説明

Fターム[2H052AC34]の内容

顕微鏡、コンデンサー (26,857) | 顕微鏡の照明光学系 (8,435) | 光源 (1,426) | レーザーを用いるもの (982)

Fターム[2H052AC34]に分類される特許

61 - 80 / 982


【課題】高分解能且つ高速に試料の画像生成を行う。
【解決手段】顕微鏡装置は、試料Sを励起させる励起光ELと試料Sの励起を抑制する抑制光RLとを同軸となるようにして射出する光源と、試料Sに励起光ELを照射したときに蛍光した戻り光BLを検出するカメラ6と、試料Sの焦点の範囲内の光を通過させるピンホール31を複数配列したピンホールディスク23と、ピンホール31と同じパターンで配列され、ピンホール31に励起光ELおよび抑制光RLを集光させる複数のレンズ30を配列したレンズディスク22と、ピンホールディスク23とレンズディスク22とを一体的に回転させる回転ドラムと、レンズ30に形成され、抑制光RLの位相を調整する位相調整部と、を備えたことを特徴としている。 (もっと読む)


【課題】培地の劣化の程度を客観的に判定することができる培養細胞観察用顕微鏡装置を提供する。
【解決手段】照明手段は培地に照明光を照射する。検出手段は前記照明手段からの前記照明光に基づく前記培地の透過光または前記照明光に基づく前記培地からの反射光を検出する。算出手段は前記検出手段により検出された前記透過光または前記反射光に基づいて、複数の波長帯域の光についての前記培地の透過光強度または前記培地からの反射光強度の比を算出する。 (もっと読む)


【課題】 観察対象物を構成する各材料を視覚的に区別できる光学顕微鏡観察用試料の製造方法を提供することを課題としている。
【解決手段】 光学顕微鏡によって観察対象物を観察するための観察用試料を製造する光学顕微鏡観察用試料の製造方法であって、複数種の構成材料を含む前記観察対象物の少なくとも1種の材料が変質する温度で前記観察対象物を加熱する加熱工程を実施することにより、前記観察用試料を製造する光学顕微鏡観察用試料の製造方法等を提供する。 (もっと読む)


【課題】共焦点及び線共焦点顕微鏡の利点と、システムの単純さ及び経済性とを併せもつ顕微鏡を提供する。
【解決手段】対応する蛍光又は蛍光染色又は標識された標的にアライメントされた異なる励起波長で動作する1以上の、さらに好ましくは2以上の光源(好ましくはレーザー)を備える。各標的からの蛍光発光は、バンドパス光学フィルタを用いて濾波され、放射データは、1以上の撮像デバイス、好ましくは2以上の撮像デバイスで集められる。 (もっと読む)


【課題】凹凸のある表面形状を有する試料に対しても、試料へのダメージや輝度の飽和を防止しつつ、試料の深い位置においても明るい蛍光画像を取得することができるレーザ顕微鏡を提供する。
【解決手段】レーザ光を出射するレーザ光源11と、レーザ光を標本Aに集光する対物レンズ15と、対物レンズ15の光軸に直交する方向にレーザ光を走査させるスキャナ14と、レーザ光の標本A内における集光位置の深さを調節するZコントローラ16と、標本Aからの蛍光を検出する検出器17と、レーザ光源11からのレーザ光の強度を調節するAOTF12と、これらを制御するコントロールユニット19とを備え、標本Aの断面画像を標本Aの表面から深さ方向に順次取得するとともに、過去に取得した標本Aの断面画像における蛍光の強度分布に基づいて、次に取得する標本Aの断面画像におけるレーザ光の強度分布を調節するレーザ顕微鏡1を採用する。 (もっと読む)


【課題】レーザの進行方向に垂直な面内での強度分布のばらつきを抑え、対象面を一様にかつ十分明るく照明することのできるレーザ照明装置を実現する。
【解決手段】レーザ光源からのレーザ6の光路に設置された、光拡散状態を変動可能な少なくとも1つの光拡散手段3と、少なくとも1つの光拡大抑制手段100とを有し、光拡散手段3は、光をランダムに拡散ないしは散乱する手段であり、光拡大抑制手段100は、拡散ないしは散乱されたことによりその光束径が拡大し位相が乱され全体の直進性が失われたレーザ光を、位相は乱れたままで直進性のみを回復させる手段であり、レーザ光源からのレーザ光6を光拡散手段3を通過させ、光拡大抑制手段から拡散されかつ拡大しない光6−2として、出射させて、対象を照射する光を生成するレーザ照明装置。 (もっと読む)


【課題】細胞内で起こる高速現象を測定する装置を提供する。
【解決手段】ヒルベルト位相顕微鏡を使用し、透光性物体に関連した高解像度位相情報から、一フレーム毎の形状、体積のようなパラメータを得、ミリ秒の時間スケールで取得した多数の画像をもとに、ダイナミックな変動をナノメートルオーダーの分解能で定量化する。 (もっと読む)


【課題】走査型顕微鏡において、低ノイズの画像を高速で取得する。
【解決手段】走査型顕微鏡は、光源ユニット120、対物レンズ115、スキャナユニット114、ピンホールアレイ113、光学的分離器112、光量検出器116、および位置検出システム117を有する。光源ユニット120は光パルスを複数の出射点から順番に繰返し出射する。対物レンズ15は光パルスを試料上に結像させる。スキャナユニット114は対物レンズにより結像された光パルスを試料に走査させる。ピンホールアレイ113は試料に反射された反射光および蛍光の少なくとも一方の結像位置にピンホールが形成される。光学的分離器112は反射光および蛍光の少なくとも一方を偏向させることにより透過光の光路から分離する。光量検出器116は反射光または蛍光の光量を検出する。位置検出システム117は照射光の照射位置を検出する。 (もっと読む)


【課題】走査型顕微鏡において、低ノイズの画像を高速で取得する。
【解決手段】走査型顕微鏡は、光源ユニット、第1の走査手段114a、第1の光制限体115a、および光量検出器118を有する。光源ユニットは試料に照射する照射光を第1、第2の出射点から出射する。第1の走査手段114aは照射光の偏向方向を変える。第1の光制限体115aは照射光を通過させる複数の孔部115asを有する。光量検出器118は試料への照射により生じる信号光の受光量を検出する。第1の走査手段114aは走査点を照射光の偏向方向を変えることにより第1の走査方向に沿って移動可能である。複数の孔部115asは、第1の走査手段114aによる偏向方向の連続的な変化に応じて、第1、第2の出射点から出射された照射光が異なる時期に孔部115asを通過するように、配置される (もっと読む)


【課題】標本の形状等に関わらず、効率的に3Dイメージングを行うことができる顕微鏡を提供する。
【解決手段】対物レンズの光軸に直交する方向における標本の観察範囲を複数の領域に分割する領域分割部31と、複数の領域について電動ステージの位置と標本の表面位置とを対応付けて記憶する表面位置記憶部32と、表面位置記憶部32に記憶された複数の領域についての電動ステージの位置および標本の表面位置から標本の表面形状を推定する表面形状推定部34と、表面形状推定部34により推定された標本の表面形状から任意の電動ステージの位置における標本の表面位置を決定するZスキャン条件決定部35と、対物レンズの光軸方向において、Zスキャン条件決定部35により決定された標本の表面位置を基準とする所定範囲にわたって標本からの光を検出する光検出部とを備えるレーザ顕微鏡を採用する。 (もっと読む)


【課題】簡単な光学調整および演算処理で高解像度の試料の画像を得ると共に、光軸方向に自由度を持たせた観察を行うことを目的とする。
【解決手段】本発明の顕微鏡装置1は、干渉性を有し、試料Sを励起させる励起光ELを発振するランプ光源2と、試料Sに励起光ELを照射したときに蛍光した戻り光RLを検出する撮像素子12と、励起光ELを平行光として試料Sに入射させる対物レンズ8と、対物レンズ8から直接的に入射する励起光ELと干渉させるための反射光を発生させる反射面9aを対物レンズ8の焦点Fの範囲内に配置して、反射面9aに試料Sを搭載した試料搭載部9と、を備えている。励起光ELにおいて直接光と反射光とを干渉させて定在波を発生させており、戻り光RLについても直接光と反射光とを干渉させている。これにより、分解能を高くすることができ、高解像度の画像を得ることができる。 (もっと読む)


【課題】装置を大型化させることなく、長さが異なる対物レンズを簡易に切り替える。
【解決手段】少なくとも1つの通常型対物レンズ1を回転軸回りに回転させて、標本Sに照射する照明光の光軸P上の光路に通常型対物レンズ1を選択的に配置可能に支持するレボルバ15を備え、レボルバ15の周方向のいずれかの位置に、光軸Pに一致する位置に配置された状態で、通常型対物レンズ1より長さが長いスティック型対物レンズ2を標本Sとは反対側から貫通状態に取り付け可能な貫通孔が設けられている顕微鏡装置100を提供する。 (もっと読む)


【課題】ユーザが容易に対物レンズを取り外してしまうことを防止して、安全性を向上することができる対物レンズロック装置を提供する。
【解決手段】雄ネジ部を有する対物レンズ11と、前記雄ネジ部に嵌合するネジ穴15を少なくとも1つ有し、前記対物レンズ11が固定されるレボルバ13と、前記レボルバ13に固定された対物レンズ11の軸線回りの回転を防止する回転防止部材20とを備える対物レンズロック装置1を採用する。 (もっと読む)


【課題】結果の研究およびコンピュータ解析のために、対象物を染色し、対象物を準備する方法を提供することにある。
【解決手段】・対象物を非蛍光体により染色し、
・生成プロセスで、前記非蛍光体の分子を、励起されると蛍光することのできる分子に修正し、
・励起プロセスで、前記修正された分子を励起し、これにより蛍光させ、
・記録プロセスで、
−前記染色された対象物をフレームごとに検出装置によって光学的にキャプチャし、
−前記フレーム中に蛍光する分子を少なくとも1つの検出装置によって、回折に依存する大きさを有するスポットとして記録し、
−前記記録されたフレームを記憶媒体に記憶し、
・前記生成プロセス、前記励起プロセス、および前記記録プロセスを周期的に繰り返すナノスコピー方法。 (もっと読む)


【課題】簡単な光学調整で高解像度の試料の画像を得ると共に、光軸方向に自由度を持たせた観察を行うことを目的とする。
【解決手段】本発明の顕微鏡装置1は、干渉性を有し、試料Sを励起させるレーザ光Lを発振するレーザ光源2と、試料Sにレーザ光Lを照射したときに蛍光した戻り光Rを検出する検出部14と、レーザ光Lの焦点Fの範囲内に定在波を発生させるようにレーザ光Lを反射させる反射面10aに試料Sを搭載した試料搭載部10と、を備えている。直接的に試料Sに焦点Fを結ぶレーザ光Lと反射面10aで反射したレーザ光Lとを干渉させて定在波を発生させている。また、戻り光においても干渉させている。これにより、分解能を高くすることができ、高解像度の画像を得ることができる。 (もっと読む)


【課題】高い分解能の測定を行うことができる光学顕微鏡、及び分光測定方法を提供すること。
【解決手段】本発明の一態様にかかる分光測定装置は、レーザ光源10と、光ビームを集光して、試料22に入射させる対物レンズ21と、試料22上における光ビームのスポット位置を走査するY走査装置13と、試料22に入射された光ビームのうち、異なる波長となって試料22から対物レンズ21側に出射する出射光と光源10から前記試料に入射する光ビームとを分離するビームスプリッタ17と、ビームスプリッタ17により分離された出射光を波長に応じて空間的に分散させる分光器31と、分光器31で分散された出射光を検出する検出器32と、分光器31の入射側に配置され、出射光を分光器31側に通過させる複数のピンホール42が配列されたピンホールアレイ30を備えるものである。 (もっと読む)


【課題】レーザ走査顕微鏡およびその動作方法を提供する。
【解決手段】少なくとも2つの検出チャネルを備えるレーザ走査顕微鏡およびその動作方法であって、該レーザ走査顕微鏡は、50:50の分割比とは異なる分割比で試料光を分割する少なくとも1つのビームスプリッタ(ST)、および検出チャネルでの分割比が50:50の場合には増幅率が異なって調整された検出器(DE)のうちの少なくとも一方を有し、または光分割比が同じ場合には少なくとも1つの検出チャネルに光減衰器を有する。 (もっと読む)


【課題】さまざまな装置条件下で、標本に照射する光のパターンやその照射位置を、高い光の利用効率で任意に変更する顕微鏡装置を提供する。
【解決手段】顕微鏡装置1は、チタンサファイアレーザ2から射出されたレーザ光のビーム径をビーム径可変光学系3で可変して、位相変調型SLM5に照射する。さらに、顕微鏡装置1は、対物レンズ13の瞳共役位置に配置された位相変調型SLM5でレーザ光の位相を変調して、対物レンズ13を介して標本面SP上にレーザ光を照射する。 (もっと読む)


【課題】カム表面を観察することのできる、広視野レーザ顕微鏡を用いた新規のカム表面の観察方法を提供する。
【解決手段】テレセントリックfθレンズ8の焦点面近傍に近接配置したカム表面10からの反射光をテレセントリックfθレンズ8により平行光束に変換し、走査ミラー7で反射させた後に、結像レンズ11によって集光してテレセントリックfθレンズ8の焦点面と共役の位置に設置したピンホール12aを通過させ、ピンホール12aを通過した反射光の光量を受光素子13で計測する。カム表面10を有するカムシャフト9をその軸zを中心に回転させるとともに、レーザ光に対してカム表面10が常に垂直になり、かつ、レーザ光の焦点が常にカム表面10に位置するように、カムシャフト9を移動させながら観察する。 (もっと読む)


【課題】その配置が簡素であり、各誘導ビーム経路用の光学素子の数を削減することができるような試料照射装置を提供する。
【解決手段】本発明は、好ましくは共焦点蛍光走査型顕微鏡法において、1つの光源(3)の1つの照射ビーム経路(2)およびさらに別の光源(5)の少なくとも1つのさらに別の照射ビーム経路(4)を有する試料(1)を照射する装置に関する。照射ビーム経路における配置を簡素にし、光学素子を削減するために、少なくとも1つの光学素子(7)が照射ビーム経路(2,4)の少なくとも一方に配置され、光学素子(7)が光を変性するようになっている。 (もっと読む)


61 - 80 / 982