説明

Fターム[4G072HH01]の内容

珪素及び珪素化合物 (39,499) | 珪素系反応剤、原料、処理剤 (3,930) | 珪素 (764)

Fターム[4G072HH01]に分類される特許

101 - 120 / 764


【課題】カーボンヒータや炉内カーボン部品の寿命を延長して設備費用を削減でき、高品質な結晶半導体を製出可能である結晶半導体の製造方法及び製造装置を提供する。
【解決手段】チャンバ内に配置された坩堝に貯留した半導体融液を、前記坩堝の底部から冷却して凝固させるとともに結晶半導体を成長させる結晶半導体の製造方法であって、前記チャンバ内の圧力を10−4Pa以下に減圧し、該チャンバ内の水分を除去する水分除去工程S10と、前記チャンバ内に不活性ガスを導入するガス導入工程S20と、前記坩堝内に収容した半導体原料をヒータで加熱し溶解させて前記半導体融液とする溶解工程S30と、前記坩堝を底部から冷却して、前記半導体融液を凝固させるとともに結晶半導体を成長させる成長工程S40と、を備えることを特徴とする。 (もっと読む)


【課題】断面形状が正方形のアフターヒーターを具備する電磁鋳造装置で断面形状が長方形のインゴットを製造する場合、インゴットの切断時に発生するクラックやササクレを防止できるシリコンインゴットの電磁鋳造装置および電磁鋳造方法を提供する。
【解決手段】(1)無底冷却モールド2と、誘導コイル1と、インゴット5を徐冷するアフターヒーター4を有し、アフターヒーターの出力制御を、対面する2面のヒーター(例えば、ヒーター14−1と14−3)を1対として2対以上のヒーターについて個別に実施できるように構成されている電磁鋳造装置。(2)前記の電磁鋳造装置を用い、アフターヒーターの出力を、2対以上のヒーターについて個別に制御する電磁鋳造方法。アフターヒーターの出力を、インゴットの面内温度のばらつきが10℃以下になるように制御することとすれば、クラックやササクレの防止に極めて有効である。 (もっと読む)


【課題】短期間でインゴットの冷却を完了させることができ、切断中にクラックが発生することがない多結晶シリコンの製造方法を提供する。
【解決手段】無底ルツボ12内に形成されたシリコン融液21を降下させて凝固させることにより、無底ルツボ12から多結晶シリコンインゴット20を連続的に取り出す多結晶シリコンの製造方法において、保温ヒータ16を用いて1000℃以上の所定の保温温度に保温されている多結晶シリコンインゴット20を300℃以下の所定の開放温度まで降下させて冷却する際、少なくとも620℃までは傾きが漸増する第1の冷却パターンを用いて保温ヒータの温度を制御する。 (もっと読む)


【課題】高い心棒温度、中間貯蔵から堆積までの間での清浄化された心棒の取り扱いによる汚染、及び取り付けられた心棒の表面の不十分な清浄化作用を回避し、かつ上記先行技術を改善すること
【解決手段】反応器中で少なくとも1つの心棒にシリコンを堆積させることによる多結晶シリコン棒の製造方法において、前記シリコンの堆積の前に、ハロゲン化水素を400〜1000℃の心棒温度で、少なくとも1つの心棒を有する前記反応器内へ導入し、UV光を照射し、それによりハロゲンラジカル及び水素ラジカルを生じさせ、生成された揮発性のハロゲン化物及び水素化物を前記反応器から取り除く、多結晶シリコン棒の製造方法 (もっと読む)


【課題】クロロシラン類留出物中からドナー不純物およびアクセプタ不純物を除去して含有量を低減させる技術を提供すること。
【解決手段】本発明のクロロシラン類の精製方法は、水素化工程101および/または塩素化工程102、不純物転化工程103、精製工程104の少なくとも3つの工程を備えている。不純物転化工程103では、一般式Ar−R−CHO(Arは置換または未置換のアリール基、Rは炭素数2以上の有機基)で表記されるアルデヒド化合物が添加され、クロロシラン類留出物に含有されているドナー不純物およびアクセプタ不純物が高沸点物に転化される。ドナー不純物とアクセプタ不純物を高沸点物に転化させた後のクロロシラン類留出物は、精製工程104へと送られる。精製工程104では、蒸留塔などを用いることにより、塔頂部より系外に回収して、充分にドナー不純物およびアクセプタ不純物が除去された高純度のクロロシラン類を得る。 (もっと読む)


【課題】 本発明は、平均粒径がサブミクロン以下の金属酸化物超微粉末をエポキシ樹脂に充填した際、極めて流動性の高いスラリー組成物を提供する。
【解決手段】 体積平均粒径(A)が0.04〜0.40μm、粒径分布標準偏差(B)が下記式(1)で表され、粉末の孤立シラノール(孤立OH)基の濃度が1.5〜4.0個/nm2である金属酸化物超微粉末である。

B≦A×1/2 ・・・・・式(1)
[測定方法]
水分気化装置/VA‐122型に金属酸化物超微粉末を0.3g入れ、加熱昇温し、発生した水分をカールフィッシャー電量滴定法にて測定したときに、温度200℃までに発生した水分を「物理吸着水分」、200℃をこえ550℃までに発生した水分を「水素結合OH基由来の水分」、550℃をこえ900℃にまでに発生した水分を「孤立OH基由来の水分」、と定義し、測定された水分量とBET比表面積値から、単位面積当たりの孤立OH基量を算出した。 (もっと読む)


【課題】金属珪素と二酸化珪素の蒸着用材料は、加熱時に蒸気圧が高いために蒸発しにくく、さらに溶融型の蒸着用材料であるため、より大きい熱衝撃が必要となり、蒸着用材料が飛散してスプラッシュが発生しやすい。また蒸着速度の低下の問題、蒸着膜のバリア性の低下の問題もある。本発明の課題は、スプラッシュ現象の発生を抑制し、高いガスバリア性を付与できる蒸着用材料を提供することである。
【解決手段】金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料であって、珪素とマグネシウムの合計の原子数と、酸素の原子数の比(O/(Si+Mg))が1.0〜1.8であり、マグネシウムと珪素の原子数の比(Mg/Si)が0.02〜0.50であることを特徴とする蒸着用材料。 (もっと読む)


【課題】初期溶解時に用いるダミーバーに起因して発生する異物の混入を防止して、歩留りを改善することができる多結晶シリコンの製造方法を提供する。
【解決手段】電磁誘導法による多結晶シリコンの製造方法において、モールド2内のシリコン原料を初期溶解する際に当該シリコン原料を支持するためのダミーバー4として、ダミーバー本体4aの上面にシリコン5が結合されたダミーバーを使用する。前記ダミーバーとして、鋳造終了後に、インゴットと結合したダミーバーの当該結合部よりも上のインゴットの部分で切断することにより、ダミーバー本体の上面にシリコンを存在させたダミーバー、さらには、これに酸による洗浄等の処理を施したダミーバーを使用する実施形態を採ることとすれば、従来のカーボンダミーバーを使用した場合における窒化ケイ素の異物の混入を抑制し、歩留りの向上等、種々の改善を図ることができる。 (もっと読む)


【課題】<1>高容量と良好なサイクル特性を実現する、<2>多孔質体内部でシリコン化合物による導電パスの確保としたリチウムイオン電池用の負極材料に好適な多孔質シリコン複合体粒子を得る。
【解決手段】シリコン微粒子3とシリコン化合物粒子5が接合してなる多孔質シリコン複合体粒子1であって、前記シリコン化合物粒子は、シリコンと、As、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Gd、Hf、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Ta、Te、Th、Ti、Tm、U、V、W、Y、Yb、Zrからなる群より選ばれた一つ以上の複合体元素との化合物を含み、前記多孔質シリコン複合体粒子の平均粒径が、0.1μm〜1000μmであり、多孔質シリコン複合体粒子が、連続した空隙からなる三次元網目構造を有することを特徴とする多孔質シリコン複合体粒子である。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を得る。
【解決手段】連続する空孔を有し、三次元網目構造を有する多孔質シリコン粒子であって、前記空孔が、前記多孔質シリコン粒子を貫通し、前記空孔内に、Cu、Ni、Sn、Zn、Ag、Cのいずれか1つ以上の導電性元素の単体又は合金を有することを特徴とする多孔質シリコン粒子である。前記導電性元素の単体又は合金が、前記空孔内の表面の少なくとも一部を被覆するか、前記空孔内の少なくとも一部に充填されていることが好ましい。また、このような多孔質シリコン粒子は、多孔質シリコン粒子への無電解メッキ、置換メッキ、炭素コーティングにより作製される。 (もっと読む)


【課題】トリクロロシラン(TCS)からホウ素化合物を除去するとともに、再利用可能な化合物をTCSに変換して、ジクロロシラン(DCS)およびその他の化合物を効果的に再利用する。
【解決手段】本発明は、ホウ素化合物の量を減じたTCS製造方法に関し、(A)TCS含有反応ガスを生成するために、流動床反応器1において冶金級シリコン11と塩化水素ガス19とを反応させ、(B)第1蒸気留分16と第1蒸留残渣15とを分離するために、第1蒸留塔3頂部の蒸留温度をTCSの沸点とテトラクロロシランの沸点との間に設定することにより、反応ガスの第1蒸留を実施し、第1蒸気留分を第2蒸留塔4へ供給し、(C)TCS17と、ホウ素化合物を含有する第2蒸気留分18とを分離するために、第2蒸留塔頂部の蒸留温度をDCSの沸点とTCSの沸点との間に設定することにより、第2蒸留を実施し、(D)第2蒸気留分を流動床反応器に再供給する。 (もっと読む)


【課題】新規な遷移金属シリサイド−Si複合材料及びその製造方法、並びに、このような遷移金属シリサイド−Si複合粉末を製造することが可能な遷移金属シリサイド−Si複合粉末製造用CaSiy系粉末及びその製造方法を提供すること。
【解決手段】1種又は2種以上の遷移金属元素(M)を含み、Si/M比(z)が2.0≦z≦20.0であり、比表面積が2.5m2/g以上である遷移金属シリサイド−Si複合粉末及びその製造方法。Si/Ca比(w)が2.0≦w≦20.0であり、少なくともCaシリサイド相を含む遷移金属シリサイド−Si複合粉末製造用CaSiy系粉末及びその製造方法。 (もっと読む)


【課題】高効率な発電パネル用の多結晶シリコンウェーハを提供する。
【解決手段】一辺が118mm以上の四角形である多結晶シリコンウェーハであって、第1乃至第4の外周領域a1〜a4と、いずれも外周領域にも属さない中央領域bとを含み、第1の外周領域a1におけるライフタイムは、中央領域bにおけるライフタイムよりも短く、第2及び第3の外周領域a2,a3におけるライフタイムは、中央領域bにおけるライフタイムと実質的に等しく、中央領域bにおけるライフタイムは、30μs以上である。本発明によれば、多結晶シリコンインゴットの断面をマトリクス状に4分割又は6分割することによって切り出すことができるとともに、ライフタイムが30μs以上である領域を全体の1/3以上とすることができる。これにより、16%以上の変換効率を確保することが可能となる。 (もっと読む)


【課題】 被蒸着体にカーボン粉を用い、蒸着材としてシリコンを付着することで、カーボン粉上に均一に所定のシリコンナノ粒子を均一に付着させることができる。微粒子形成装置を提供する。
【解決手段】 攪拌容器73に収納された担持体であるカーボン粉(被蒸着体7)を攪拌しながらナノ粒子(蒸着体)のプラズマを上から照射し、カーボン粉表面に触媒金属を担持させる。この過程で、スタンプ85のアーム部89は、攪拌容器73の回転に連動して、上部開口部の縁部90の斜めに切りかけたスロープを登る。そして、最終上段まで上がったときに、段差90cで低い段差に急激に落とされて、その下部にあった被蒸着体7の塊を粉砕する。また、蒸着材料のシリコンは電気を通さないといけないため比抵抗は0.1Ωcm以下に保たないといけない。 (もっと読む)


【課題】多結晶シリコンロッドの製造に用いるシリコンシード等の棒状芯材について、立設部分の芯材の断面を多角形に加工して通電状態および原料ガスの炉内での流れを良好にしたシリコンシードとその加工方法および加工装置を提供する。
【解決手段】多結晶シリコンの製造に用いられ、炉内に逆U字形に立設されるシリコンシードの製造方法であって、シリコンシードを形成する棒状芯材の外径に対応する溝幅の多角形の溝を外周面に有す回転砥石を用い、断面が角形の棒状芯材の側面に該回転砥石の多角形の溝を押し当てて長手方向に移動させて研削することによって該芯材を多角形断面に加工し、基端部および上端部を除く立設部分の断面が多角形であって、該基端部と該上端部および連結部分の断面が角形であるシリコンシードを製造する方法、およびシリコンシード。 (もっと読む)


【課題】異形ブロックであっても適正な製品加工が可能なシリコンブロックの外形測定方法を提供する。
【解決手段】本発明によるシリコンブロックの外形測定方法は、シリコンインゴットから切り出された略四角柱のシリコンブロックの長手方向と平行な4つの側面を被測定面とし、各被測定面において複数の測定点の座標を求め、複数の測定点の中からシリコンブロックの内側寄りの2点を選択した後、当該2点を通過する直線を各被測定面ごとに求めることにより4本の直線を定義し、4本の直線の交点同士を結ぶことによって得られる2本の対角線のうち短いほうの対角線を基準対角線Dとして定めると共に、当該基準対角線の中点Oを求め、前記基準対角線Dの角度θDSと前記基準対角線の中点Oに基づいて製品ブロックSQの有効範囲の座標及び研削代を求める。 (もっと読む)


【課題】1ナノメートルよりも細い微細ワイヤを提供する。
【解決手段】24個のシリコン(Si)原子のみからなり、六角形かつ平行対峙する2個の平行面と12個の五角形の面とからなる14面体構造のクラスタを、内部エネルギが最小化するように各シリコン(Si)原子の位置を調整して複数連結してなる。 (もっと読む)


【課題】n型シリコンインゴットを電磁鋳造する際に、蒸発し易いドーパントを用いる場合であっても、インゴットの長手方向で抵抗率を均一化することができる電磁鋳造方法を提供する。
【解決手段】チャンバー1内に配置した導電性を有する無底冷却ルツボ7にシリコン原料11およびドーパントを投入し、ルツボ7を囲繞する誘導コイル8からの電磁誘導加熱によりシリコン原料11およびドーパントを溶解させ、この溶融シリコン12をルツボ7から引き下げながら凝固させてn型のシリコンインゴットを連続鋳造する電磁鋳造方法において、チャンバー1内を常圧よりも高い圧力に維持して電磁鋳造を行う。 (もっと読む)


【課題】鋳造されたインゴットが不純物で汚染されるのを低減できるとともに、冷却ルツボの内面が損傷するのを軽減できるシリコンインゴットの連続鋳造方法を提供する。
【解決手段】軸方向の一部が周方向で複数に分割された無底の冷却ルツボ7を誘導コイル8内に配置し、誘導コイル8による電磁誘導加熱により、冷却ルツボ7内に溶融シリコン13を形成し、冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する方法において、冷却ルツボ7として、その内面7aのうちの溶融シリコンの外面13aおよびシリコンインゴットの外面3aと対向する部分7bに、Ni−B合金めっきが施されたものを用いることを特徴とするシリコンインゴットの連続鋳造方法である。 (もっと読む)


【課題】表面ダストの含量が少なくコスト的に好ましい多結晶シリコンを提供する。
【解決手段】多結晶シリコン破砕破片を含有する多結晶シリコンであって、前記破砕破片の少なくとも90%が明細書中に記載のサイズを有する前記多結晶シリコンにおいて、シリコンダスト粒子の割合が、400μm未満の粒子サイズについては15ppmw未満であり、50μm未満の粒子サイズについては14ppmw未満であり、10μm未満の粒子サイズについては10ppmw未満であり、かつ1μm未満の粒子サイズについては3ppmw未満であることと、さらに、金属による表面汚染が、0.1ppbw以上で100ppbw以下であることと、を特徴とする前記多結晶シリコンによって解決される。 (もっと読む)


101 - 120 / 764