィルムの製造方法に関する。より詳細には、発煙や油汚染を生じさせずに、レタデーションの発現性を容易に制御することができる製造方法に関する。さらに本発明は、該製造方法により製造される透明ポリマーフィルムとそれを利用した位相差フィルム、偏光板および液晶表示装置にも関する。
【背景技術】
【0002】
ハロゲン化銀写真感光材料、位相差フィルム、偏光板および画像表示装置には、セルロースエステル、ポリエステル、ポリカーボネート、シクロオレフィンポリマービニルポリマー、および、ポリイミド等に代表されるポリマーフィルムが用いられている。これらのポリマーからは、平面性や均一性の点でより優れたフィルムを製造することができるため、光学用途のフィルムとして広く採用されている。例えば、適切な透湿度を有するセルロースエステルフィルムは、最も一般的なポリビニルアルコール(PVA)/ヨウ素からなる偏光膜とオンラインで直接貼り合わせることが可能である。そのため、セルロースアシレート、特にセルロースアセテートは偏光板の保護フィルムとして広く採用されている。
【0003】
透明ポリマーフィルムを、位相差フィルム、位相差フィルムの支持体、偏光板の保護フィルム、および液晶表示装置のような光学用途に使用する場合、その光学異方性の制御は、表示装置の性能(例えば、視認性)を決定する上で非常に重要な要素となる。近年の液晶表示装置の広視野角化要求に伴ってレタデーションの補償性向上が求められるようになっており、偏光膜と液晶セルとの間に配置される位相差フィルムの面内方向のレタデーション値(Re;以下、単に「Re」と称することがある。)と膜厚方向のレタデーション値(Rth;以下、単に「Rth」と称することがある。)とを適切に制御することが要求されている。中でも、|Rth|/Reが小さいフィルム、特に|Rth|/Re<0.5を満たす透明ポリマーフィルムは製造が容易ではないため、簡便に製造する方法を開発することが求められている。
ポリマーフィルムの製造方法として、ポリマーフィルムに熱収縮性フィルムを接着して加熱延伸処理を行い、その後に熱収縮性フィルムを剥離する連続的な製造方法が開示されている(例えば、特許文献1や特許文献2参照)。これらの文献の実施例によれば、この方法によって製造されるポリカーボネートフィルム等は、|Rth|/Re<0.5の条件を満たすものであることが明らかにされている。しかしながら、この方法は大量の熱収縮性フィルムを消費してしまうものであるうえ、得られたフィルムの品質にばらつきがあるという問題がある。この問題は、セルロースエステルのような弾性率の高いポリマーで特に顕著であった。
【0004】
一方、光学用途に用いる透明ポリマーフィルムを製造する方法としては、面状が良好なフィルムを提供することができる溶液製膜法を用いることが好ましい。そして、溶液製膜法によってフィルムを製造する際には、高速製膜適性を付与する目的で、可塑剤を添加することが好ましい。これは、可塑剤を添加することによって、溶液製膜時の乾燥の際に溶媒を短時間で揮発させることができ、ポリマーフィルム中の残留溶媒量を低減させることができるためである。しかしながら、通常用いられている可塑剤を含む透明ポリマーフィルムは、製造工程中に過酷な条件で処理しようとすると望ましくない現象が生じたり、フィルムに悪影響が及んだりすることがある。例えば、透明ポリマーフィルムを高温で処理しようとすると発煙が生じたり、油分で汚染されたりすることがある。このため、可塑剤を用いた透明ポリマーフィルムに対する製造条件や処理条件には自ずと制約があった。一方、高分子量の可塑剤を写真用トリアセチルセルロースエステルフィルムに使用することは知られているが、高温での処理を施して光学用途に適用できることは、想像することが困難であった(特許文献3参照)
【特許文献1】特開平5−157911号公報
【特許文献2】特開2000−231016号公報
【特許文献3】特開平5−197073号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
このように、従来は、望ましくない現象や悪影響を発生させることなく、ReとRthを所望の範囲内に簡便に調整することができる実用的な方法は見出されていなかった。このような従来技術の課題を考慮して、本発明者らは、発煙や油汚染を生じさせずに、比較的容易な操作によってレタデーションの発現性を調整することができる透明ポリマーフィルムの製造方法を提供することを目的として設定した。
【課題を解決するための手段】
【0006】
本発明者らは鋭意検討を重ねた結果、特定の条件を満たす可塑剤を使用するとともに、通常、乾燥工程においても行われない、Tc以上Tm0未満の高い温度でポリマーフィルムを熱処理することによって従来技術の課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
【0007】
(態様1)
ポリマーと数平均分子量が500〜10000であって繰り返し単位を有する可塑剤とを含有するポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする透明ポリマーフィルムの製造方法。
式(1): Tc≦T<Tm0
[式中、Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]
(態様2)
前記熱処理と同時に延伸することを特徴とする態様1に記載の透明ポリマーフィルムの製造方法。
(態様3)
前記熱処理を搬送しながら行うことを特徴とする態様1または2に記載の透明ポリマーフィルムの製造方法。
(態様4)
前記熱処理を搬送しながら行い、且つ、該搬送の方向に延伸することを特徴とする態様1に記載の透明ポリマーフィルムの製造方法。
(態様5)
前記熱処理後にTc未満の温度で延伸することを特徴とする態様1〜4のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様6)
前記可塑剤が、ポリエステル系高分子可塑剤、ポリエステルポリエーテル系高分子可塑剤、ポリエステルポリウレタン系高分子可塑剤、ポリアクリル酸エステル系高分子可塑剤、およびポリメタクリル酸エステル系高分子可塑剤からなる群より選択される少なくとも1種の可塑剤であることを特徴とする態様1〜5に記載の透明ポリマーフィルムの製造方法。
(態様7)
前記熱処理を搬送しながら行い、前記熱処理後にTc未満の温度で前記熱処理時の搬送方向に直交する方向に延伸することを特徴とする態様6に記載の透明ポリマーフィルムの製造方法。
【0008】
(態様8)
前記熱処理前に、熱処理前のポリマーフィルムを延伸することを特徴とする態様1〜7のいずれか一項に記載の透明ポリマーフィルムの製造方法
(態様9)
前記熱処理前の延伸と同じ方向に延伸しながら前記熱処理を行うことを特徴する態様8に記載の透明ポリマーフィルムの製造方法。
(態様10)
前記熱処理時に、ポリマーフィルムを5〜80%収縮させることを特徴とする態様1〜9のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様11)
前記熱処理前のポリマーフィルムが搬送されて作製されており、該搬送の方向と直交する方向に前記熱処理時の収縮をさせることを特徴とする態様10に記載の透明ポリマーフィルムの製造方法。
(態様12)
前記熱処理後に100〜1,000,000℃/分でフィルムを冷却することを特徴とする態様1〜11のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様13)
前記数平均分子量500〜10000の可塑剤がポリマーに対して2〜30質量%含有されていることを特徴とする態様1〜12のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様14)
前記ポリマーがセルロースアシレートであることを特徴とする態様1〜13のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様15)
前記セルロースアシレートが下記式(3)を満足することを特徴とする態様14に記載の透明ポリマーフィルムの製造方法。
式(3): 2.70<SA+SB≦3.00
[式中、SAはセルロースの水酸基に置換されているアセチル基の置換度を表し、SBはセルロースの水酸基に置換されている炭素数3以上のアシル基の置換度を表す。]
(態様16)
前記セルロースアシレートが下記式(4)を満足することを特徴とする態様14または15に記載の透明ポリマーフィルムの製造方法。
式(4): 0<SB≦3.0
[式中、SBはセルロースの水酸基に置換されている炭素数3以上のアシル基の置換度を表す。]
(態様17)
前記熱処理前のポリマーフィルムが、搬送されて作製されており、該搬送方向へ、残留溶媒量が5〜1000%の状態で0.1%以上15%未満延伸されていることを特徴とする態様1〜16のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様18)
前記熱処理前のポリマーフィルムが、搬送されて作製されており、該搬送方向へ、残留溶媒量が5〜1000%の状態で15〜300%延伸されていることを特徴とする態様1〜17のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様19)
前記熱処理前のポリマーフィルムの80μm換算の透湿度が100g/(m2・day)以上であることを特徴とする態様1〜18のいずれか一項に記載の透明ポリマーフィルムの製造方法。
【0009】
(態様20)
前記熱処理前のポリマーフィルムが、該熱処理前のポリマーフィルムのRthを上昇させる添加組成物を含有することを特徴とする態様1〜19のいずれか一項に記載の透明ポリマーフィルムの製造方法。
(態様21)
下記式(2)を満足する透明ポリマーフィルムを製造することを特徴とする態様1〜20のいずれか一項に記載の透明ポリマーフィルムの製造方法。
式(2): |Rth|/Re<0.5
[式中、Reは面内方向のレタデーション値(単位;nm)を表し、Rthは膜厚方向のレタデーション値(単位;nm)を表す。]
(態様22)
ポリマーと数平均分子量500〜10000であって繰り返し単位を有する可塑剤とを含有する透明ポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理することを特徴とする、透明ポリマーフィルムのレタデーションの発現性を調整する方法。
式(1): Tc≦T<Tm0
[式中、Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]
(態様23)
ポリマーと数平均分子量500〜10000であって繰り返し単位を有する可塑剤とを含有する透明ポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする、下記式(2)を満足する透明ポリマーフィルムの製造方法。
式(1): Tc≦T<Tm0
[式中、Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]
式(2): |Rth|/Re<0.5
[式中、Reは面内方向のレタデーション値(単位;nm)を表し、Rthは膜厚方向のレタデーション値(単位;nm)を表す。]
(態様24)
態様1〜23のいずれか一項に記載の製造方法により製造された透明ポリマーフィルム。
(態様25)
前記ポリマーがセルロースアシレートである態様24に記載の透明ポリマーフィルム。
(態様26)
態様24または25に記載の透明ポリマーフィルムを少なくとも一枚有することを特徴とする位相差フィルム。
(態様27)
態様24または25に記載の透明ポリマーフィルムを少なくとも一枚有することを特徴とする偏光板。
(態様28)
前記透明ポリマーフィルムが偏光膜と直接貼合されていることを特徴とする態様27に記載の偏光板。
(態様29)
態様24もしくは25に記載の透明ポリマーフィルム、態様26に記載の位相差フィルム、または態様27もしくは28に記載の偏光板を、少なくとも1枚有することを特徴とする液晶表示装置。
【発明の効果】
【0010】
本発明の製造方法によれば、熱処理という比較的簡単な操作を行うことによって、発煙や油汚染を生じさせずに透明フィルムのレタデーションの発現性を調整することができる。特に、従来では達成が困難であった|Rth|/Re<0.5等のレタデーション領域の透明フィルムも容易に製造することができる。さらに、本発明の製造方法によれば、熱処理工程を通過して作製されたポリマーフィルムの両端部を切り落とす工程(所謂、耳切り工程)で、耳切断性を顕著に改善することができる。
【発明を実施するための最良の形態】
【0011】
以下において、本発明の透明ポリマーフィルムの製造方法および該方法により製造される透明ポリマーフィルムについて詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
【0012】
《透明ポリマーフィルムの製造方法》
[ポリマー]
まず、本発明の透明ポリマーフィルムの製造方法に使用することができるポリマーについて説明する。
本発明の透明ポリマーフィルムの構成要素となるポリマーとしては、セルロースエステル(例えば、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルローストリプロピオネート、セルロースジアセテート)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー)、ポリエステル(例えば、ポリメタクリル酸エステル、ポリアクリル酸エステル)、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリスルホン、ビニルポリマー(例えば、ポリビニルアルコール)、ポリアミド、ポリイミド、シクロオレフィンコポリマー、ポリノルボルネン等の光学用途等に用いることができる透明ポリマーフィルムを構成しうるポリマーを挙げることができる。前記ポリマーは、適切な透湿度を達成するために、主鎖もしくは側鎖に水酸基、アミド、イミドまたはエステル等の親水的な構造を有することが好ましい。本発明では、共重合体を用いてもよいし、ポリマー混合物を用いてもよい。前記ポリマーとしては、セルロースエステルが好ましく、中でもセルロースアシレートがより好ましい。
【0013】
前記ポリマーとしては、粉末や粒子状のものを使用することができ、また、ペレット化したものも用いることができる。
前記ポリマーの含水率は、1.0質量%以下であることが好ましく、0.7質量%以下であることがさらに好ましく、0.5質量%以下であることが最も好ましい。また、前記含水率は場合により0.2質量%以下であることが好ましい。前記ポリマーの含水率が好ましい範囲内にない場合には、前記ポリマーを乾燥風や加熱などにより乾燥してから使用することが好ましい。
これらのポリマーは単独で用いてもよいし、2種類以上のポリマーを併用してもよい。
【0014】
前記セルロースエステルとしては、セルロースエステル化合物、および、セルロースを原料として生物的或いは化学的に官能基を導入して得られるエステル置換セルロース骨格を有する化合物が挙げられ、その中でもセルロースアシレートが特に好ましい。
なお、本発明の透明ポリマーフィルムの主成分としてのポリマーとしては、上述のセルロースアシレートを用いることが好ましい。ここで、「主成分としてのポリマー」とは、単一のポリマーからなる場合には、そのポリマーのことを示し、複数のポリマーからなる場合には、構成するポリマーのうち、最も質量分率の高いポリマーのことを示す。
【0015】
前記セルロースエステルは、セルロースと酸とのエステルである。前記エステルを構成する酸としては、有機酸が好ましく、カルボン酸がより好ましく、炭素原子数が2〜22の脂肪酸がさらに好ましく、炭素原子数が2〜4の低級脂肪酸が最も好ましい。
前記セルロースアシレートは、セルロースとカルボン酸とのエステルである。前記セルロースアシレートは、セルロースを構成するグルコース単位の2位、3位および6位に存在するヒドロキシル基の水素原子の全部または一部が、アシル基で置換されている。前記アシル基の例としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、および、シンナモイル基が挙げられる。前記アシル基としては、アセチル基、プロピオニル基、ブチリル基、ドデカノイル基、オクタデカノイル基、ピバロイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が好ましく、アセチル基、プロピオニル基、ブチリル基が最も好ましい。
セルロースエステルは、セルロースと複数の酸とのエステルであってもよい。また、セルロースアシレートは、複数のアシル基で置換されていてもよい。
【0016】
セルロースアシレートのセルロースの水酸基に置換されているアセチル基(炭素数2)の置換度をSAとし、セルロースの水酸基に置換されている炭素数3以上のアシル基の置換度をSBとしたとき、SAおよびSBを調整することにより、本発明の製造方法により製造される透明ポリマーフィルムのReの発現性、レタデーションの湿度依存性の調整を行うことができる。また、Tcも調整することができ、これにより、熱処理温度を調整することができる。なお、レタデーションの湿度依存性とは、湿度によるレタデーションの変化である。
本発明のフィルムである、本発明の製造方法により製造される透明ポリマーフィルムに求める光学特性により、適宜、SA+SBを調整することとなるが、好ましくは2.70<SA+SB≦3.00、より好ましくは2.88≦SA+SB≦3.00であり、さらに好ましくは2.89≦SA+SB≦2.99であり、さらにより好ましくは2.90≦SA+SB≦2.98であり、特に好ましくは2.92≦SA+SB≦2.97である。SA+SBを大きくすることにより、熱処理後に得られるReを大きく、Tcをより低くすることができ、レタデーションの湿度依存性も改善することができる。Tcを低く設定することにより、熱処理温度を比較的低く設定することが可能となる。
また、SBを調整することにより、本発明の製造方法により製造される透明ポリマーフィルムのレタデーションの湿度依存性を調整することができる。SBを大きくすることにより、レタデーションの湿度依存性を低減させることができ、融点が下がる。レタデーションの湿度依存性および融点の低下のバランスを考慮すると、SBの範囲は、好ましくは0<SB≦3.0、より好ましくは0<SB≦1.0であり、さらに好ましくは0.1≦SB≦0.7である。なお、セルロースの水酸基がすべて置換されているとき、上記の置換度は3となる。
【0017】
セルロースエステルは公知の方法により合成することができる。
例えば、セルロースアシレートの合成方法について、基本的な原理は、右田伸彦他、木材化学180〜190頁(共立出版、1968年)に記載されている。セルロースアシレートの代表的な合成方法としては、カルボン酸無水物−カルボン酸−硫酸触媒による液相アシル化法が挙げられる。具体的には、まず、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸などのカルボン酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。前記アシル化混液は、一般に溶媒としてのカルボン酸、エステル化剤としてのカルボン酸無水物および触媒としての硫酸を含む。また、前記カルボン酸無水物は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。
【0018】
次いで、アシル化反応終了後に、系内に残存している過剰カルボン酸無水物の加水分解を行うために、水または含水酢酸を添加する。さらに、エステル化触媒を一部中和するために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩、水酸化物または酸化物)を含む水溶液を添加してもよい。さらに、得られた完全セルロースアシレートを少量のアシル化反応触媒(一般には、残存する硫酸)の存在下で、20〜90℃に保つことにより鹸化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記中和剤などを用いて完全に中和するか、或いは、前記触媒を中和することなく水若しくは希酢酸中にセルロースアシレート溶液を投入(或いは、セルロースアシレート溶液中に、水または希酢酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理により目的物であるセルロースアシレートを得ることができる。
【0019】
前記セルロースアシレートの重合度は、粘度平均重合度で150〜500が好ましく、200〜400がより好ましく、220〜350がさらに好ましい。前記粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)の記載に従って測定することができる。前記粘度平均重合度の測定方法については、特開平9−95538号公報にも記載がある。
【0020】
また、低分子成分が少ないセルロースアシレートは、平均分子量(重合度)が高いが、粘度は通常のセルロースアシレートよりも低い値になる。このような低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより行うことができる。また、低分子成分の少ないセルロースアシレートを合成により得ることもできる。低分子成分の少ないセルロースアシレートを合成する場合、アシル化反応における硫酸触媒量を、セルロース100質量に対して0.5〜25質量部に調整することが好ましい。前記硫酸触媒の量を前記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。セルロースアシレートの重合度や分子量分布は、ゲル浸透クロマトグラフィー(GPC)等により測定することができる。
セルロースエステルの原料綿や合成方法については、発明協会公開技報(公技番号2001−1745号、2001年3月15日発行、発明協会)7〜12頁にも記載がある。
【0021】
[可塑剤]
(本発明で用いる可塑剤の特徴)
本発明のポリマーフィルムは、分子量が500〜10000であって繰り返し単位を有する可塑剤(以下、高分子系可塑剤という)を含有することを特徴とする。溶液流延において、可塑剤は溶媒の揮発速度を速めかつ残留溶媒量を低減するために必須な素材である。また、溶融製膜法によるポリマーフィルムにおいても、可塑剤は着色や膜強度劣化を防止するために有用な素材である。さらに、本発明のポリマーフィルムに該高分子系可塑剤を添加することは、機械的性質向上、柔軟性付与、耐吸水性付与、水分透過率低減等のフィルム改質の観点で、有用な効果を示すものである。また本発明においては、後述する実施例で示すように、製造工程でのハンドリング特性の改良に、非常に有効である。
【0022】
ここで、本発明における高分子系可塑剤は、その化合物中に繰り返し単位部分を有することを特徴とする。本発明の高分子可塑剤は、その数平均分子量が500〜10000であるが、好ましくは数平均分子量600〜8000であり、更に好ましくは数平均分子量700〜5000であり、特に好ましくは数平均分子量700〜3500である。ただし、本発明における高分子系可塑剤は、このような繰り返し単位部分を有する化合物のみからなるものに限定されることはなく、繰り返し単位を有さない化合物との混合物であってもよい。
【0023】
また、本発明の高分子系可塑剤は使用する環境温度あるいは湿度下で(一般には室温状況、所謂25℃、相対湿度60%)、液体であっても固体であっても良い。また、その色味は少ないほど良好であり特に無色であることが好ましい。熱的にはより高温において安定であることが好ましく、分解開始温度が150℃以上、更に200℃以上が好ましい。添加量は光学物性・機械物性に悪影響がなければ良く、その配合量は、本発明の目的を損なわない範囲で適宜選択され、本発明に係る重合体100質量部に対して好ましくは1〜50質量部、より好ましくは2〜40質量部である。特に5〜30質量%が好ましい。
以下、本発明に用いられる高分子系可塑剤について、その具体例を挙げながら詳細に説明するが、本発明で用いることができる高分子系可塑剤はこれらに限定されるものではない。
【0024】
(高分子系可塑剤の種類)
本発明のポリマーフィルムに用いることのできる高分子系可塑剤としては、特に限定されないが、ポリエステル系可塑剤、ポリエーテル系可塑剤、ポリウレタン系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤、ポリエーテルポリウレタン系可塑剤、ポリアミド系可塑剤、ポリスルフォン系可塑剤、ポリスルフォンアミド系可塑剤、後述するその他の高分子系可塑剤から選択される少なくとも1種の数平均分子量が500以上の可塑剤を好ましく挙げることができる。
【0025】
そのうち少なくとも1種は、ポリエステル系可塑剤、ポリエーテル系可塑剤、ポリウレタン系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤、ポリエーテルポリウレタン系可塑剤、ポリアミド系可塑剤、ポリスルフォン系可塑剤、ポリスルフォンアミド系可塑剤であることが更に好ましく、特にはポリエステル系可塑剤、ポリエステルポリウレタン系可塑剤、ポリエステルポリエーテル系可塑剤であることが好ましい。以下に、本発明で好ましく用いられる高分子系可塑剤について種類別に記述する。
【0026】
(ポリエステル系可塑剤)
まず、本発明で用いられるポリエステル系可塑剤について説明する。好ましいポリエステル系可塑剤としては、特に限定されないが、ジカルボン酸とグリコールの反応によって得られるものであり、反応物の両末端は反応物のままでもよいが、更にモノカルボン酸やモノアルコールを反応させて、所謂末端の封止を実施してもよい。この末端封止は、特にフリーなカルボン酸を含有させないために実施されることが、保存性などの点で有効である。本発明のポリエステル系可塑剤に使用されるジカルボン酸は、炭素数4〜12の脂肪族ジカルボン酸残基または炭素数8〜12の芳香族ジカルボン酸残基であることが好ましい。
【0027】
本発明で好ましく用いられるポリエステル系可塑剤の炭素数4〜12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、1,4−シクロヘキサンジカルボン酸等がある。また炭素数8〜12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、1,5―ナフタレンジカルボン酸、1,4―ナフタレンジカルボン酸等がある。これらは、それぞれ1種または2種以上の混合物として使用される。次にポリエステル系可塑剤に利用されるグリコールについて記すと、炭素数が2〜12の脂肪族または脂環式グリコール残基、炭素数6〜12の芳香族グリコール残基を表わす。
【0028】
炭素原子2〜12個の脂肪族グリコールまたは脂環式グリコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロ−ルペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される
【0029】
また、本発明のポリエステル可塑剤の両末端がカルボン酸とならないように、モノアルコール残基やモノカルボン酸残基で保護することが好ましい。その場合、モノアルコール残基としては炭素数1〜30の置換、無置換のモノアルコール残基が好ましく、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2−エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert−ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどの脂肪族アルコール、ベンジルアルコール、3−フェニルプロパノールなどの置換アルコールなどが挙げられる。
【0030】
好ましく使用され得る末端封止用アルコール残基は、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、イソオクタノール、2−エチルヘキシルアルコール、イソノニルアルコール、オレイルアルコール、ベンジルアルコールであり、特にはメタノール、エタノール、プロパノール、、イソブタノール、シクロヘキシルアルコール、2−エチルヘキシルアルコール、イソノニルアルコール、ベンジルアルコールである。
【0031】
また、モノカルボン酸残基で封止する場合は、モノカルボン酸残基として使用されるモノカルボン酸は、炭素数1〜30の置換、無置換のモノカルボン酸が好ましい。これらは、脂肪族モノカルボン酸でも芳香族カルボン酸でもよい。まず好ましい脂肪族モノカルボン酸について記述すると、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸が挙げられ、芳香族モノカルボン酸としては、例えば安息香酸、p−tert−ブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。
【0032】
以上、具体的な好ましいポリエステル系可塑剤としては、ポリ(エチレングリコール/アジピン酸)エステル、ポリ(プロピレングリコール/アジピン酸)エステル、ポリ(1,3−ブタンジオール/アジピン酸)エステル、ポリ(プロピレングリコール/セバチン酸)エステル、ポリ(1,3−ブタンジオール/セバチン酸)エステル、ポリ(1,6−ヘキサンジオール/アジピン酸)エステル、ポリ(プロピレングリコール/フタル酸)エステル、ポリ(1,3−ブタンジオール/フタル酸)エステル、ポリ(プロピレングリコール/テレフタル酸)エステル、ポリ(プロピレングリコール/1,5−ナフタレン−ジカルボン酸)エステル、ポリ(プロピレングリコール/テレフタル酸)エステルの両末端が2−エチル−ヘキシルアルコールエステル/ポリ(プロピレングリコール、アジピン酸)エステルの両末端が2−エチル−ヘキシルアルコールエステル、アセチル化ポリ(ブタンジオール/アジピン酸)エステル、などを挙げることができる。
【0033】
かかるポリエステル類の合成は常法により、上記二塩基性酸またはこれらのアルキルエステル類とグリコール類とのポリエステル化反応またはエステル交換反応による熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれかの方法によっても容易に合成し得るものである。これらのポリエステル系可塑剤については、村井孝一編者「可塑剤 その理論と応用」(株式会社幸書房、昭和48年3月1日初版第1版発行)に詳細な記載がある。また、特開平05−155809号、特開平05−155810号、特開平5−197073号、特開2006−259494号、特開平07−330670号、特開2006−342227号、特開2007−003679号各公報などに記載されている素材を利用することもできる。
【0034】
また、商品として、株式会社ADEKAからポリエステル系可塑剤としてDIARY 2007、55頁〜27頁に記載にアデカサイザー(アデカサイザーPシリーズ、アデカサイザーPNシリーズとして各種あり)を使用でき、また大日本インキ化学工業株式会社「ポリマ関連製品一覧表2007年版」25頁に記載のポリライト各種の商品や、大日本インキ化学工業株式会社「DICのポリマ改質剤」(2004.4.1.000VIII発行)2頁〜5頁に記載のポリサイザー各種を利用できる。さらに、米国 CP HALL 社製のPlasthall Pシリーズとして入手できる。ベンゾイル官能化ポリエーテルは、イリノイ州ローズモントのベルシコルケミカルズ(Velsicol Chemicals)から商品名BENZOFLEXで商業的に販売されている(例えば、BENZOFLEX400、ポリプロピレングリコールジベンゾエート)。
【0035】
(ポリエステルポリエーテル系可塑剤)
次に、本発明で用いられるポリエステルポリエーテル系可塑剤について説明する。本発明のポリエステルポリエーテル系可塑剤とは、ジカルボン酸とポリエーテルジオールとの縮合ポリマーを示すものである。ジカルボン酸としては、ポリエステル系可塑剤で記述した炭素数4〜12の脂肪族ジカルボン酸残基または炭素数8〜12の芳香族ジカルボン酸残基をそのまま使用するものである。
【0036】
次に炭素原子2〜12個の脂肪族グリコールを有するポリエーテル類としては、ポリエチレンエーテルグリコール、ポリプロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコールならびにこれらの組み合わせが挙げられる。典型的に有用な市販のポリエーテルグリコール類としては、カーボワックス(Carbowax)レジン、プルロニックス(Pluronics)レジンおよびニアックス(Niax)レジンが挙げられる。本発明に使用されるポリエステルポリエーテル系可塑剤の製造に際しては、当業者に周知の常用されている重合法が使用できる。
【0037】
これらのポリエステルエーテル系可塑剤としては、米国特許第4,349,469号明細書に記載されているポリエステルポリエーテル系可塑剤などが挙げられる。基本的に、例えばジカルボン酸として1,4−シクロヘキサンジカルボン酸と、ポリエーテルとして1,4−シクロヘキサンジメタノールおよびポリテトラメチレンエーテルグリコールなどから合成されるポリエステルポリエーテル系可塑剤である。その他の有用なポリエステルポリエーテル系可塑剤としては、DuPont製のハイテレル(Hytrel)コポリエステル類やGAF製のガルフレック(Galflex)ポリマーのようなコポリマーのごとき市販のレジンが挙げられる。これらは、特開平5−197073号公報に記載の素材を利用できる。株式会社ADEKAからアデカサイザーRSシリーズとして市販されており利用できる。また、アルキル官能化ポリアルキレンオキシドであるポリエステルエーテル系可塑剤は、デラウェア州ウィルミントンのアイシーアイ(ICI Chemicals)から商品名PYCALで商業的に販売されている(例えば、PYCAL94、ポリエチレンオキシドのフェニルエステル)。
【0038】
(ポリエステルポリウレタン系可塑剤)
更に、本発明で用いられるポリエステルポリウレタン系可塑剤について説明する。該可塑剤は、ポリエステルとイソシアナート化合物の縮合で得ることができる。まず、ポリエステルとしては、両末端を封止する前のポリエステル系可塑剤をそのまま使用でき、ポリエステル系可塑剤で前述した素材を好ましく利用できる。
【0039】
ポリウレタン構造を形成するジイソシアナート成分としては、エチレンジイソシアナート、トリメチレンジイソシアナート、テトラメチレンジイソシアナート、ヘキサメチレンジイソシアナート等で代表されるOCN(CH2p NCO(p=2〜8)ポリメチレンイソシアナート並びに、p−フェニレンジイソシアナート、トリレンジイソシアナート、p,p′−ジフェニルメタンジイソシアナート、1,5−ナフチレンジイソシアナート等の芳香族ジイソシアナート、更には、m−キシリレンジイソシアナート等が用いられるが、これらに制限されるものではない。これらの中でも、特にトリレンジイソシアナート、m−キシリレンジイソシアナート、テトラメチレンジイソシアナートが好ましいものである。
【0040】
本発明においてポリエステルポリウレタン系可塑剤の合成は、原料のポリエステルジオール類とジイソシアナートとを混じ攪拌下加熱させる常法の合成法により、容易に得る事ができる。これらは、特開平5−197073号、特開2001−122979号、特開2004−175971号、特開2004−175972号各公報などに記載してある素材を利用できる。
【0041】
(その他の高分子系可塑剤)
本発明においては、前述したポリエステル系可塑剤、ポリエステルポリエーテル系可塑剤やポリエステルポリウレタン系可塑剤だけでなく、その他の高分子系可塑剤も使用し得るものである。該高分子系可塑剤としては、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エステル、ポリメタクリル酸エステル等のアクリル系ポリマー(エステル基としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基、ノニル基、イソノニル基、tert−ノニル基、ドデシル基、トリデシル基、ステアリル基、オレイル基、ベンジル基、フェニル基など)、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア、フェノール−ホルムアルデヒド縮合物、尿素−ホルムアルデヒド縮合物、酢酸ビニル、等が挙げられる。
【0042】
これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でも良い。また、上記ポリマーを2種以上併用して用いても良い。これらの高分子量可塑剤は、各々単独で用いても良く、またこれらを混合して用いても同様の効果が得られる。これらの中でも、ポリアクリル酸エステル、ポリメタクリル酸エステルあるいは他のビニルモノマーとの共重合度体が好ましく、特にはポリアクリル酸エステル、ポリメタクリル酸エステル等のアクリル系ポリマー(エステル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、2−エチルヘキシル基、イソノニル基、オレイル基)を基本とする高分子可塑剤が好ましい。
【0043】
(具体的な高分子可塑剤の例)
以下に、好ましい高分子系可塑剤の具体例を記すが、本発明で用いることができる高分子系可塑剤はこれらに限定されるものではない。
PP−1: エタンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量2500)
PP−2: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物(数平均分子量1500)
PP−3: 1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1300)
PP−4: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物(数平均分子量1500)
PP−5: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1200)
PP−6: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1500)
PP−7: 1,4−シクロヘキサンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量800)
【0044】
PP−8: 1,3−プロパンジオール/コハク酸(1/1モル比)との縮合物の両末端のブチルエステル化体(数平均分子量1300)
PP−9: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物の両末端のシクロヘキシルエステル化体(数平均分子量1500)
PP−10: エタンジオール/コハク酸(1/1モル比)との縮合物の両末端の2−エチルヘキシルエステル化体(数平均分子量3000)
PP−11: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物の両末端のイソノニルエステル化体(数平均分子量1500)
PP−12: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端のプロピルエステル化体(数平均分子量1300)
PP−13: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端の2−エチルヘキシルエステル化体(数平均分子量1300)
PP−14: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物の両末端のイソノニルエステル化体(数平均分子量1300)
PP−15: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物の両末端のブチルエステル化体(数平均分子量1800)
【0045】
PP−16: エタンジオール/テレフタル酸(1/1モル比)との縮合物(数平均分子量2000)
PP−17: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸(1/1モル比)との縮合物(数平均分子量1500)
PP−18: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物(数平均分子量1200)
PP−19: 1,3−プロパンジオール/テレフタル酸(1/1モル比)との縮合物両末端のベンジルエステル化体(数平均分子量1500)
PP−20: 1,3−プロパンジオール/1,5−ナフタレンジカルボン酸両末端のプロピルエステル化体(1/1モル比)との縮合物(数平均分子量1500)
PP−21: 2−メチル−1,3−プロパンジオール/イソフタル酸(1/1モル比)との縮合物両末端のブチルエステル化体(数平均分子量1200)
【0046】
PP−22: ポリ(平均重合度5)プロピレンエーテルグリコール/コハク酸(1/1モル比)との縮合物(数平均分子量1800)
PP−23: ポリ(平均重合度3)エチレンエーテルグリコール/グルタル酸(1/1モル比)との縮合物(数平均分子量1600)
PP−24: ポリ(平均重合度4)プロピレンエーテルグリコール/アジピン酸(1/1モル比)との縮合物(数平均分子量2200)
PP−25: ポリ(平均重合度4)プロピレンエーテルグリコール/フタル酸(1/1モル比)との縮合物(数平均分子量1500)
【0047】
PP−26: ポリ(平均重合度5)プロピレンエーテルグリコール/コハク酸(1/1モル比)との縮合物両末端のブチルエステル化体(数平均分子量1900)
PP−27: ポリ(平均重合度3)エチレンエーテルグリコール/グルタル酸(1/1モル比)との縮合物両末端の2−エチルヘキシルエステル化体(数平均分子量1700)
PP−28: ポリ(平均重合度4)プロピレンエーテルグリコール/アジピン酸(1/1モル比)との縮合物両末端のtert−ノニルエステル化体(数平均分子量1300)
PP−29: ポリ(平均重合度4)プロピレンエーテルグリコール/フタル酸(1/1モル比)との縮合物両末端のプロピルエステル化体(数平均分子量1600)
【0048】
PP−30: 1,3−プロパンジオール/コハク酸(1/1モル比)との縮合物(数平均分子量1500)をトリメチレンジイソシアナート(1モル)で縮合したポリエステルウレタン化合物、
PP−31: 1,3−プロパンジオール/グルタル酸(1/1モル比)との縮合物(数平均分子量1200)をテトラメチレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−32: 1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1000)をp−フェニレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−33: 1,3−プロパンジオール/エチレングリコール/アジピン酸(1/1/2モル比)との縮合物(数平均分子量1500)をトリレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−34: 2−メチル−1,3−プロパンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1200)をm−キシリレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
PP−35: 1,4−ブタンジオール/アジピン酸(1/1モル比)との縮合物(数平均分子量1500)をテトラメチレンジイソシアナート(1モル)で縮合したポリエステル−ウレタン化合物
【0049】
PP−36: ポリイソプロピルアクリレート(数平均分子量1300)
PP−37: ポリブチルアクリレート(数平均分子量1300)
PP−38: ポリイソプロピルメタクリレート(数平均分子量1200)
PP−39: ポリ(メチルメタクリレート/ブチルメタクリレート(モル比8/2、数平均分子量1600)
PP−40: ポリ(メチルメタクリレート/2−エチルヘキシルメタクリレート(モル比9/1、数平均分子量1600)
PP−41: ポリ(ビニルアセテート(数平均分子量2400)
【0050】
[ポリマー溶液]
本発明の製造方法に用いるポリマーフィルム(以下、明細書中において、「熱処理前のポリマーフィルム」とも称する)は、例えば、上記ポリマーや各種添加剤を含有するポリマー溶液から溶液流延製膜方法によって作製することができる。以下において、溶液流延製膜方法に用いることができるポリマー溶液について説明する。
【0051】
(溶媒)
本発明の製造方法に用いるポリマーフィルムの作製に用いられるポリマー溶液(好ましくはセルロースエステル溶液)の主溶媒としては、該ポリマーの良溶媒である有機溶媒を好ましく用いることができる。このような有機溶媒としては、沸点が80℃以下の有機溶媒が乾燥負荷低減の観点からより好ましい。前記有機溶媒の沸点は、10〜80℃であることがさらに好ましく、20〜60℃であることが特に好ましい。また、場合により沸点が30〜45℃である有機溶媒も前記主溶媒として好適に用いることができる。
【0052】
このような主溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記主溶媒は、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれかを二つ以上有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。なお、本発明の製造方法に用いるポリマーフィルムの作製に用いられるポリマー溶液(好ましくはセルロースエステル溶液)の主溶媒とは、単一の溶媒からなる場合には、その溶媒のことを示し、複数の溶媒からなる場合には、構成する溶媒のうち、最も質量分率の高い溶媒のことを示す。主溶媒としては、ハロゲン化炭化水素を好適に挙げることができる。
【0053】
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、メチルアセテート、エチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、1,4−ジオキサンなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、2−プロパノールなどが挙げられる。
前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエンなどが挙げられる。
【0054】
これら主溶媒と併用される有機溶媒としては、ハロゲン化炭化水素、エステル、ケトン、エーテル、アルコールおよび炭化水素などが挙げられ、これらは分岐構造若しくは環状構造を有していてもよい。また、前記有機溶媒としては、エステル、ケトン、エーテルおよびアルコールの官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれか二つ以上を有していてもよい。さらに、前記エステル、ケトン、エーテルおよびアルコールの炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。
【0055】
前記ハロゲン化炭化水素としては、塩素化炭化水素がより好ましく、例えば、ジクロロメタンおよびクロロホルムなどが挙げられ、ジクロロメタンがさらに好ましい。
前記エステルとしては、例えば、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテートなどが挙げられる。
前記ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノンなどが挙げられる。
前記エーテルとしては、例えば、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトールなどが挙げられる。
前記アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなどが挙げられる。好ましくは炭素数1〜4のアルコールであり、より好ましくはメタノール、エタノールまたはブタノールであり、最も好ましくはメタノール、ブタノールである。前記炭化水素としては、例えば、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエン、キシレンなどが挙げられる。
前記2種類以上の官能基を有する有機溶媒としては、例えば、2−エトキシエチルアセテート、2−メトキシエタノール、2−ブトキシエタノール、メチルアセトアセテートなどが挙げられる。
【0056】
本発明の透明ポリマーフィルムを構成するポリマーが水酸基やエステル、ケトン等の水素結合性の官能基を含む場合、全溶媒中に5〜30質量%、より好ましくは7〜25質量%、さらに好ましくは10〜20質量%のアルコールを含有することが流延支持体からの剥離荷重低減の観点から好ましい。水素結合性の官能基を含むポリマーには、セルロースアシレートが含まれる。
アルコール含有量を調整することによって、本発明の製造方法により製造される透明ポリマーフィルムのReやRthの発現性を調整しやすくすることができる。具体的には、アルコール含有量を上げることによって、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。
また、本発明の製造方法に用いるポリマーフィルムの作製に用いられる前記ポリマー溶液は、乾燥過程初期においてハロゲン化炭化水素とともに揮発する割合が小さく、次第に濃縮される沸点が95℃以上であり、且つ、セルロースエステルの貧溶媒である有機溶媒を1〜15質量%、より好ましくは1.5〜13質量%、さらに好ましくは2〜10質量%含有することが好ましい。また、本発明においては、水を少量含有させることも溶液粘度や乾燥時のウェットフィルム状態の膜強度を高めたり、ドラム法流延時のドープ強度を高めるのに有効であり、例えば溶液全体に対して0.1〜5質量%含有させても良く、より好ましくは0.1〜3質量%含有させてもよく、特には0.2〜2質量%含有させてもよい。
【0057】
本発明の製造方法に用いるポリマーフィルムの作製に用いられるポリマー溶液の溶媒として好ましく用いられる有機溶媒の組み合せの例を以下に挙げるが、本発明はこれらに限定されるものではない。なお、比率の数値は、質量部を意味する。
(1)ジクロロメタン/メタノール/エタノール/ブタノール=80/10/5/5
(2)ジクロロメタン/メタノール/エタノール/ブタノール=80/5/5/10
(3)ジクロロメタン/イソブチルアルコール=90/10
(4)ジクロロメタン/アセトン/メタノール/プロパノール=80/5/5/10
(5)ジクロロメタン/メタノール/ブタノール/シクロヘキサン=80/8/10/2
(6)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/10/5/5
(7)ジクロロメタン/ブタノール=90/10
(8)ジクロロメタン/アセトン/メチルエチルケトン/エタノール/ブタノール=68/10/10/7/5
(9)ジクロロメタン/シクロペンタノン/メタノール/ペンタノール=80/2/15/3
(10)ジクロロメタン/メチルアセテート/エタノール/ブタノール=70/12/15/3
(11)ジクロロメタン/メチルエチルケトン/メタノール/ブタノール=80/5/5/10
(12)ジクロロメタン/メチルエチルケトン/アセトン/メタノール/ペンタノール=50/20/15/5/10
(13)ジクロロメタン/1,3−ジオキソラン/メタノール/ブタノール=70/15/5/10
(14)ジクロロメタン/ジオキサン/アセトン/メタノール/ブタノール=75/5/10/5/5
(15)ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブチルアルコール/シクロヘキサン=60/18/3/10/7/2
(16)ジクロロメタン/メチルエチルケトン/アセトン/イソブチルアルコール=70/10/10/10
(17)ジクロロメタン/アセトン/エチルアセテート/ブタノール/ヘキサン=69/10/10/10/1
(18)ジクロロメタン/メチルアセテート/メタノール/イソブチルアルコール=65/15/10/10
(19)ジクロロメタン/シクロペンタノン/エタノール/ブタノール=85/7/3/5
(20)ジクロロメタン/メタノール/ブタノール=83/15/2
(21)ジクロロメタン=100
(22)アセトン/エタノール/ブタノール=80/15/5
(23)メチルアセテート/アセトン/メタノール/ブタノール=75/10/10/5
(24)1,3−ジオキソラン=100
(25)ジクロロメタン/メタノール/ブタノール/水=85/18/1.5/0.5
(26)ジクロロメタン/アセトン/メタノール/ブタノール/水=87/5/5/2.5/0.5
(27)ジクロロメタン/メタノール=92/8
(28)ジクロロメタン/メタノール=90/10
(29)ジクロロメタン/メタノール=87/13
(30)ジクロロメタン/エタノール=90/10
【0058】
また、非ハロゲン系有機溶媒を主溶媒とした場合の詳細な記載は発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
【0059】
(溶液濃度)
調製する前記ポリマー溶液中のポリマー濃度は、5〜40質量%が好ましく、10〜30質量%がさらに好ましく、15〜30質量%が最も好ましい。
前記ポリマー濃度は、ポリマーを溶媒に溶解する段階で所定の濃度になるように調整することができる。また予め低濃度(例えば4〜14質量%)の溶液を調製した後に、溶媒を蒸発させる等によって濃縮してもよい。さらに、予め高濃度の溶液を調製後に、希釈してもよい。また、添加剤を添加することで、ポリマーの濃度を低下させることもできる。
【0060】
(添加剤)
本発明の製造方法に用いるポリマーフィルムの作製に用いられる前記ポリマー溶液は、各調製工程において用途に応じた各種の液体または固体の添加剤を更に含むことができる。前記添加剤の例としては、紫外線吸収剤(0.001〜1質量%)、平均粒子サイズが5〜3000nmである微粒子粉体(0.001〜1質量%)、フッ素系界面活性剤(0.001〜1質量%)、剥離剤(0.0001〜1質量%)、劣化防止剤(0.0001〜1質量%)、光学異方性制御剤(0.01〜10質量%)、赤外線吸収剤(0.001〜1質量%)が含まれる。
【0061】
前記光学異方性制御剤は、分子量3000以下の有機化合物であり、好ましくは疎水部と親水部とを併せ持つ化合物である。これらの化合物は、ポリマー鎖間で配向することにより、レタデーション値を変化させる。さらに、これらの化合物は、本発明で特に好ましく用いられるセルロースアシレートと併用することで、フィルムの疎水性を向上させ、レタデーションの湿度変化を低減させることができる。また、前記紫外線吸収剤や前記赤外線吸収剤を併用することで、効果的にレタデーションの波長依存性を制御することもできる。本発明の透明ポリマーフィルムに用いられる添加剤は、いずれも乾燥過程での揮散が実質的にないものが好ましい。
【0062】
前記光学異方性制御剤のうち、本発明においては、目的とするRe、Rth値に応じて、熱処理前のポリマーフィルムのRthを上昇させる効果のある光学異方性制御剤を好ましく用いることができる。これらのRth上昇幅は、8〜100nmがより好ましく、10〜50nmがさらに好ましく、15〜30nmが最も好ましい。このような添加剤を添加することにより、本発明の製造方法を実施する前のフィルム(原反)のRthを選択的に上昇させることができるため、このような原反に本発明の製造方法を適用することにより、Rth/Re値を上昇させることができ、例えば、Rth/Re≧−0.39、且つRe>0、且つRth<0を同時に満たすフィルムを製造することが可能となる。
また、目的とするRe、Rth値によっては、熱処理前のフィルムのRthをあまり変化させなかったり、下降させたりするような効果のある光学異方性制御剤も好ましく用いることができる。これらのRth変動幅(添加剤がある原反のRth−添加剤がない原反のRth)は、−100以上8nm未満がより好ましく、−50〜5nmがさらに好ましく、−30〜5nmが最も好ましい。このような添加剤を添加することにより、熱処理時のポリマー分子の運動性を向上させることができるため、本発明の製造方法により製造される透明ポリマーフィルムのReやRthの発現性をさらに調整することができるため、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。したがって、レタデーション上昇剤等の光学異方性制御剤を組み合わせることにより、|Rth|/Re<0.5を満たす透明ポリマーフィルムだけでなく、|Rth|/Re≧0.5を満たす透明ポリマーフィルムも適宜、製造することができる。
【0063】
本発明において、添加剤によるRthの変動幅は、フィルムを25℃にてメタノールに浸漬し、3時間超音波抽出し、さらに80℃にて10分乾燥した後に測定したRth(Rth1)と、メタノール処理前のRth(Rth0)との差(Rth0−Rth1)によって評価することができる。また、メタノールによる抽出が難しい添加剤の場合は、添加剤を加えたドープ溶液から製膜したフィルムの熱処理前のRth(Rth2)と、添加剤を加えていないドープ溶液から製膜したフィルムの熱処理前のRth(Rth3)との差(Rth2−Rth3)によって評価することもできる。
【0064】
このような添加剤としては、具体的には、芳香環を1個以上有する化合物が好ましく、2〜15個有することがより好ましく、3〜10個有することがさらに好ましい。化合物中の芳香環以外の各原子は、芳香環と同一平面に近い配置であることが好ましく、芳香環を複数有している場合には、芳香環同士も同一平面に近い配置であることが好ましい。また、Rthを選択的に上昇させるため、添加剤のフィルム中での存在状態は、芳香環平面がフィルム面と平行な方向に存在していることが好ましい。
前記添加剤は、単独で使用しても良いし、2種類以上の添加剤を組み合わせて使用しても良い。
Rthを上昇させる効果のある添加剤としては、具体的には、特開2005−104148号公報の33〜34頁に記載の可塑剤や、特開2005−104148号公報の38〜89頁に記載の光学異方性のコントロール剤などが挙げられる。
【0065】
レタデーションの湿度変化低減を図る観点からは、これらの添加剤の添加量は多いほうが好ましいが、添加量の増大に伴い、ポリマーフィルムのガラス転移温度(Tg)低下や、フィルムの製造工程における添加剤の揮散問題を引き起こしやすくなる。従って、本発明においてより好ましく用いられるセルロースアセテートをポリマーとして用いる場合、前記分子量3000以下の添加剤の添加量は、前記ポリマーに対し0.01〜30質量%が好ましく、2〜30質量%がより好ましく、5〜20質量%がさらに好ましい。
【0066】
本発明においてポリマーとしてセルロースアシレートを用いる場合に好適に用いることのできる光学異方性制御剤については、特開2005−104148号公報に記載がある。また、赤外吸収剤については、特開平2001−194522号公報に記載がある。添加剤を添加する時期は、添加剤の種類に応じて適宜決定することができる。
【0067】
(ポリマー溶液の調製)
前記ポリマー溶液の調製は、例えば、特開昭58−127737号公報、同61−106628号公報、特開平2−276830号公報、同4−259511号公報、同5−163301号公報、同9−95544号公報、同10−45950号公報、同10−95854号公報、同11−71463号公報、同11−302388号公報、同11−322946号公報、同11−322947号公報、同11−323017号公報、特開2000−53784号公報、同2000−273184号公報、同2000−273239号公報に記載されている調製方法に準じて行うことができる。具体的には、ポリマーと溶媒とを混合攪拌し膨潤させ、場合により冷却や加熱等を実施して溶解させた後、これをろ過してポリマー溶液を得る。
【0068】
本発明においては、ポリマーの溶媒への溶解性を向上させるため、ポリマーと溶媒の混合物を冷却および/または加熱する工程を含んでもよい。
溶媒としてハロゲン系有機溶媒を用い、ポリマーとしてセルロースアシレートを用いて、ポリマーと溶媒の混合物を冷却する場合、混合物を−100〜10℃に冷却することが好ましい。また、冷却工程より前の工程に−10〜39℃で膨潤させる工程を含み、冷却より後の工程に0〜39℃に加温する工程を含むことが好ましい。
【0069】
溶媒としてハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を加熱する場合、下記(a)または(b)より選択される1以上の方法で溶媒中にセルロースアシレートを溶解する工程を含むことが好ましい。
(a)−10〜39℃で膨潤させ、得られた混合物を0〜39℃に加温する。
(b)−10〜39℃で膨潤させ、得られた混合物を0.2〜30MPaで40〜240℃に加熱し、加熱した混合物を0〜39℃に冷却する。
さらに、溶媒として非ハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を冷却する場合、混合物を−100〜−10℃に冷却する工程を含むことが好ましい。また、冷却工程より前の工程に−10〜55℃で膨潤させる工程を含み、冷却より後の工程に0〜57℃に加温する工程を含むことが好ましい。
【0070】
溶媒としてハロゲン系有機溶媒を用い、セルロースアシレートと溶媒の混合物を加熱する場合、下記(c)または(d)より選択される1以上の方法で溶媒中にセルロースアシレートを溶解する工程を含むことが好ましい。
(c)−10〜55℃で膨潤させ、得られた混合物を0〜57℃に加温する。
(d)−10〜55℃で膨潤させ、得られた混合物を0.2〜30MPaで40〜240℃に加熱し、加熱した混合物を0〜57℃に冷却する。
【0071】
[本発明の製造方法に用いるポリマーフィルムの製膜]
本発明の製造方法に用いるポリマーフィルムは、上記のポリマー溶液を用いて溶液流延製膜方法により製造することができる。溶液流延製膜方法の実施に際しては、従来の方法に従い、従来の装置を用いることができる。具体的には、溶解機(釜)で調製されたドープ(ポリマー溶液)を、ろ過後、貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製することができる。ドープは30℃に保温し、ドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延する(流延工程)。次いで、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離し、続いて乾燥ゾーンへ搬送し、ロール群で搬送しながら乾燥を終了する。溶液流延製膜方法の流延工程、乾燥工程の詳細については、特開2005−104148号公報の120〜146頁にも記載があり、適宜本発明にも適用することができる。
【0072】
また、本発明の製造方法に用いるポリマーフィルムは、上記のポリマー溶液を用いずに溶融流延製膜方法により製造することができる。溶融流延製膜方法は、ポリマーを加熱して溶融したものを支持体上に流延し、冷却してフィルムを形成する方法である。ポリマーの融点、もしくはポリマーと各種添加剤との混合物の融点が、これらの分解温度よりも低くかつ延伸温度よりも高い場合には、溶融流延製膜方法を採用することが可能である。溶融流延製膜方法については、特開2000−352620号公報などに記載がある。
【0073】
本発明においては、熱処理前のポリマーフィルムの製膜の際に用いる金属支持体として金属バンドまたは金属ドラムを使用することができる。金属バンドを使用して製膜した透明ポリマーフィルムを用いる場合は、熱処理後のフィルムのRthが低くなるという傾向があり、前記添加剤等、他のレタデーションを調整する要素にもよるが、Rthが負であり、|Rth|/Re<0.5であるフィルムを作製することができる。また、金属ドラムを使用して製膜した透明ポリマーフィルムを用いる場合は、熱処理後のフィルムのRthが高くなるという傾向があり、前記添加剤等、他のレタデーションの調整する要素にもよるが、Rthがゼロに近い負、もしくは正であり、場合により|Rth|/Re<0.5も満たすフィルムを作製することができる。これらの本発明の製造方法に用いるポリマーフィルムの熱処理後のRthの違いは、製膜過程でウェブにかかる外力が異なることに起因する、熱処理前のフィルム中に存在するポリマー鎖の面配向状態の違いが原因であると推測される。
【0074】
本発明の製造方法により製造される透明ポリマーフィルムのレタデーションを制御する際には、熱処理前のポリマーフィルムにかかる力学的な履歴、すなわち製膜過程においてポリマーウェブに与えられる外力を制御しておくことが好ましい。具体的には、本発明の製造方法により製造される透明ポリマーフィルムが、大きなReを示し且つ負のRthを示す場合は、ポリマーウェブを、好ましくは0.1%以上15%未満、より好ましくは0.5〜10%、さらに好ましくは1〜8%延伸する。なお、熱処理前のポリマーフィルムを搬送しながら作製する場合には、当該搬送方向へ、延伸することが好ましい。この延伸の際のポリマーウェブの残留溶媒量は、下記式に基づいて算出されるもので5〜1000%とする。残留溶媒量は、10〜200%であることが好ましく、30〜150%であることがより好ましく、40〜100%であることがさらに好ましい。
残留溶媒量(質量%)={(M−N)/N}×100
[式中、Mは、延伸ゾーンに挿入される直前のポリマーフィルムの質量、Nは、延伸ゾーンに挿入される直前のポリマーフィルムを110℃で3時間乾燥させたときの質量を表す]
また、大きなReを示し且つ正のRthを示す場合は、ポリマーウェブを、好ましくは15〜300%、より好ましくは18〜200%、さらに好ましくは20〜100%延伸する。なお、熱処理前のポリマーフィルムを搬送しながら作製する場合には、当該搬送方向へ、延伸することが好ましい。この延伸の際のポリマーウェブの残留溶媒量は、上記式に基づいて算出されるもので5〜1000%とする。残留溶媒量は、30〜500%であることが好ましく、50〜300%であることがより好ましく、80〜250%であることがさらに好ましい。
前記延伸の際のポリマーウェブの延伸倍率(伸び)は、金属支持体速度と剥ぎ取り速度(剥ぎ取りロールドロー)との周速差により達成することができる。このような延伸を行うことによって、レタデーションの発現性を調整することができる。
【0075】
残留溶媒量が5%以上の状態で延伸すればヘイズが大きくなりにくく、残留溶媒量が1000%以下の状態で延伸すればポリマー鎖に加えられる外力が伝わりやすく、前記溶媒を含有した状態で実施されるポリマーウェブ延伸によるレタデーション発現性調整の効果が大きくなる傾向がある。なお、ポリマーウェブの残留溶媒量は、前記ポリマー溶液の濃度、金属支持体の温度や速度、乾燥風の温度や風量、乾燥雰囲気中の溶媒ガス濃度等を変更することにより、適宜調整することができる。
【0076】
さらに、前記ポリマーウェブを伸ばす工程においては、ウェブの膜面温度はポリマーに外力を伝える観点から低いほうが好ましく、ウェブの温度を(Ts−100)〜(Ts−0.1)℃とすることが好ましく、(Ts−50)〜(Ts−1)℃とすることがより好ましく、(Ts−20)〜(Ts−3)℃とすることがさらに好ましい。ここで、Tsは流延支持体の表面温度を表し、流延支持体の温度が部分的に異なる温度に設定されている場合には、支持体中央部における表面温度のことを表す。
このようにして伸ばされる工程を経たポリマーウェブは、続いて乾燥ゾーンへ搬送し、テンターで両端をクリップされたり、ロール群で搬送したりしながら乾燥を終了する。
【0077】
このようにして乾燥の終了したフィルム中の残留溶剤量は0〜2質量%が好ましく、より好ましくは0〜1質量%である。このフィルムは、そのまま熱処理ゾーンへ搬送してもよいし、フィルムを巻き取ってからオフラインで熱処理を実施してもよい。熱処理前のポリマーフィルムの好ましい幅は0.5〜5mであり、より好ましくは0.7〜3mである。また、一旦フィルムを巻き取る場合には、好ましい巻長は300〜30000mであり、より好ましくは500〜10000mであり、さらに好ましくは1000〜7000mである。
【0078】
製膜した本発明の製造方法に用いるポリマーフィルムの膜厚80μm換算の透湿度は、100g/(m2・day)以上であることが好ましく、100〜1500g/(m2・day)であることがより好ましく、200〜1000g/(m2・day)であることがさらに好ましく、300〜800g/(m2・day)であることが特に好ましい。80μm換算で100g/(m2・day)以上の透湿度を有する本発明のフィルムを調製するには、ポリマーの親疎水性を適切に制御するか、フィルムの密度を低下させることが好ましい。前者の方法として、例えば、ポリマー主鎖の親疎水性を適切に制御し、さらに疎水的もしくは親水的な側鎖を導入する方法などが挙げられ、後者の方法として、例えば、ポリマー主鎖に側鎖を導入する、製膜時に用いる溶媒の種類を選択する、製膜時の乾燥速度を制御する、などの方法が挙げられる。
本発明における透湿度は、塩化カルシウムを入れたカップを評価するフィルムで蓋をして密閉したものを、40℃・相対湿度90%の条件で24時間放置した際の調湿前後の質量変化(g/(m2・day))から評価した値である。なお、透湿度は、温度の上昇に伴い上昇し、また、湿度の上昇に伴い上昇するが、各条件によらず、フィルム間における透湿度の大小関係は不変である。そのため、本発明においては40℃・相対湿度90%における前記質量変化の値を基準とする。また、透湿度は膜厚の上昇に伴い低下し、膜厚の低下に伴い上昇するため、まず実測した透湿度に実測した膜厚を乗じ、それを80で割った値を本発明における「膜厚80μm換算の透湿度」とした。
【0079】
[予備延伸]
溶媒を乾燥させ、上記式に基づいて算出される残留溶媒量が5%未満となった熱処理前の製膜した透明ポリマーフィルムは、Tc≦T<Tm0を満たす温度Tで熱処理を行う前に延伸を行ってもよい(以下、当該延伸を「予備延伸」とも称する)。該予備延伸を行うことにより、熱処理工程におけるReやRthの発現性をさらに調整することができる。具体的には、後述の範囲内で、延伸温度を低下させたり、延伸倍率を上昇させることにより、熱処理温度を比較的低く設定したり、ReやRthの到達範囲をより大きくしたりすることが可能となる。また、本発明の趣旨を逸脱しない範囲内において、予備延伸工程と熱処理工程の間に他の工程を含んでいてもよい。
【0080】
本発明の製造方法では、予備延伸は、本発明の製造方法に用いるポリマーフィルムのガラス転移温度をTg(単位;℃)としたとき、(Tg−20)〜(Tg+50)℃で行うことが好ましい。前記予備延伸温度は、より好ましくは(Tg−10)〜(Tg+45)℃であり、さらに好ましくは、Tg〜(Tg+40)℃であり、最も好ましくは、(Tg+5)〜(Tg+35)℃である。ただし、予備延伸温度は後述の結晶化温度(Tc)を超えることはない。予備延伸温度はTcよりも5℃以上低い温度で実施することが好ましく、Tcよりも10℃以上低い温度で実施することがより好ましく、Tcよりも15℃以上低い温度で実施することがさらに好ましく、Tcよりも20℃以上低い温度で実施することが特に好ましく、Tcよりも35℃以上低い温度で実施することが最も好ましい。
本発明においてガラス転移温度とは、本発明の透明ポリマーフィルムを構成するポリマーの運動性が大きく変化する境界温度である。本発明におけるガラス転移温度は、示差走査熱量測定装置(DSC)の測定パンに本発明の製造方法に用いるポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温し、15分間保持した後、30℃まで−20℃/分で冷却し、この後、再度30℃から250℃まで昇温し、ベースラインが低温側から偏奇し始める温度である。
本発明の製造方法は、本発明の製造方法に用いるポリマーフィルムをTc以上にすることにより、X線回折で観測される構造体を成長させ、レタデーションを調整できると推定されるが、このように予めフィルムに予備延伸を実施することによってポリマーを予備延伸方向にある程度配列させることができるため、後述の熱処理工程において、X線回折で観測される構造体を効率的に、且つ異方的に成長させることができる。また、予備延伸温度を、熱処理温度より低くすることにより、X線回折で観測される構造体を成長させることなくポリマーを配向させることができるため、その後の熱処理工程でより効率的にX線回折で観測される構造体を成長させることができるという利点がある。したがって、予備延伸における延伸方向と、後述の熱処理時の延伸方向もしくは搬送方向とは一致していることが、熱処理温度低減の観点や、ReやRthの到達範囲拡張の観点から、より好ましい。逆に、これらの方向が一致していない場合は、ReやRthの到達範囲を縮小させることができる。
【0081】
前記予備延伸の方向は特に制限されるものではなく、熱処理前のポリマーフィルムが搬送されている場合には、搬送方向に延伸する縦延伸であっても、それに直交する方向に延伸する横延伸であってもよいが、縦延伸であることが好ましい。縦延伸や横延伸の方法や好ましい態様については後述する熱処理の欄を参照することができる。予備延伸倍率は1〜500%であることが好ましく、3〜400%がより好ましく、5〜300%がさらに好ましく、10〜100%が特に好ましい。これらの予備延伸は1段で実施しても、多段で実施してもよい。なお、ここでいう「予備延伸倍率(%)」とは、以下の式により求められるものを意味する。
予備延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
前記予備延伸における延伸速度は10〜10000%/分が好ましく、より好ましくは20〜1000%/分であり、さらに好ましくは30〜800%/分である。
【0082】
[熱処理]
本発明の透明ポリマーフィルムの製造方法は、透明ポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする。ここで、熱処理は搬送しながら行うことが好ましい。
式(1): Tc≦T<Tm0
式(1)において、Tcは熱処理前のポリマーフィルムの結晶化温度を表し、単位は℃である。本発明において結晶化温度とは、本発明の透明ポリマーフィルムを構成するポリマーが規則的な周期構造を形成する温度のことを示し、この温度を超えるとX線回折で観測される構造体が成長する。本発明における結晶化温度は、DSCの測定パンに熱処理前のポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に、観測された発熱ピークの開始温度である。Tcは通常、前述のガラス転移温度(Tg)よりも高温側に現れる。例えば、全置換度が2.85のセルローストリアセテートフィルムの結晶化温度は添加剤や製膜条件等により上下するが、約190℃であり、全置換度が2.92のセルローストリアセテートフィルムの結晶化温度は約170℃である。
式(1)において、Tm0は熱処理前のポリマーフィルムの融点を表し、単位は℃である。本発明における融点は、DSCの測定パンに熱処理前のポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温して15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に、観測された吸熱ピークの開始温度である。Tm0は通常、前述の結晶化温度(Tc)よりも高温側に現れる。例えば、全置換度が2.85のセルローストリアセテートフィルムの融点は添加剤や製膜条件等により若干上下するが、約285℃であり、全置換度が2.92のセルローストリアセテートフィルムの融点は約290℃である。
【0083】
式(1)の条件を満たす温度Tで透明ポリマーフィルムを熱処理することによって、透明ポリマーフィルムのレタデーションの発現性を調整することができる。これによって、従来は製造することが容易ではなかったレタデーション値を有する透明ポリマーフィルムを簡便な方法で製造することができるようになった。特に、従来は煩雑な製法によらなければ製造することができなかった|Rth|/Re<0.5の透明ポリマーフィルムを簡便な方法で面状よく製造することができるようになった。
本発明の製造方法における熱処理温度は、下記式(1−1)を満たすことが好ましく、下記式(1−2)を満たすことがより好ましく、下記式(1−3)を満たすことがさらに好ましい。これらの式を満たす温度を選択することによって、Re発現性が増大したり、場合により延伸方向と遅相軸の方向とが直交したりするという利点がある。
式(1−1): Tc≦T<Tm0−5
式(1−2): Tc≦T<Tm0−10
式(1−3): Tc+5≦T<Tm0−15
【0084】
本発明の製造方法にしたがってTc≦T<Tm0を満たす温度Tで延伸することによって、ポリマー鎖の運動性を向上させることができるため、延伸倍率の増大に伴うフィルムの白化(ヘイズ上昇)やフィルムの切断を防ぐことができる。また、後述のように延伸速度や延伸倍率を調整することによって、ポリマー鎖の凝集や配向と、同時に起こる熱緩和とのバランスを適切に制御することができる。したがって、本発明の製造方法に従うことにより、フィルム中のポリマー鎖の凝集や配列を高度に進めることができ、弾性率が大きく、湿度寸法変化が小さく、適度な透湿度を有する透明ポリマーフィルムを製造することが可能となる。
【0085】
本発明の製造方法における熱処理は、透明ポリマーフィルムを搬送しながら行うことが好ましい。透明ポリマーフィルムの搬送手段は特に制限されないが、典型的な例としてニップロールやサクションドラムにより搬送する手段、テンタークリップで把持しながら搬送する手段(空気圧で浮上搬送する手段)などを挙げることができる。好ましいのは、ニップロールにより搬送する手段である。具体的には、少なくとも熱処理を行うゾーンの前後にそれぞれニップロールを設置しておき、当該ニップロールの間を通すことによりポリマーフィルムを搬送する態様を挙げることができる。
【0086】
搬送の速度は、通常は1〜500m/分であり、5〜300m/分が好ましく、10〜200m/分がより好ましく、20〜100m/分がさらに好ましい。搬送速度が、上記の下限値である1m/分以上であれば産業上、十分な生産性を確保することができるという点で好ましくなる傾向があり、上記の上限値である500m/分以下であれば実用的な熱処理ゾーン長で十分に結晶成長を進行させることができるという点で好ましくなる傾向がある。搬送速度を速くすればフィルムの着色を抑制することができる傾向があり、搬送速度を遅くすれば熱処理ゾーン長を短くすることができる傾向がある。熱処理中の搬送速度(搬送速度を決定するニップロールやサクションドラム等の装置の速度)は一定にしておくことが好ましい。
【0087】
本発明の製造方法における熱処理の方法として、例えば、透明ポリマーフィルムを搬送しながら温度Tのゾーン内を通過させる方法、搬送されている透明ポリマーフィルムに熱風をあてる方法、搬送されている透明ポリマーフィルムに熱線を照射する方法、透明ポリマーフィルムを昇温されたロールに接触させる方法などを挙げることができる。
好ましいのは、透明ポリマーフィルムを搬送しながら温度Tのゾーン内を熱風をあてながら通過させる方法である。この方法によれば、透明ポリマーフィルムを均一に加熱することができるという利点がある。ゾーン内の温度は、例えば温度センサでモニターしつつヒータで一定温度に制御することにより温度Tに維持することができる。温度Tのゾーン内の透明ポリマーフィルムの搬送長は、製造しようとする透明ポリマーフィルムの性質や搬送速度によって異なるが、通常は(搬送長)/(搬送する透明ポリマーフィルムの幅)の比が0.1〜100となるように設定することが好ましく、より好ましくは0.5〜50であり、さらに好ましくは1〜20である。この比は、本明細書において縦横比と略すこともある。温度Tのゾーンの通過時間(熱処理の時間)は、通常0.01〜60分であり、好ましくは0.03〜10分であり、さらに好ましくは0.05〜5分である。前記範囲とすることにより、レタデーションの発現に優れ、フィルムの着色を抑制することができる。
【0088】
本発明の製造方法では、熱処理と同時に延伸してもよい。熱処理時の延伸方向は特に制限されるものではないが、熱処理前のポリマーフィルムに異方性がある場合には、熱処理前のポリマーフィルム中のポリマーの配向方向への延伸であることが好ましい。ここで、フィルムに異方性があるとは、音波伝播速度が最大となる方向の音波伝播速度と、これと直交する方向の音波伝播速度との比が、好ましくは1.01〜10.0であり、より好ましくは1.1〜5.0であり、さらに好ましくは1.2〜2.5であることを指す。音波伝播速度が最大となる方向、および各方向の音波伝播速度は、フィルムを25℃、相対湿度60%にて24時間調湿後、配向性測定機(SST−2500:野村商事(株)製)を用いて、超音波パルスの縦波振動の伝搬速度が最大となる方向、および各方向の伝搬速度として求めることができる。
例えば、2つのニップロールの間に加熱ゾーンを有する装置を用いて透明ポリマーフィルムを搬送しながら熱処理を行う場合、加熱ゾーンの入口側のニップロールの回転速度よりも、加熱ゾーンの出口側のニップロールの回転速度を速くすることにより、搬送方向(縦方向)に透明ポリマーフィルムを延伸することができる。また、透明ポリマーフィルムの両端をテンタークリップで把持し、これを搬送方向と直交する方向(横方向)に広げながら加熱ゾーンを通過させることにより延伸することもできる。透明ポリマーフィルムを熱処理中に搬送方向に延伸することによって、レタデーション発現性をさらに調整することができる。搬送方向の延伸倍率は、通常0.8〜100倍、好ましくは1.0〜10倍、より好ましくは1.2〜5倍である。また、透明ポリマーフィルムを熱処理中に搬送方向と直行する方向に延伸することによって、熱処理後の透明ポリマーフィルムの面状を改良することができる。搬送方向に直行する方向の延伸倍率は、通常0.8〜10倍、好ましくは1.0〜5倍、より好ましくは1.1〜3倍である。なお、ここでいう延伸倍率(%)とは、以下の式を用いて求めたものを意味する。
延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/延伸前の長さ
また前記延伸における延伸速度は10〜10000%/分が好ましく、より好ましくは20〜1000%/分であり、さらに好ましくは30〜800%/分である。
【0089】
熱処理の際に、透明ポリマーフィルムを収縮させてもよい。当該収縮は、熱処理時に行うことが好ましい。熱処理の際に透明ポリマーフィルムを収縮させることによって、光学特性および/または力学物性を調整することができるようになる。幅方向に収縮させる工程は、熱処理の際に行うだけでなく、熱処理の前後の工程でも行うことができる。また、幅方向に収縮させる工程は一段で行ってもよく、収縮工程と延伸工程とを繰り返し実施してもよい。
収縮させる場合の収縮率は5〜80%であることが好ましく、10〜70%であることがより好ましく、20〜60%であることがさらに好ましく、25〜50%であることが最も好ましい。なお、収縮の方向は、特に制限されるものではないが、熱処理前のポリマーフィルムが搬送されて作成されている場合には、当該搬送方向に直交する方向に行うことが好ましい。また、収縮前に延伸(予備延伸等)を行っている場合には、当該延伸方向と直交する方向に、収縮させることが好ましい。収縮率は熱処理温度の調整や、フィルムにかかる外力の調整によって制御することができる。具体的には、フィルムの端部をテンタークリップで把持している場合にはレールの拡幅率などで制御することができる。また、フィルムの端部が固定されておらず、ニップロール等のフィルムを搬送方向に固定する装置によってのみ保持されている場合には、搬送方向に固定する装置間距離の調整や、フィルムにかかるテンションの調整や、フィルムに与えられる熱量の調整などによって制御することができる。幅方向の収縮率は、フィルムが収縮する直前と直後の全幅を計測し、下記式から求める。
幅方向の収縮率(%)=100×(収縮直前の全幅−収縮直後の全幅)/収縮直前の全幅
【0090】
透明ポリマーフィルムを温度Tにおいて熱処理する工程は、本発明の製造方法において1回のみ行ってもよいし、複数回行ってもよい。複数回行うとは、前の熱処理が終了した後に一旦温度をTc未満に下げ、その後、再び温度をTc以上Tm0未満に設定して搬送しながら熱処理を行うことを意味する。複数回熱処理を行う場合は、すべての熱処理が完了した段階で上記の延伸倍率の範囲を満たすことが好ましい。本発明の製造方法における熱処理は、3回以下が好ましく、2回以下がより好ましく、1回が最も好ましい。
【0091】
[熱処理後の冷却]
熱処理を終えたポリマーフィルムは、Tc未満の温度に冷却する。冷却温度は特に制限されるものではないが、好ましくは100〜1,000,000℃/分、より好ましくは1,000〜100,000℃/分、さらに好ましくは3,000〜50,000℃/分でフィルムを冷却する。このような冷却速度でフィルムを冷却する温度幅は、50℃以上であることが好ましく、100〜300℃であることがより好ましく、150〜280℃であることがさらに好ましく、180〜250℃であることが特に好ましい。
このように冷却速度を調整することによって、得られる透明ポリマーフィルム(特にセルロースアシレートフィルム)のレタデーションの発現性をさらに調整することができる。具体的には、冷却速度を速くすることによって、レタデーションの発現性を向上させることができる。また、セルロースアシレートフィルム中の、厚み方向のポリマー鎖の配向の分布を低減させることができ、フィルムの湿度カールを抑制することができる。このような効果は、比較的速い冷却速度で冷却する温度幅を上記の好ましい範囲に制御することによって、さらに十分に得ることができる。その結果、例えば|Rth|/Re<0.5とRe≧30の両方の関係式を満たす透明ポリマーフィルム(特にセルロースアシレートフィルム)を得ることができる。また、|Rth|/Re<0.5とRe≧60の両方の関係式を満たす透明ポリマーフィルム、|Rth|/Re<0.5とRe≧100の両方の関係式を満たす透明ポリマーフィルム、|Rth|/Re<0.5とRe≧150の両方の関係式を満たす透明ポリマーフィルム、|Rth|/Re<0.5とRe≧200の両方の関係式を満たす透明ポリマーフィルムも得ることができる。
【0092】
前記冷却速度は、加熱ゾーンの後に、加熱ゾーンより低い温度に保持された冷却ゾーンを設けておいて、これらのゾーンに透明ポリマーフィルムを順次搬送したり、冷却ロールをフィルムと接触させたり、冷却風をフィルムに吹き付けたり、フィルムを冷却された液体に浸漬したりして制御することができる。冷却速度は、冷却工程中において常に一定であることは必要とされず、冷却工程の初期と終盤は冷却速度を小さくし、その間において冷却速度を大きくしてもよい。冷却速度は、後述する実施例に記載されるようにフィルム膜面上に配置した熱電対によって複数地点の温度を測定することにより求めることができる。
【0093】
[熱処理後の延伸]
本発明の製造方法では、透明ポリマーフィルムの熱処理に続けて延伸を行ってもよい。熱処理に続けて行われる延伸は、熱処理後に透明ポリマーフィルムがTc未満の温度まで冷却された後に行われてもよく、熱処理温度を保ったまま冷却されることなく行われてもよい。一旦ポリマーフィルムが冷却される場合、冷却は自然放冷してTc未満の温度になった状態でもよいし、強制的に冷却してTc未満の温度になった状態でもよい。また、いったん冷却した後に再度Tc未満に加熱した状態でもよい。一旦フィルムを冷却する場合の冷却温度は、前記熱処理温度よりも50℃以上低いことが好ましく、100〜300℃低いことがより好ましく、150〜250℃低いことがさらに好ましい。熱処理温度よりも冷却温度を50℃以上低くすることによって熱処理後のフィルムのRth/Re値を容易に制御できる傾向がある。また、一旦フィルムを冷却温度まで冷却した後に再度Tc未満の温度に加熱してから延伸することが好ましい。前記熱処理温度と延伸温度との差は1℃以上であることが好ましく、10〜200℃がより好ましく、30〜150℃がさらに好ましく、50〜100℃が特に好ましい。この温度差を適切に設定することによって、Rth/Re値を制御することができる。具体的には、熱処理温度と延伸温度との差を大きくすればRth/Re値が上昇する傾向があり、差を小さくすればRth/Re値の変化が小さくなる傾向がある。
【0094】
延伸の方法としては、上記の熱処理中の延伸の説明にて記載した方法等を採用することができる。延伸は1段で実施しても、多段で実施してもよい。好ましいのは、上記のニップロールの回転速度を変えることにより搬送方向に延伸する方法とポリマーフィルムの両端をテンタークリップで把持してこれを搬送方向と直交する方向に広げることより延伸する方法である。特に好ましいのは、熱処理の際に延伸を行わないか、あるいは、ニップロールの回転速度を変えることにより搬送方向に延伸しておき、熱処理後にポリマーフィルムの両端をテンタークリップで把持してこれを搬送方向と直交する方向に広げることより延伸する態様である。
【0095】
延伸倍率は透明ポリマーフィルムに要求するレタデーションに応じて適宜設定することができ、1〜500%が好ましく、3〜400%がより好ましく、5〜300%がさらに好ましく、10〜100%が特に好ましい。延伸速度は10〜10000%/分が好ましく、より好ましくは20〜1000%/分であり、さらに好ましくは30〜800%/分である。
【0096】
熱処理後に延伸を行うことにより、得られる透明フィルムのReとRthを調整することができる。例えば、熱処理後の延伸温度を高くすることによって、Reをあまり変化させずにRthを低下させることができる。また、熱処理後の延伸倍率を高くすることによって、Reを低下させRthを上昇させることもできる。これらは、ほぼ線形的な相関関係を示すことから、熱処理後の延伸条件を適当に選択することによって、目的とするReやRthを達成しやすくなる。
熱処理が終わった後、延伸を行う前の状態の透明ポリマーフィルムのReやRthは特に制限されない。
【0097】
《透明ポリマーフィルム》
(本発明の透明ポリマーフィルムの光学的特徴)
上記の本発明の製造方法によれば、レタデーションが制御された透明ポリマーフィルムを得ることができる。具体的には、本発明の製造方法によれば、レタデーションが良好に発現した透明ポリマーフィルムを得ることができる。特に、従来の製造方法では製造することが容易ではなかった|Rth|/Re<0.5の透明ポリマーフィルムを比較的簡単な方法で製造することができる。本発明の透明ポリマーフィルムの|Rth|/Reは、より好ましくは0.4以下であり、さらに好ましくは0.3以下であり、特に好ましくは0.2以下である。
【0098】
(レタデーション)
本明細書において、Re、Rth(単位;nm)は次の方法に従って求めたものである。まず、フィルムを25℃、相対湿度60%にて24時間調湿後、プリズムカップラー(MODEL2010 Prism Coupler:Metricon製)を用い、25℃、相対湿度60%において、532nmの固体レーザーを用いて下記式(a)で表される平均屈折率(n)を求める。
式(a): n=(nTE×2+nTM)/3
[式中、nTEはフィルム平面方向の偏光で測定した屈折率であり、nTMはフィルム面法線方向の偏光で測定した屈折率である。]
【0099】
本明細書において、Re(λ)、Rth(λ)は各々、波長λ(単位;nm)における面内のレタデーションおよび厚さ方向のレタデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが一軸または二軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から−50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で11点測定し、その測定されたレタデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、λに関する記載が特になく、Re、Rthとのみ記載されている場合は、波長590nmの光を用いて測定した値のことを表す。また、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレタデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレタデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレタデーション値を測定し、その値と平均屈折率および入力された膜厚値を基に、以下の式(b)および式(c)よりRthを算出することもできる。
【0100】
式(b):
【0101】
【数1】

[式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレタ−デーション値を表す。また、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表し、dはフィルムの膜厚を表す。]
式(c): Rth=((nx+ny)/2−nz)×d
測定されるフィルムが一軸や二軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率および入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
これら平均屈折率と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
【0102】
本発明において、相対湿度がH(単位;%)であるときの面内方向および膜厚方向のレタデーション値:Re(H%)およびRth(H%)は、フィルムを25℃、相対湿度H%にて24時間調湿後、25℃、相対湿度H%において、前記方法と同様にして、相対湿度H%における測定波長が590nmであるときのレタデーション値を測定、算出したものである。
【0103】
(湿度依存性)
本発明の透明ポリマーフィルムの湿度を変化させた場合のレタデーション値は、以下の関係式を満たすことが好ましい。
|Re(10%)−Re(80%)|<50、且つ、
|Rth(10%)−Rth(80%)|<50
また以下の関係式を満たすことがより好ましい。
|Re(10%)−Re(80%)|<30、且つ、
|Rth(10%)−Rth(80%)|<40
また以下の関係式を満たすことがさらに好ましい。
|Re(10%)−Re(80%)|<20、且つ、
|Rth(10%)−Rth(80%)|<30
また以下の関係式を満たすことが最も好ましい。
|Re(10%)−Re(80%)|<10、且つ、
|Rth(10%)−Rth(80%)|<15
【0104】
また、本発明の透明ポリマーフィルムの湿度を変化させた場合のレタデーション値は、以下の関係式も満たすことが好ましい。
|Re(10%)−Re(80%)|/Re<3、且つ、
|Rth(10%)−Rth(80%)|/Rth<3
また以下の関係式を満たすことがより好ましい。
|Re(10%)−Re(80%)|/Re<1、且つ、
|Rth(10%)−Rth(80%)|/Rth<1
また以下の関係式を満たすことがさらに好ましい。
|Re(10%)−Re(80%)|/Re<0.5、且つ、
|Rth(10%)−Rth(80%)|/Rth<0.7
また以下の関係式を満たすことが最も好ましい。
|Re(10%)−Re(80%)|/Re<0.2、且つ、
|Rth(10%)−Rth(80%)|/Rth<0.4
上記湿度を変化させた場合のレタデーション値を制御することにより、外部環境が変化した場合のレタデーション変化を低下させることができ、信頼性の高い液晶表示装置を提供することができる。
【0105】
(遅相軸)
本発明の透明ポリマーフィルムは、製造時の搬送方向とフィルムのReの遅相軸とのなす角度θが0±10°もしくは90±10°であることが好ましく、0±5°もしくは90±5°であることがより好ましく、0±3°もしくは90±3°であることがさらに好ましく、場合により、0±1°もしくは90±1°であることが好ましく、90±1°であることが最も好ましい。
【0106】
(膜厚)
本発明の透明ポリマーフィルムの膜厚は20μm〜180μmが好ましく、30μm〜160μmがより好ましく、40μm〜120μmがさらに好ましい。膜厚が20μm以上であれば偏光板等に加工する際のハンドリング性や偏光板のカール抑制の点で好ましい。また、本発明の透明ポリマーフィルムの膜厚むらは、搬送方向および幅方向のいずれも0〜2%であることが好ましく、0〜1.5%がさらに好ましく、0〜1%であることが特に好ましい。
【0107】
(透湿度)
本発明の透明ポリマーフィルムの透湿度は、80μm換算で100g/(m2・day)以上であることが好ましい。前記80μm換算の透湿度を100g/(m2・day)以上としたフィルムを使用することで、偏光膜と直接貼合しやすくなる。前記80μm換算の透湿度としては、100〜1500g/(m2・day)がより好ましく、200〜1000g/(m2・day)がより好ましく、300〜800g/(m2・day)がさらに好ましい。
また、本発明の透明ポリマーフィルムを後述のように偏光膜と液晶セルとの間に配置されない外側の保護フィルムとして用いる場合、本発明の透明ポリマーフィルムの透湿度は、80μm換算で500g/(m2・day)未満であることが好ましく、100〜450g/(m2・day)がより好ましく、100〜400g/(m2・day)がさらに好ましく、150〜300g/(m2・day)が最も好ましい。このようにすることで、湿度もしくは湿熱に対する偏光板の耐久性が向上し、信頼性の高い液晶表示装置を提供することができる。
【0108】
(透明ポリマーフィルムの構成)
本発明の透明ポリマーフィルムは単層構造であっても複数層から構成されていても良いが、単層構造であることが好ましい。ここで、「単層構造」のフィルムとは、複数のフィルム材が貼り合わされているものではなく、一枚のポリマーフィルムを意味する。そして、複数のポリマー溶液から、逐次流延方式や共流延方式を用いて一枚のポリマーフィルムを製造する場合も含む。この場合、添加剤の種類や配合量、ポリマーの分子量分布やポリマーの種類等を適宜調整することによって厚み方向に分布を有するようなポリマーフィルムを得ることができる。また、それらの一枚のフィルム中に光学異方性部、防眩部、ガスバリア部、耐湿性部などの各種機能性部を有するものも含む。
【0109】
(表面処理)
本発明の透明ポリマーフィルムには、適宜、表面処理を行うことにより、各機能層(例えば、下塗層、バック層、光学異方性層)との接着を改善することが可能となる。前記表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、鹸化処理(酸鹸化処理、アルカリ鹸化処理)が含まれ、特にグロー放電処理およびアルカリ鹸化処理が好ましい。ここでいう「グロー放電処理」とは、プラズマ励起性気体存在下でフィルム表面にプラズマ処理を施す処理である。これらの表面処理方法の詳細は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)に記載があり、適宜、使用することができる。
【0110】
フィルム表面と機能層との接着性を改善するため、表面処理に加えて、或いは表面処理に代えて、本発明の透明ポリマーフィルム上に下塗層(接着層)を設けることもできる。前記下塗層については、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁に記載があり、これらを適宜、使用することができる。また、セルロースアシレートフィルム上に設けられる機能性層について、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)32頁〜45頁に記載があり、これに記載のものを適宜、本発明の透明ポリマーフィルム上に使用することができる。
【0111】
《位相差フィルム》
本発明の透明ポリマーフィルムは、位相差フィルムとして用いることができる。なお、「位相差フィルム」とは、一般に液晶表示装置等の表示装置に用いられ、光学異方性を有する光学材料のことを意味し、位相差板、光学補償フィルム、光学補償シートなどと同義である。液晶表示装置において、位相差フィルムは表示画面のコントラストを向上させたり、視野角特性や色味を改善したりする目的で用いられる。
本発明の透明ポリマーフィルムを用いることで、Re値およびRth値を自在に制御した位相差フィルムを容易に作製することができる。
【0112】
また、本発明の透明ポリマーフィルムを複数枚積層したり、本発明の透明ポリマーフィルムと本発明外のフィルムとを積層したりしてReやRthを適宜調整して位相差フィルムとして用いることもできる。フィルムの積層は、粘着剤や接着剤を用いて実施することができる。
【0113】
また、場合により、本発明の透明ポリマーフィルムを位相差フィルムの支持体として用い、その上に液晶等からなる光学異方性層を設けて位相差フィルムとして使用することもできる。本発明の位相差フィルムに適用される光学異方性層は、例えば、液晶性化合物を含有する組成物から形成してもよいし、複屈折を持つポリマーフィルムから形成してもよいし、本発明の透明ポリマーフィルムから形成してもよい。
前記液晶性化合物としては、ディスコティック液晶性化合物または棒状液晶性化合物が好ましい。
【0114】
[ディスコティック液晶性化合物]
本発明において前記液晶性化合物として使用可能なディスコティック液晶性化合物の例には、様々な文献(例えば、C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
【0115】
前記光学異方性層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。また、ディスコティック液晶性分子の重合については、特開平8−27284公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子については、特開2001−4387号公報に開示されている。
【0116】
[棒状液晶性化合物]
本発明において前記液晶性化合物として使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。また、前記棒状液晶性化合物としては、以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
【0117】
前記光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例は、例えば、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4,683,327号明細書、同5,622,648号明細書、同5,770,107号明細書、国際公開第95/22586号パンフレット、同95/24455号パンフレット、同97/00600号パンフレット、同98/23580号パンフレット、同98/52905号パンフレット、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報等に記載の化合物が含まれる。
【0118】
《偏光板》
本発明の透明ポリマーフィルムまたは位相差フィルムは、偏光板(本発明の偏光板)の保護フィルムとして用いることができる。本発明の偏光板は、偏光膜とその両面を保護する二枚の偏光板保護フィルム(透明ポリマーフィルム)からなり、本発明の透明ポリマーフィルムまたは位相差フィルムは少なくとも一方の偏光板保護フィルムとして用いることができる。
本発明の透明ポリマーフィルムを前記偏光板保護フィルムとして用いる場合、本発明の透明ポリマーフィルムには前記表面処理(特開平6−94915号公報、同6−118232号公報にも記載)を施して親水化しておくことが好ましく、例えば、グロー放電処理、コロナ放電処理、または、アルカリ鹸化処理などを施すことが好ましい。特に、本発明の透明ポリマーフィルムを構成するポリマーがセルロースアシレートの場合には、前記表面処理としてはアルカリ鹸化処理が最も好ましく用いられる。
【0119】
また、前記偏光膜としては、例えば、ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸したもの等を用いることができる。ポリビニルアルコールフィルムを沃素溶液中に浸漬して延伸した偏光膜を用いる場合、接着剤を用いて偏光膜の両面に本発明の透明ポリマーフィルムの表面処理面を直接貼り合わせることができる。本発明の製造方法においては、このように前記透明ポリマーフィルムが偏光膜と直接貼合されていることが好ましい。前記接着剤としては、ポリビニルアルコールまたはポリビニルアセタール(例えば、ポリビニルブチラール)の水溶液や、ビニル系ポリマー(例えば、ポリブチルアクリレート)のラテックスを用いることができる。特に好ましい接着剤は、完全鹸化ポリビニルアルコールの水溶液である。
【0120】
一般に液晶表示装置は二枚の偏光板の間に液晶セルが設けられるため、4枚の偏光板保護フィルムを有する。本発明の透明ポリマーフィルムは、4枚の偏光板保護フィルムのいずれに用いてもよいが、本発明の透明ポリマーフィルムは、液晶表示装置における偏光膜と液晶層(液晶セル)との間に配置される保護フィルムとして、特に有利に用いることができる。また、前記偏光膜を挟んで本発明の透明ポリマーフィルムの反対側に配置される保護フィルムには、透明ハードコート層、防眩層、反射防止層などを設けることができ、特に液晶表示装置の表示側最表面の偏光板保護フィルムとして好ましく用いられる。
【0121】
《液晶表示装置》
本発明の透明ポリマーフィルム、位相差フィルムおよび偏光板は、様々な表示モードの液晶表示装置に用いることができる。以下にこれらのフィルムが用いられる各液晶モードについて説明する。これらのモードのうち、本発明の透明ポリマーフィルム、位相差フィルムおよび偏光板は特にVAモードおよびIPSモードの液晶表示装置に好ましく用いられる。これらの液晶表示装置は、透過型、反射型および半透過型のいずれでもよい。
【0122】
(TN型液晶表示装置)
本発明の透明ポリマーフィルムは、TNモードの液晶セルを有するTN型液晶表示装置の位相差フィルムの支持体として用いてもよい。TNモードの液晶セルとTN型液晶表示装置とについては、古くからよく知られている。TN型液晶表示装置に用いる位相差フィルムについては、特開平3−9325号、特開平6−148429号、特開平8−50206号および特開平9−26572号の各公報の他、モリ(Mori)他の論文(Jpn.J.Appl.Phys.Vol.36(1997)p.143や、Jpn.J.Appl.Phys.Vol.36(1997)p.1068)に記載がある。
【0123】
(STN型液晶表示装置)
本発明の透明ポリマーフィルムは、STNモードの液晶セルを有するSTN型液晶表示装置の位相差フィルムの支持体として用いてもよい。一般的にSTN型液晶表示装置では、液晶セル中の棒状液晶性分子が90〜360度の範囲にねじられており、棒状液晶性分子の屈折率異方性(Δn)とセルギャップ(d)との積(Δnd)が300〜1500nmの範囲にある。STN型液晶表示装置に用いる位相差フィルムについては、特開2000−105316号公報に記載がある。
【0124】
(VA型液晶表示装置)
本発明の透明ポリマーフィルムは、VAモードの液晶セルを有するVA型液晶表示装置の位相差フィルムや位相差フィルムの支持体として特に有利に用いられる。VA型液晶表示装置は、例えば特開平10−123576号公報に記載されているような配向分割された方式であっても構わない。これらの態様において本発明の透明ポリマーフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。
【0125】
(IPS型液晶表示装置およびECB型液晶表示装置)
本発明の透明ポリマーフィルムは、IPSモードおよびECBモードの液晶セルを有するIPS型液晶表示装置およびECB型液晶表示装置の位相差フィルムや位相差フィルムの支持体、または偏光板の保護フィルムとして特に有利に用いられる。これらのモードは黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させて、黒表示する。これらの態様において本発明の透明ポリマーフィルムを用いた偏光板は視野角拡大、コントラストの良化に寄与する。
【0126】
(OCB型液晶表示装置およびHAN型液晶表示装置)
本発明の透明ポリマーフィルムは、OCBモードの液晶セルを有するOCB型液晶表示装置或いはHANモードの液晶セルを有するHAN型液晶表示装置の位相差フィルムの支持体としても有利に用いられる。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムには、レタデーションの絶対値が最小となる方向が位相差フィルムの面内にも法線方向にも存在しないことが好ましい。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムの光学的性質も、光学的異方性層の光学的性質、支持体の光学的性質および光学的異方性層と支持体との配置により決定される。OCB型液晶表示装置或いはHAN型液晶表示装置に用いる位相差フィルムについては、特開平9−197397号公報に記載がある。また、モリ(Mori)他の論文(Jpn.J.Appl.Phys.Vol.38(1999)p.2837)に記載がある。
【0127】
(反射型液晶表示装置)
本発明の透明ポリマーフィルムは、TN型、STN型、HAN型、GH(Guest-Host)型の反射型液晶表示装置の位相差フィルムとしても有利に用いられる。これらの表示モードは古くからよく知られている。TN型反射型液晶表示装置については、特開平10−123478号、国際公開第98/48320号パンフレット、特許第3022477号公報に記載がある。反射型液晶表示装置に用いる位相差フィルムについては、国際公開第00/65384号パンフレットに記載がある。
【0128】
(その他の液晶表示装置)
本発明の透明ポリマーフィルムは、ASM(Axially Symmetric Aligned Microcell)モードの液晶セルを有するASM型液晶表示装置の位相差フィルムの支持体としても有利に用いられる。ASMモードの液晶セルは、セルの厚さが位置調整可能な樹脂スペーサーにより維持されているとの特徴がある。その他の性質は、TNモードの液晶セルと同様である。ASMモードの液晶セルとASM型液晶表示装置とについては、クメ(Kume)他の論文(Kume et al.,SID 98 Digest 1089(1998))に記載がある。
【0129】
(ハードコートフィルム、防眩フィルム、反射防止フィルム)
本発明の透明ポリマーフィルムは、場合により、ハードコートフィルム、防眩フィルム、反射防止フィルムへ適用してもよい。LCD、PDP、CRT、EL等のフラットパネルディスプレイの視認性を向上する目的で、本発明の透明ポリマーフィルムの片面または両面にハードコート層、防眩層、反射防止層の何れか或いは全てを付与することができる。このような防眩フィルム、反射防止フィルムとしての望ましい実施態様は、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)54頁〜57頁に詳細に記載されており、本発明の透明ポリマーフィルムにおいても好ましく用いることができる。
【実施例】
【0130】
《測定法》
まず、実施例において用いた特性の測定法および評価法を以下に示す。
【0131】
[置換度]
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83-91(手塚他)に記載の方法で13C−NMRにより求めた。
【0132】
[レタデーション]
幅方向5点(中央部、端部(両端からそれぞれ全幅の5%の位置)、および中央部と端部の中間部2点)を長手方向に100mごとにサンプリングし、2cm□の大きさのサンプルを取り出し、前述の方法に従って評価したレタデーション値の各点の平均値を求め、それぞれRe、Rth、Re(10%)、Re(80%)、Rth(10%)、Rth(80%)とし、下記式(VIII)および(IX)からΔReおよびΔRthを算出し、さらにΔRe/ReおよびΔRth/Rthを算出した。
式(VIII): ΔRe=|Re(10%)−Re(80%)|
式(IX): ΔRth=|Rth(10%)−Rth(80%)|
【0133】
また、それぞれの位置における遅相軸の向きの、搬送方向もしくはそれと直交する方向からのズレ(単位;°、−45〜+45°の値をとりうる)の最大値と最小値との差を遅相軸の向きの変動幅とした。
【0134】
[遅相軸バラツキ]
上記のレタデーション測定と同様にして取り出した各サンプルの遅相軸の向きの、搬送方向もしくはそれと直交する方向からのズレ(単位;°、−45〜+45°の値をとりうる)の最大値と最小値との差を、遅相軸バラツキとした。
【0135】
[ガラス転移温度(Tg)]
DSCの測定パンに熱処理前のポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温し、15分間保持した後、30℃まで−20℃/分で冷却した。この後、再度30℃から250℃まで昇温し、ベースラインが低温側から偏奇し始める温度を熱処理前のポリマーフィルムのTgとした。
【0136】
[Tm0
DSCの測定パンに熱処理前のポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温し、15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に現れた吸熱ピークの開始温度を熱処理前のポリマーフィルムのTm0とした。
【0137】
[Tc]
DSCの測定パンに熱処理前のポリマーフィルムを20mg入れ、これを窒素気流中で10℃/分で30℃から120℃まで昇温し、15分保持した後、30℃まで−20℃/分で冷却し、さらにこの後、再度30℃から300℃まで昇温した際に現れた発熱ピークの開始温度を熱処理前のポリマーフィルムのTcとした。
【0138】
[重合度]
製造したセルロースアシレートを絶対乾燥した後、約0.2gを精秤し、ジクロロメタン:エタノール=9:1(質量比)の混合溶剤100mLに溶解した。これをオストワルド粘度計にて25℃で落下秒数を測定し、重合度DPを以下の式により求めた。
ηrel=T/T0
[η]=ln(ηrel)/C
DP=[η]/Km
[式中、Tは測定試料の落下秒数、T0は溶剤単独の落下秒数、lnは自然対数、Cは濃度(g/L)、Kmは6×10-4である。]
【0139】
[偏光度]
作製した2枚の偏光板を吸収軸を平行に重ね合わせた場合の透過率(Tp)および吸収軸を直交させて重ね合わせた場合の透過率(Tc)を測定し、下記式で表される偏光度(P)を算出した。
偏光度P=((Tp−Tc)/(Tp+Tc))0.5
【0140】
[透湿度]
本発明における透湿度は、塩化カルシウムを入れたカップをフィルムを用いて蓋をし、且つ密閉したものを、40℃・相対湿度90%の条件で24時間放置した際の調湿前後の質量変化(g/(m2・day))から評価した値である。
【0141】
[フィルムの面状]
透明ポリマーフィルムの表面を目視により観察し、次の評価尺度に従って評価した。
A:フィルムの面状が良好で、光学フィルムとして好ましく適用できる。
B:フィルムに若干のうねりが確認されるが、光学フィルムとして好ましく適用
できる。
C:フィルムに相当面積に亘りうねりが生じるか、部分的に白濁しており、光学
フィルムとしては適用できない。
D:フィルムに著しいうねりが生じるか、全面が白濁しており、光学フィルムと
しては適用できない。
【0142】
[ヘイズ]
フィルムの幅方向5点(フィルムの中央部、端部(両端からそれぞれ全幅の5%の位置)、および中央部と端部の中間部2点)をサンプリングし、前述の方法に従って評価した各点の平均値を算出し、ヘイズ値を求めた。
【0143】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0144】
《合成例1》 セルロースアセテートプロピオネートの合成(CAP SY−1)
セルロース(広葉樹パルプ)150g、酢酸75gを、反応容器である還流装置を付けた5Lセパラブルフラスコに取り、60℃に調節したオイルバスにて加熱しながら、2時間激しく攪拌した。このような前処理を行ったセルロースは膨潤、解砕されて、フラッフ状を呈した。反応容器を2℃の氷水浴に30分間置き冷却した。
別途、アシル化剤としてプロピオン酸無水物1545g、硫酸10.5gの混合物を作製し、−30℃に冷却した後に、上記の前処理を行ったセルロースを収容する反応容器に一度に加えた。30分経過後、外設温度を徐々に上昇させ、アシル化剤の添加から2時間経過後に内温が25℃になるように調節した。反応容器を5℃の氷水浴にて冷却し、アシル化剤の添加から0.5時間後に内温が10℃、2時間後に内温が23℃になるように調節し、内温を23℃に保ってさらに3時間攪拌した。反応容器を5℃の氷水浴にて冷却し、5℃に冷却した25質量%含水酢酸120gを1時間かけて添加した。内温を40℃に上昇させ、1.5時間攪拌した。次いで反応容器に、50質量%含水酢酸に酢酸マグネシウム4水和物を硫酸の2倍モル溶解した溶液を添加し、30分間攪拌した。25質量%含水酢酸1L、33質量%含水酢酸500mL、50質量%含水酢酸1L、水1Lをこの順に加え、セルロースアセテートプロピオネートを沈殿させた。得られたセルロースアセテートプロピオネートの沈殿は温水にて洗浄を行った。このときの洗浄条件を変化させることで、残硫酸根量を変化させたセルロースアセテートプロピオネート(CAP SY−1)を得ることができる。洗浄後、20℃の0.003質量%水酸化カルシウムおよび0.01質量%の酢酸マグネシウム水溶液中で0.5時間攪拌し、洗浄液のpHが7になるまで、さらに水で洗浄を行った後、70℃で真空乾燥させた。
1H−NMRおよび、GPC測定によれば、得られたセルロースアセテートプロピオネートは、アセチル化度0.30、プロピオニル化度2.63、重合度320であった。硫酸根の含有量は、ASTM D−817−96により測定した。CAP SY−1は、残存酢酸量が0.05質量%以下であり、Ca含有量が18ppm、Mg含有量が32ppm、Fe含有量が0.02ppmであり、遊離プロピオン酸15ppm、さらにSが25ppm含むものであった。また6位アセチル基の置換度は0.11であり、全アセチル中の37%であった。また、重量平均分子量/数平均分子量比は2.2であった。
【0145】
《合成例2》 セルロースアセテートブチレートの合成
セルロース(広葉樹パルプ)100g、酢酸135gを、反応容器である還流装置を付けた5Lセパラブルフラスコに取り、60℃に調節したオイルバスにて加熱しながら、1時間放置した。その後、60℃に調節したオイルバスにて加熱しながら、1時間激しく攪拌した。このような前処理を行ったセルロースは膨潤、解砕されて、フラッフ状を呈した。反応容器を5℃の氷水浴に1時間置き、セルロースを十分に冷却した。
別途、アシル化剤として酪酸無水物1080g、硫酸10.0gの混合物を作製し、−20℃に冷却した後に、前処理を行ったセルロースを収容する反応容器に一度に加えた。30分経過後、外設温度を20℃まで上昇させ、5時間反応させた。反応容器を5℃の氷水浴にて冷却し、約5℃に冷却した12.5質量%含水酢酸2400gを1時間かけて添加した。内温を30℃に上昇させ、1時間攪拌した。次いで反応容器に、酢酸マグネシウム4水和物の50質量%水溶液を100g添加し、30分間攪拌した。酢酸1000g、50質量%含水酢酸2500gを徐々に加え、セルロースアセテートブチレートを沈殿させた。得られたセルロースアセテートブチレートの沈殿は温水にて洗浄を行った。このときの洗浄条件を変化させることで、残硫酸根量を変化させたセルロースアセテートブチレートを得ることができる。洗浄後、0.005質量%水酸化カルシウム水溶液中で0.5時間攪拌し、さらに、洗浄液のpHが7になるまで水で洗浄を行った後、70℃で乾燥させた。得られたセルロースアセテートブチレートはアセチル化度0.84、ブチリル化度2.12、重合度268であった。
【0146】
[実施例1] 透明ポリマーフィルムの作製と評価
《フィルム101〜120》
1)ポリマー溶液の調製
(1−1)ポリマーおよび添加剤
各フィルムの製造において、前記合成例を参考にして、表1記載の置換度を有するポリマーを合成して使用した。各ポリマーは120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、17.5質量部を使用し、更に二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)を添加した。また、各フィルムの製造において、表1記載の可塑剤を表1記載の量(対ポリマーに対する質量%)で添加した。
【0147】
(1−2)溶媒
各フィルムの製造において、ジクロロメタン/メタノール/ブタノール(83/15/2質量部)の混合溶媒を使用した。なお、溶媒の含水率は、いずれも0.2質量%以下であった。
【0148】
(1−3)ポリマー溶液(以下、ドープと称する場合もある)の作製
攪拌羽根を有する4000Lのステンレス製溶解タンクにて前記複数の溶媒を混合して混合溶媒とし、よく攪拌・分散しつつ、前述のポリマーフレーク(CAP SY−1)を徐々に添加し、全体が2000kgになるように調整した。なお、溶媒は、すべてその含水率が0.5質量%以下のものを使用した。分散タンクにポリマーの粉末を投入して、ディゾルバータイプの偏芯攪拌軸を5m/sec(剪断応力5×104kgf/m/sec2)の周速で回転させ、中心軸にアンカー翼を有する軸を周速1m/sec(剪断応力1×104kgf/m/sec2)で攪拌させながら、30分間分散した。分散の開始温度は20℃であり、最終到達温度は35℃となった。分散終了後、高速攪拌は停止し、アンカー翼の周速を0.5m/secとしてさらに100分間攪拌し、ポリマーフレークを膨潤させた。膨潤終了までは窒素ガスでタンク内を0.12MPaになるように加圧した。この際のタンク内の酸素濃度は2vol%未満であり防爆上で問題のない状態を保った。またドープ中の水分量は0.5質量%以下であることを確認した(0.3質量%)。
【0149】
(1−4)溶解・濾過工程
膨潤した溶液をタンクから、ジャケット付配管で50℃まで加熱し、更に1.2MPaの加圧下で90℃まで加熱して完全に溶解させた。加熱時間は15分とした。次に36℃まで温度を下げ、公称孔径8μmの濾材を通過させドープを得た。この際、濾過1次圧は1.3MPa、2次圧は1.0MPaとした。高温にさらされるフィルター、ハウジング、及び配管はハステロイ(登録商標)合金製で耐食性の優れたものを利用し、保温加熱用の熱媒を流通させるジャケットを有する物を使用した。
【0150】
(1−5)濃縮・濾過
このようにして得られた濃縮前ドープを80℃で常圧のタンク内でフラッシュさせて、蒸発した溶剤を凝縮器で回収分離した。フラッシュ後のドープの固形分濃度は、24.8質量%となった。なお、凝縮された溶剤は調製工程の溶剤として再利用すべく回収工程に回された(回収は蒸留工程と脱水工程などにより実施されるものである)。フラッシュタンクでは、中心軸にアンカー翼を有する軸を周速0.5m/secで回転させることにより攪拌して脱泡を行った。タンク内のドープの温度は25℃であり、タンク内の平均滞留時間は50分であった。
【0151】
次に、ドープに弱い超音波照射することによって泡抜きを実施した。その後、1.3MPaに加圧した状態で、最初公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく10μmの焼結繊維フイルターを通過させた。それぞれの一次圧は、1.4MPa,1.1MPaであり、二次圧は1.0MPa、0.7MPaであった。濾過後のドープ温度は、36℃に調整して2000Lのステンレス製のストックタンク内に貯蔵した。ストックタンクでは、中心軸にアンカー翼を有する軸を周速0.3m/secで常時回転させることにより攪拌した。なお、濃縮前ドープからドープを調製する際に、ドープ接液部には、腐食などの問題は全く生じなかった。
【0152】
2)フィルム作製
(2−1)流延工程
続いてストックタンク内のドープを1次増圧用のギアポンプで高精度ギアポンプの1次側圧力が0.8MPaになるようにインバーターモーターによりフィードバック制御を行い送液した。高精度ギアポンプは容積効率99.3%、吐出量の変動率0.4%以下の性能であった。また、吐出圧力は1.4MPaであった。
流延ダイは、幅が2.5mであり共流延用に調整したフィードブロックを装備して、主流のほかに両面にそれぞれ積層して3層構造のフィルムを成形できるようにした装置を用いた。以下の説明において、主流から形成される層を中間層と称し、支持体面側の層を支持体面と称し、反対側の面をエアー面と称する。なお、ドープの送液流路は、中間層用,支持体面用,エアー面用の3流路を用いた。なお、本フィルムの製造では中間層用の流路のみを利用した。
【0153】
そして、完成したポリマーフィルムの膜厚が80μmとなるように、流延幅を2200mmとしてダイ突出口のポリマードープの流量を調整して流延を行った。ドープの温度を36℃に調整するため、流延ダイにジャケットを設けてジャケット内に供給する伝熱媒体の入口温度を36℃とした。
ダイ、フィードブロック、配管はすべて作業工程中は36℃に保温した。ダイはコートハンガータイプのダイであり、厚み調整ボルトが20mmピッチに設けられており、ヒートボルトによる自動厚み調整機構を具備しているものを使用した。このヒートボルトは予め設定したプログラムにより高精度ギアポンプの送液量に応じたプロファイルを設定することもでき、製膜工程内に設置した赤外線厚み計のプロファイルに基づいた調整プログラムによってフィードバック制御も可能な性能を有するものである。流延エッジ部20mmを除いたフィルムで50mm離れた任意の2点の厚み差は1μm以内であり、幅方向厚みの最小値で最も大きな差が2μm/m以下となるように調整した。また、ダイの1次側には減圧するためのチャンバーを設置した。この減圧チャンバーの減圧度は流延ビードの前後で1Pa〜5000Paの圧力差を印加できるようになっていて、流延スピードに応じて調整が可能なものである。その際に、ビードの長さが2mm〜50mmになるような圧力差に設定した。
【0154】
(2−2)流延ダイ
ダイの材質は、オーステナイト相とフェライト相との混合組成を持つ2相系ステンレス鋼であり、熱膨張率が2×10-5(℃-1)以下の素材であり、電解質水溶液での強制腐食試験でSUS316と略同等の耐腐食性を有する素材を使用した。流延ダイおよびフィードブロックの接液面の仕上げ精度は、表面粗さで1μm以下、真直度はいずれの方向にも1μm/m以下であり、スリットのクリアランスは自動調整により0.5mm〜3.5mmまで調整可能であった。本フィルムの製造では、1.5mmで実施した。ダイリップ先端の接液部の角部分について、Rはスリット全巾に亘り50μm以下になるように加工した。ダイ内部での剪断速度は1(sec-1)〜5000(sec-1)の範囲であった。
【0155】
また、流延ダイのリップ先端には、硬化膜が設けられているものを用いた。タングステン・カーバイド(WC),Al23,TiN,Cr23などがあり、特に好ましくはWCであり、本発明では溶射法によりWCコーティングを形成したものを用いた。また、ドープを可溶化する溶剤である混合溶媒(ジクロロメタン/メタノール/ブタノール(83/15/2質量部))をビード端部とスリットの気液界面に片側で0.5ml/分で供給した。更に減圧チャンバーの温度を一定にするために、ジャケットを取り付け35℃に調整された伝熱媒体を供給した。エッジ吸引風量は、1L/分〜100L/分の範囲で調整可能なものを用い、本フィルムの製造では30L/分〜40L/分の範囲で適宜調整した。
【0156】
(2−3)金属支持体
支持体として幅2.8mで長さが100mのステンレス製のエンドレスバンドを利用した。バンドの厚みは1.5mmであり、表面粗さは0.05μm以下に研磨し、材質はSUS316製であり、十分な耐腐食性と強度を有するものとした。バンドの全体の厚みムラは0.5%以下であった。バンドは2個のドラムにより駆動するタイプを用い、その際のバンドのテンションは1.5×104kg/mに調整し、バンドとドラムとの相対速度差が0.01m/分以下となるものであった。また、バンド駆動の速度変動は0.5%以下であった。また1回転の巾方向の蛇行は1.5mm以下に制限するようにバンドに両端位置を検出して制御した。また、流延ダイ直下における支持体表面のドラム回転に伴う上下方向の位置変動は200μm以下にした。支持体は、風圧振動抑制手段を有したケーシング内に設置されている。この支持体上にダイからドープを流延した。流延直前の支持体中央部の表面温度は15℃であった。両端の温度差は6℃以下であった。金属支持体の表面欠陥はあってはならないものであり、30μm以上のピンホールは皆無であり、10μm〜30μmのピンホールは1個/m2以下、10μm以下のピンホールは2個/m2以下である支持体を使用した。
【0157】
(2−4)流延乾燥
前記流延ダイ及び支持体などが設けられている流延室の温度は、35℃に保った。バンド上に流延されたドープは、最初に平行流の乾燥風を送り乾燥した。乾燥する際の乾燥風からのドープへの総括伝熱係数は24kcal/m2・hr・℃であった。乾燥風の温度はバンド上部の上流側を130℃とし、下流側を135℃とした。また、バンド下部は、65℃とした。それぞれのガスの飽和温度は、いずれも−8℃付近であった。支持体上での乾燥雰囲気における酸素濃度は5vol%に保持した。なお、酸素濃度を5vol%に保持するため空気を窒素ガスで置換した。また、流延室内の溶媒を凝縮回収するために、凝縮器(コンデンサ)を設け、その出口温度は、−10℃に設定した。
【0158】
流延後5秒間は遮風装置により乾燥風が直接ドープに当たらないようにして流延ダイ直近の静圧変動を±1Pa以下に抑制した。ドープ中の溶剤比率が乾量基準で45質量%になった時点で流延支持体からフィルムとして剥離した。この時の剥離テンションは8kgf/mであり、支持体速度に対して剥ぎ取り速度(剥取りロールドロー)は100.1%〜110%の範囲で適切に剥ぎ取れるように設定した。また、剥ぎ取ったフィルムの表面温度は14℃であった。支持体上での乾燥速度は平均62質量%乾量基準溶剤/分であった。乾燥して発生した溶剤ガスは凝縮装置に導き、−10℃で液化し、回収して仕込み用の溶剤として再利用した。溶剤を除去した乾燥風は再度加熱して乾燥風として再利用した。その際に、溶剤に含まれる水分量を0.5%以下に調整して再使用した。
剥ぎ取ったフィルムを多数のローラーが設けられている渡り部で搬送した。渡り部は3本のローラーを備えており、また渡り部の温度は40℃に保持した。渡り部のローラーで搬送している際に、フィルムに16N〜160Nのテンションを付与した。
【0159】
(2−5)テンター搬送・乾燥工程条件
剥ぎ取られたフィルムは、クリップを有したテンターで両端を固定しながらテンターの乾燥ゾーン内を搬送し、乾燥風により乾燥した。クリップには、20℃の伝熱媒体を供給して冷却した。テンターの駆動はチェーンで行い、そのスプロケットの速度変動は0.5%以下であった。また、テンター内を3ゾーンに分け、それぞれのゾーンの乾燥風温度を上流側から90℃,100℃,110℃とした。乾燥風のガス組成は−10℃の飽和ガス濃度とした。テンター内での平均乾燥速度は120質量%(乾量基準溶剤)/分であった。テンターの出口ではフィルム内の残留溶剤の量は10質量%以下となるように調整し、本フィルムの製造では7質量%となるように乾燥ゾーンの条件を調整した。テンター内では搬送しつつ幅方向に延伸も行った。なお、テンターに搬送された際の幅を100%としたときの拡幅量を103%とした。剥取ローラーからテンター入口に至る延伸率(テンタ駆動ドロー)は、102%とした。テンター内の延伸率はテンター噛み込み部から10mm以上離れた部分における実質延伸率の差異が10%以下であり、かつ20mm離れた任意の2点の延伸率の差異は5%以下であった。
【0160】
ベース端のうちテンターで固定している長さの比率は90%とした。また、テンタークリップの温度は50℃を超えないように冷却しつつ搬送した。テンター部分で蒸発した溶剤は−10℃の温度で凝縮させ液化して回収した。凝縮回収用に凝縮器(コンデンサ)を設け、その出口温度は−8℃に設定した。溶剤に含まれる水分を0.5質量%以下に調整して再使用した。
そして、テンター出口から30秒以内に両端の耳切りを行った。NT型カッターにより両側50mmの耳をカットした。テンター部の乾燥雰囲気における酸素濃度は5vol%に保持した。なお、酸素濃度を5vol%に保持するため空気を窒素ガスで置換した。後述するローラー搬送ゾーンで高温乾燥させる前に、100℃の乾燥風が供給されている予備乾燥ゾーンでフィルムを予備加熱した。
【0161】
(2−6)後乾燥工程条件
前述した方法で得られた耳切り後のポリマーフィルムを、ローラー搬送ゾーンで高温乾燥した。ローラー搬送ゾーンを4区画に分割して、上流側から120℃,130℃,130℃,130℃の乾燥風を給気した。このとき、フィルムのローラー搬送テンションは100N/巾として、最終的に残留溶剤量が0.3質量%になるまでの約10分間、乾燥した。該ローラーのラップ角度は、90度および180度を用いた。該ローラーの材質はアルミ製もしくは炭素鋼製であり、表面にはハードクロム鍍金を施した。ローラーの表面形状はフラットなものとブラストによりマット化加工したものとを用いた。ローラーの回転による振れは全て50μm以下であった。また、テンション100N/巾でのローラー撓みは0.5mm以下となるように選定した。
【0162】
搬送中のフィルム帯電圧は、常時−3kV〜3kVの範囲となるように工程中に強制除電装置(除電バー)を設置した。又巻き取り部では、帯電がー1.5kV〜1.5kVになるように、除電バーだけでなく、イオン風除電も設置した。
乾燥されたフィルムを第1調湿室に搬送した。ローラー搬送ゾーンと第1調湿室との間の渡り部には、110℃の乾燥風を給気した。第1調湿室には、温度50℃,露点が20℃の空気を給気した。さらに、フィルムのカールの発生を抑制する第2調湿室にフィルムを搬送した。第2調湿室では、フィルムに直接90℃,湿度70%の空気をあてた。
【0163】
(2−7)後処理、巻取り条件
乾燥後のポリマーフィルムは、30℃以下に冷却して両端耳切りを行った。耳切りはフィルム端部をスリットする装置をフィルムの左右両端部に、2基ずつ設置して(片側当たりスリット装置数は2基)、フィルム端部をスリットした。ここで、スリット装置は、円盤状の回転上刃と、ロール状の回転下刃とから構成されており、回転上刃の材質は超鋼鋼材であり、回転上刃の直径が200mm、及び切断箇所の刃の厚みが0.5mmであった。ロール状の回転下刃の材質は超鋼鋼材であり、回転下刃のロール径が100mmであった。
【0164】
そして、スリットされたフィルム断面の表面粗さ(算術平均粗さ:Ra)を測定したところ、0.2μmであった。また、スリットされたフィルム断面は、比較的平滑であり、切り粉もなかった。また、上記セルロースアシレートフィルムの製膜において、搬送中におけるフィルムの破断は全く無かった。
ここで、フィルム断面の表面粗さの測定は、ZYGO社製の表面粗さ測定器(NewView5010)を用い、対物レンズ50倍、及びイメージズーム1.3倍の装置条件で測定した。またこの場合、測定条件は、Mesure Cntrlキーで適宜設定し、測定したデータは、Analyze Cntrlキーを適宜設定して、データ処理を行なった。
【0165】
こうして、最終製品幅1400mm、及び膜厚40μmのセルロースアシレートフィルムを得て、巻取り機により巻き取った。また、スリットされたセルロースアシレートフィルムのフィルム端部から20mm幅の箇所の寸法変化率を測定した。ここで、寸法変化率の評価は、セルロースアシレートフィルムの製造直後の寸法(幅手方向長さ)に対し、温度90℃、相対湿度5%の環境下に120時間保持した後に変化した寸法(幅手方向長さ)の百分率をとって評価した。その結果、セルロースアシレートフィルム端部から20mm幅の箇所の寸法変化率は、−0.15%であり問題はなかった。
さらにフィルムの両端にナーリングを行った。ナーリングは片側からエンボス加工を行うことで付与し、ナーリングする幅は10mmであり、最大高さは平均厚みよりも平均12μm高くなるように押し圧を設定した。
【0166】
そして、フィルムを巻取り室に搬送した。巻取り室は、室内温度25℃,湿度60%に保持した。このようにして得られたポリマーフィルムの製品幅は、2050mmとなった。巻き芯の径は169mm、巻き始めテンションは380N/巾であり、巻き終わりが260N/巾になるようなテンションパターンとした。巻き取り全長は3650mであった。巻き取りの際のオシレート周期を400mとし、オシレート幅を±5mmとした。また、巻取りロールに対するプレスロールの押し圧を50N/巾に設定した。巻き取り時のフィルムの温度は25℃、含水量は0.8質量%、残留溶剤量は0.2質量%であった。全工程を通して平均乾燥速度は20質量%(乾量基準溶剤)/分であった。また巻き緩み、シワもなく、10Gでの衝撃テストにおいても巻きずれが生じなかった。また、ロール外観も良好であった。以上の工程を経て、ポリマーフィルム試料を製膜した。フィルム試料のロールを25℃、相対湿度55%の貯蔵ラックに1ヶ月間保管して、さらに上記と同様に検査した結果、いずれも有意な変化は認められなかった。さらにロール内において接着も認められなかった。また、フィルム試料を製膜した後に、金属支持体であるエンドレスベルト上にはドープから形成された流延膜の剥げ残りは全く見られなかった。
【0167】
3)熱処理工程
(3−1)予備延伸
得られたフィルムを、ロール延伸機を用いて縦一軸延伸処理を実施した。ロール延伸機のロールは表面を鏡面処理した誘導発熱ジャケットロールを用い、各ロールの温度は個別に調整できるようにした。延伸ゾーンはケーシングで覆い160℃とした。延伸部の前のロールは徐々に160℃に加熱できるように設定した。縦横比は3.3となるように延伸間距離を調整し、延伸速度は延伸間距離に対して10%/分とした。予備延伸倍率は表1に記載した通りとした。なお、表1において予備延伸倍率0%とは、予備延伸工程は実施しなかったことを示すものである。フィルムの予備延伸倍率は、フィルムの搬送方向と直交する方向に一定間隔の標線を入れ、その間隔を熱処理前後で計測し、下記式から求めた。
フィルムの予備延伸倍率(%)=100×(熱処理後の標線の間隔−熱処理前の標線の間隔)/熱処理前の標線の間隔
【0168】
(3−2)熱処理
上記予備延伸で得られたフィルムを、2つのニップロール間に加熱ゾーンを有する装置を用いて熱処理した。縦横比(ニップロール間の距離/ベース幅)は3.3となるように調整し、加熱ゾーンは表1記載の温度とし、2つのニップロールを通過した後、フィルムを500℃/分で25℃まで冷却した。また、フィルムの伸びは、フィルムの搬送方向と直交する方向に一定間隔の標線を入れ、その間隔を熱処理前後で計測し、下記式から求めた。各フィルムの熱処理工程におけるフィルムの伸びは5〜60%の範囲内であった。
フィルムの伸び(%)=100×(熱処理後の標線の間隔−熱処理前の標線の間隔)/熱処理前の標線の間隔
さらに、各フィルムの熱処理工程における下記式で求められる幅方向の収縮率は5〜50%の範囲内であった。
フィルムの幅方向の収縮率(%)=100×(熱処理前の全幅−熱処理後の全幅)/熱処理前の全幅
【0169】
(3−3)再延伸
場合により、続いて熱処理後のフィルムの両端をテンタークリップで把持した後、加熱ゾーン内で搬送方向と直交する方向に延伸した。加熱ゾーンの温度は160℃とし、表1に記載される倍率で再延伸した。なお、再延伸倍率は、フィルムの搬送方向と平行な方向に一定間隔の標線を入れ、その間隔を延伸前後で計測し、下記式から求めた。
再延伸倍率(%)=100×(延伸後の標線の間隔−延伸前の標線の間隔)/延伸前の標線の間隔
【0170】
(3−4)耳切り工程
上記の熱処理、再延伸されたポリマーフィルムを、30℃以下に冷却して両端耳切りを行った。耳切りはフィルム端部をスリットする装置をフィルムの左右両端部に、2基ずつ設置して(片側当たりスリット装置数は2基)、フィルム端部を30〜300mmの幅で切り落とした。ここで、スリット装置は、円盤状の回転上刃と、ロール状の回転下刃とから構成されており、回転上刃の材質は超鋼鋼材であり、回転上刃の直径が300mm、及び切断箇所の刃の厚みが0.4mmであった。ロール状の回転下刃の材質は超鋼鋼材であり、回転下刃のロール径が120mmであった。切り落とした熱処理したポリマーフィルム屑は、搬送ローラーに並列した直径100mmの回転するローラーに巻取り、除去してハンドリングした。ここで、耳切りの際に、ポリマーフィルムによってその両端の状態が異なり、耳切り幅を調整して耳切りを実施した。耳切り幅と耳切りされたポリマーフィルムの両エッジ部をルーペで5倍に拡大し、目視でそのエッジ部の傷の有無を観察し、以下の評価方法にしたがってその耳切り状態を評価した。ランクBまでは工程上および商品価値としては、許容レベルとして判断した。
【0171】
(耳切り状態の評価)
A:耳切り幅は200mm以内であり、ルーペで5倍拡大したフィルムの耳切り
エッジ部に傷は見られなかった。
B:耳切り幅は200mm以内であり、ルーペで5倍拡大したフィルムの耳切り
エッジ部に小さい傷が認められた。
C:耳切り幅は250mm以上であり、ルーペで5倍拡大したフィルムの耳切り
エッジ部に小さい傷が認められた。
D:耳切り幅は250mm以上であり、ルーペで5倍拡大したフィルムの耳切り
エッジ部に多数の傷が認められた。
【0172】
4)ポリマーフィルムの評価
得られた各ポリマーフィルムの面状、遅相軸のバラツキ、ヘイズ、Re、Rth、ΔRe、ΔRth、|Rth|/Re、ΔRe/Re、ΔRth/Rthについて評価を行った。結果を表1に示した。
ここで、フィルム101、102、105(比較例)では、Reの遅相軸がフィルムの搬送方向に観測されたが、その他のフィルムではReの遅相軸がフィルムの幅方向に観測された。
また、ReおよびRthのばらつき(5点の測定値のばらつき)は、全てのサンプルでReは±1nm以内、Rthは±2nm以内であった。
各フィルムの膜厚80μm換算の透湿度は、全て400〜1300g/(m2・day)の範囲内であり、これらのフィルムの熱処理前透湿度は、全て250〜1100g/(m2・day)の範囲内であった。
【0173】
【表1】

【0174】
表1に示したように、本発明の可塑剤を使用し熱処理したフィルム107〜120(本発明)は、Tc≦T<Tm0を満たす温度Tにて熱処理することにより、得られる透明ポリマーフィルムのReを大きくすることができ、かつ、|Rth|/Reが小さい透明ポリマーフィルムを得ることができた(フィルム103と107の比較、フィルム104と108の比較など)。更にまた、本発明の可塑剤を使用することにより|Rth|/Reが小さいフィルムを得る事ができるだけでなく、ΔRe、ΔRth、ΔRe/Re、ΔRth/Rthの各特性に優れ、面状と耳切り状態は良好であり、遅相軸バラツキ、ヘイズの全てを満足する透明フィルムを得ることができた(フィルム107〜120)。さらに、本発明の可塑剤を使用したフィルムは、熱処理時に発煙が認められず、油分による汚染もなかった。また、特に予備延伸することにより、より高いReを有する透明フィルムを作製することができた(フィルム107と108の比較など)。さらに、本発明の可塑剤を利用したフィルムは、剥ぎ取りローラー上にフィルム付着は見られず、優れたフィルム作製適性を有するものであった。
これに対して、本発明の可塑剤を含有しないフィルム101、102(比較例)は光学特性は本発明の望ましい範囲にあるが、ハンドリング上で耳切り特性が著しく悪く、製造する上で大きな問題を有するものであった。更に、剥ぎ取りローラー上にフィルムのはげ残りがエッジ部に見られ、問題となる可能性があるものであった。
【0175】
また、熱処理温度が本発明の範囲外であるフィルム103〜106(比較例)は、ΔRe、ΔRth、ΔRe/Re、ΔRth/Rth、面状、耳切り状態、遅相軸バラツキ、ヘイズの全てを満足することはできないか、フィルムそのものを製造することができなかった。以上から、本発明により従来は煩雑な工程を経なければ製造することができなかった|Rth|/Reが低い透明ポリマーフィルムを容易に得ることができ、かつ製造時のハンドリング性も大幅に改良することを可能にしたものである。また、Tc≦T<Tm0を満たす温度Tにて熱処理して得られた透明ポリマーフィルムは、レタデーションの湿度依存性やばらつきが少ないことも確認された。
【0176】
《フィルム201〜203》
フィルム108の製造工程において、可塑剤Aを下記の可塑剤に変えて、フィルム201〜203(比較例)を作製した。得られたフィルムの評価結果を表1に記載した。
フィルム201:可塑剤としてトリフェニルフォスフェート(KH−1、分子量326)を12質量%(対ポリマー)
フィルム202:可塑剤としてエチルフタリルエチルグリコレート(KH−2、分子量280)を12質量%(対ポリマー)
フィルム203:可塑剤としてトリメチロールプロパントリベンゾエート(KH−3、分子量446)を12質量%(対ポリマー)
これらの可塑剤を用いて作製したポリマーフィルムは、熱処理する際に可塑剤の揮発により白煙が著しく見られ、製造工程の汚染が著しく悪く実用性はないものであった。
また、得られたフィルム201〜203は耳切り状態が悪く、遅相軸のバラツキ、ヘイズの点で特性が劣っていた。
【0177】
《フィルム301》
フィルム108の製造工程において、更に下記の添加剤Aを0.3質量%(対ポリマー)添加する以外は、フィルム108と全く同様にしてフィルム301を得た。
添加剤A:
【0178】
【化1】

【0179】
得られたフィルム301(本発明)は、|Rth|/Reが小さいだけでなく、ΔRe、ΔRth、ΔRe/Re、ΔRth/Rthの各特性に優れ、面状と耳切り状態も良好であり、遅相軸バラツキ、ヘイズの全てを満足する透明フィルムであった。
【0180】
《フィルム401》
フィルム108の製造工程において、「1)ポリマー溶液の調製」により作製した溶液を以下のフィルム作製方法に従った製膜工程でフィルムを作製した以外は、フィルム108の通りに製造しフィルム401(本発明)を得た。
【0181】
(フィルム401の製膜工程)
前記ポリマー溶液を30℃に加温し、流延ギーサーを通して直径3mのドラムである鏡面ステンレス支持体上に流延した。支持体の表面温度は−5℃に設定し、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをドラムから剥ぎ取った後、両端をピンテンターでクリップした。剥ぎ取り直後のセルロースアシレートウェブの残留溶媒量、および支持体速度に対する剥ぎ取り速度(剥ぎ取りロールドロー)、およびセルロースアシレートウェブの膜面温度は5℃であった。ピンテンターで保持されたセルロースアシレートウェブは、乾燥ゾーンに搬送した。初めの乾燥では45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥し、巻き取り直前に両端(全幅の各5%)を耳切りした後、両端に幅10mm、高さ50μmの厚みだし加工(ナーリング)をつけた後、3000mのロール状に巻き取った。このようにして得た透明フィルムの幅は各水準とも1.5mであり、膜厚は80μmであった。
評価結果を表1に示す。本発明の可塑剤を使用することにより|Rth|/Reが小さいフィルムを得る事ができるだけでなく、ΔRe、ΔRth、ΔRe/Re、ΔRth/Rthの各特性に優れ、面状と耳切り状態も良好で、遅相軸バラツキ、ヘイズの全てを満足する透明フィルムを得ることができた。
【0182】
《フィルム501》
フィルム108の製造工程において、熱処理して得られたポリマーフィルムを、さらに下記の方法により再延伸してフィルム501(本発明)を得た。
(フィルム501の再延伸工程)
フィルム108のポリマーフィルムの両端をテンタークリップで把持した後、加熱ゾーン内で搬送方向と直交する方向に延伸した(フィルム501)。加熱ゾーンの温度は160℃とし、20%延伸した。なお、延伸倍率は、フィルムの搬送方向と平行な方向に一定間隔の標線を入れ、その間隔を延伸前後で計測し、下記式から求めた。
延伸倍率(%)=100×(延伸後の標線の間隔−延伸前の標線の間隔)/延伸前の標線の間隔
このようにして再延伸して得られたフィルム501は、Reが160であり、Rthは40であり、|Rth|/Reが一段と小さいフィルムであった。また、ΔRe、ΔRth、ΔRe/Re、ΔRth/Rthの各特性に優れ、面状と耳切り状態も良好であり、遅相軸バラツキ、ヘイズの全てを満足する透明フィルムであることを確認した。特にRthを小さくすることができ、有用な位相差フィルムとして応用できるものである。
【0183】
[実施例2] 積層位相差フィルムの作製と評価
本発明のポリマーフィルムは、位相差フィルムとしてそのまま使用することができるが、ここでは、粘着剤を用いてフィルムをロールツーロールで貼り合わせることにより、Rth/Re比を制御した位相差フィルムを作製した。フジタックTD80UF(富士フイルム(株)製)とフィルム108とを粘着剤(ポリ(メチルアクリレート/ブチルアクリレート/ヒドロキシエチルアクリレート)とトルエンジイソシアネートおよびジグリシジルエチレングリコールからなる)を用いてロールツーロールで貼り合せ、前述の方法でReおよびRthを測定したところ、Re=167nm、Rth=0nmであった。また、この位相差フィルムのReの遅相軸は、フィルムの幅方向に観測された。フジタックTD80UF(富士フイルム(株)製)と2枚のフィルム108を前述の粘着剤を用いてロールツーロールで貼り合せ、前述の方法でReおよびRthを測定したところ、Re=240nm、Rth=0nmであった(フィルム601)。また、この位相差フィルムのReの遅相軸は、フィルムの幅方向に観測され、偏光板としては優れた面状であった。
【0184】
[実施例3] 偏光板の作製と評価
1)フィルムのケン化
フィルム108を、55℃に保った1.5mol/LのNaOH水溶液(ケン化液)に2分間浸漬した後、フィルムを水洗し、その後、25℃の0.05mol/Lの硫酸水溶液に30秒浸漬した後、さらに水洗浴を30秒流水下で通して、フィルムを中性にした状態にした。そして、エアナイフによる水切りを3回繰り返し、水を落とした後に70℃の乾燥ゾーンに15秒間滞留させて乾燥し、ケン化処理したフィルムを作製した。得られたフィルムは面状も優れたものであり、光学特性などもケン化前の特性をほぼ維持したものであった。
【0185】
2)偏光膜の作製
特開2001−141926号公報の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸し、厚み20μmの偏光膜を調製した。
3)貼り合わせ
このようにして得た偏光膜と、前記ケン化処理したフィルムを、フィルムの鹸化面を偏光膜側に配置し、これらで前記偏光膜を挟んだ後、PVA((株)クラレ製、PVA−117H)3%水溶液を接着剤として、偏光軸とフィルムの長手方向とが直交するように貼り合わせて、偏光板を調製した。
【0186】
4)偏光板の評価
(初期偏光度)
前記偏光板の偏光度を下記方法で算出した。初期偏光度、経時偏光度1および経時偏光度2は、全て99.9%であり、優れた偏光板特性を示した。
(経時偏光度1)
前記偏光板のケン化処理したフィルム側を粘着剤でガラス板に貼り合わせ、60℃・相対湿度95%の条件で500時間放置し、放置後の偏光度(経時偏光度)を前述の方法で算出した。結果を下記表9に示す。
(経時偏光度2)
前記偏光板のケン化処理したフィルム側を粘着剤でガラス板に貼り合わせ、90℃・相対湿度0%の条件で500時間放置し、放置後の偏光度(経時偏光度)を前述の方法で算出したところ、偏光度の低下は0.1%≦であり商品としては問題にならないレベルであった。
【0187】
[実施例4] 液晶表示装置の作製と評価
実施例3で製造した偏光板をIPS型液晶表示装置(32V型ハイビジョン液晶テレビモニター(W32−L7000)、日立製作所(株)製)に組み込まれていた偏光板の代わりに組み込んだところ、視野角特性が改善された。この効果は、液晶表示装置を低湿条件(25℃・相対湿度10%)で500時間放置した後に観察した場合にも、高湿条件(25℃・相対湿度80%)で500時間放置した後に観察した場合にも確認された。
【産業上の利用可能性】
【0188】
本発明によれば、比較的容易な操作によってレタデーションの発現性を調整することができる。特に従来法では煩雑な方法によらなければ製造することができなかった|Rth|/Reが低い(特に0.5未満)の透明ポリマーフィルムを容易に製造することができる。また、本発明によれば、製造工程中の発煙や油汚染を回避することができ、耳切断性が良好なフィルムを提供することができる。本発明によって提供される透明ポリマーフィルムは、位相差フィルム等の光学用途に幅広く応用されうる。また、本発明の透明ポリマーフィルムは適度な透湿度を有するため、偏光膜とオンラインで貼り合わせることができ、視認性に優れた偏光板を生産性よく提供することができる。さらに、信頼性の高い液晶表示装置を提供することができる。したがって、本発明は産業上の利用可能性が高い。

【特許請求の範囲】
【請求項1】
ポリマーと数平均分子量が500〜10000であって繰り返し単位を有する可塑剤とを含有するポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする透明ポリマーフィルムの製造方法。
式(1): Tc≦T<Tm0
[式中、Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]
【請求項2】
前記可塑剤が、ポリエステル系高分子可塑剤、ポリエステルポリエーテル系高分子可塑剤、ポリエステルポリウレタン系高分子可塑剤、ポリアクリル酸エステル系高分子可塑剤、およびポリメタクリル酸エステル系高分子可塑剤からなる群より選択される少なくとも1種の可塑剤であることを特徴とする請求項1に記載の透明ポリマーフィルムの製造方法。
【請求項3】
前記ポリマーがセルロースアシレートであることを特徴とする請求項1または2に記載の透明ポリマーフィルムの製造方法。
【請求項4】
前記可塑剤が前記ポリマーに対して2〜30質量%含まれていることを特徴とする請求項1〜3のいずれか一項に記載の透明ポリマーフィルムの製造方法。
【請求項5】
前記熱処理前に、熱処理前のポリマーフィルムを延伸することを特徴とする請求項1〜4のいずれか一項に記載の透明ポリマーフィルムの製造方法
【請求項6】
前記熱処理時に、ポリマーフィルムを5〜80%収縮させることを特徴する請求項5に記載の透明ポリマーフィルムの製造方法。
【請求項7】
ポリマーと数平均分子量500〜10000であって繰り返し単位を有する可塑剤とを含有する透明ポリマーフィルムを、下記式(1)の条件を満たす温度T(単位;℃)で熱処理する工程を含むことを特徴とする、下記式(2)を満足する透明ポリマーフィルムの製造方法。
式(1): Tc≦T<Tm0
[式中、Tcは熱処理前のポリマーフィルムの結晶化温度(単位;℃)を表し、Tm0は熱処理前のポリマーフィルムの融点(単位;℃)を表す。]
式(2): |Rth|/Re<0.5
[式中、Reは面内方向のレタデーション値(単位;nm)を表し、Rthは膜厚方向のレタデーション値(単位;nm)を表す。]
【請求項8】
請求項1〜7のいずれか一項に記載の製造方法により製造された透明ポリマーフィルム。
【請求項9】
前記ポリマーがセルロースアシレートである請求項8に記載の透明ポリマーフィルム。
【請求項10】
請求項8または9に記載の透明ポリマーフィルムを少なくとも一枚有することを特徴とする位相差フィルム。
【請求項11】
請求項8または9に記載の透明ポリマーフィルムを少なくとも一枚有することを特徴とする偏光板。
【請求項12】
前記透明ポリマーフィルムが偏光膜と直接貼合されていることを特徴とする請求項11に記載の偏光板。
【請求項13】
請求項8もしくは9に記載の透明ポリマーフィルム、請求項10に記載の位相差フィルム、または請求項11もしくは12に記載の偏光板を、少なくとも1枚有することを特徴とする液晶表示装置。

【公開番号】特開2009−31631(P2009−31631A)
【公開日】平成21年2月12日(2009.2.12)
【国際特許分類】
【出願番号】特願2007−197214(P2007−197214)
【出願日】平成19年7月30日(2007.7.30)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】