説明

Fターム[4K001AA07]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Co (263)

Fターム[4K001AA07]に分類される特許

121 - 140 / 263


導電性の金属材料を溶融させる装置は、第一の形状を有する断面外形を含む収束した電子フィールドを作り出す構成とされた補助イオンプラズマ電子エミッタを備えている。該装置は、収束した電子フィールドを導電性の金属材料の少なくとも一部分に衝突させ、導電性の金属材料の任意の凝固部分、導電性の金属材料中の任意の固体の凝縮体及び/又は凝固するインゴットの領域の溶融又は加熱の少なくとも1つを行う構成とされたステアリングシステムを備えている。 (もっと読む)


【課題】酸性又はアンモニア性水溶液から有価金属を抽出する方法を提供する。
【解決手段】溶媒抽出用組成物は、一つ又はそれ以上のオルトヒドロキシアリールアルドキシム或いはオルトヒドロキシアリールケトキシム及び一つ又はそれ以上の、ヒドロキシル基で置換されたエステル、並びに好ましくは水非混和性有機溶媒を含む。オルトヒドロキシアリールアルドキシム又はオルトヒドロキシアリールケトキシムは、一般的に以下の式(1):


を有し、式中、R1は水素又はヒドロカルビル基であり、そしてR2はオルト−ヒドロキシアリール基である。 (もっと読む)


【課題】硫酸ニッケル製造用原料として脱鉛澱物を用いて粗硫酸ニッケル溶液を得る場合に、脱鉄工程での消石灰使用量と、石膏を主体とする中和澱物の発生量とを減少させることのできる粗硫酸ニッケル液の製造方法の提供を課題とする。
【解決手段】硫酸ニッケル製造用原料として脱鉛澱物を用い、硫酸溶解工程、還元溶解工程、脱鉄工程、およびコバルト抽出工程で順次処理して粗硫酸ニッケル溶液を得る方法において、還元溶解工程と脱鉄工程との間に中和工程を設け、該中和工程で還元溶解終液に中和剤として塩基性硫酸ニッケルを添加し、塩基性硫酸ニッケルを完全に溶解してpHを所定の値とした後、得られた中和終液を脱鉄工程に供給する。 (もっと読む)


【課題】 モリブデンとコバルトとの両方を良好な回収率で纏めて回収することができるモリブデン及びコバルトの回収方法と、該方法により回収したモリブデン及びコバルトを原料とした複合酸化物等の製造方法とを提供する。
【解決手段】 モリブデン及びコバルトの回収方法は、モリブデン及びコバルトを含有する複合酸化物を、アンモニア及び有機塩基の少なくとも一方が水に溶解してなる抽出用水溶液と混合することにより、該複合酸化物からモリブデン及びコバルトを水相に抽出させる。複合酸化物の製造方法は、前記モリブデン及びコバルトを含有する水相を乾燥した後、焼成する。 (もっと読む)


本発明は、高温還元ガスと接触させることによって、金属酸化物(3)を金属化材料に還元するための方法に関する。当該還元ガスは、少なくとも部分的に、二酸化炭素(CO)および/または水蒸気(HO)を含むガスと気体状炭化水素との混合物の触媒改質によって生成される。改質の際に行われる吸熱改質プロセスのための熱を供給するバーナー(8a、8b、8c)のための燃焼ガスは、少なくとも部分的に、金属酸化物(3)の金属化材料への還元の際に発生する炉頂ガスの部分量から得られる。当該炉頂ガスの部分量に関しては、燃焼ガスの成分として使用される前に、まず脱塵、次にCO変換反応が行われる。CO変換反応の際に得られる変換ガスに関しては、冷却後、COの除去が行われる。さらに、本発明は、当該方法を実施するための装置に関する。
(もっと読む)


酸化物鉱石から卑金属酸化物有価物を回収するための、鉱石が、ニッケル、コバルト及び銅から選択される第一群の金属を含む方法を提供する。本方法は、鉱石粒子径を後の単位操作に適合するように下げること、金属元素の接触を助けること、鉱石を、水和した、又は無水の塩化第二鉄又は第一鉄と接触させ、鉱石と鉄(II又はIII)塩化物の混合物を形成すること、鉱石と塩化第二鉄又は第一鉄の混合物を十分なエネルギーに作用させ、塩化物を塩酸及び第二群からの酸化鉄に分解すること、それぞれの塩化物を形成すること、形成された卑金属塩化物を選択的に溶解させ、金属を酸化物として、固体状態で残すこと、及び溶解した卑金属有価物を水溶液から回収することを含む。
(もっと読む)


【課題】コバルトを含有する塩化ニッケル水溶液から、塩化ニッケル水溶液と高純度塩化コバルト液とを得るに際して、高実収率で高純度の塩化コバルト水溶液の提供。
【解決手段】抽出段と洗浄段と逆抽出段とから構成され、かつ有機相を、前記各段を通して循環使用し、抽出段にコバルトを含有する塩化ニッケル水溶液を供給し、逆抽出段に水または温水を供給し、得られた逆抽出終液の一部を洗浄段に洗浄始液として供し、得られた洗浄終液を前記抽出段に繰り返して行う方法において、(a)有機相のアミン系抽出剤の濃度を30〜40体積%とし、(b)抽出後の有機相のコバルト抽出率を30〜40%とし、(c)洗浄段の有機相と水相との比(O/A)を10〜14とし、(d)洗浄始液中のコバルト濃度を45〜65g/lとして、溶媒抽出を行う。 (もっと読む)


【課題】鉄スクラップに共存する銅などの元素を効率的にかつ経済的に分離・回収する方法を提供する。
【解決手段】鉄スクラップを溶融させ、得られた鉄スクラップの溶融物と溶融Agとを接触させることで、鉄スクラップの溶融物と溶融Agとの間における分配平衡に基づいて、鉄スクラップに共存する元素を溶融Agに移行させ、この溶融Agに移行した元素を溶融Agから酸化除去する。鉄スクラップの溶融物はCを含有していることが好ましく、Cが飽和溶解していることがさらに好ましい。 (もっと読む)


【課題】金属含有排水中の有価金属を、キレート樹脂塔に通水して金属イオンを吸着させた後、キレート樹脂に吸着された金属イオンを溶離させて回収するに際して、金属イオンの溶離に用いる薬品の使用量を低減すると共に、金属イオンを高濃度で含む回収液を得る。
【解決手段】金属含有排水をキレート樹脂塔2に通水する吸着工程と、キレート樹脂塔に鉱酸を含む溶離液を通液する回収工程とを交互に繰り返し行う。回収工程では、前回の回収工程で回収された塔流出液に鉱酸を添加してキレート樹脂塔2に上向流で通液する溶離工程と、その後、キレート樹脂塔2に水を下向流で通水する押出工程とを行い、溶離工程の塔流出液と押出工程の塔流出液とを回収して次回の溶離液として再利用する。 (もっと読む)


【課題】 使用済みのリチウムイオン2次電池から、簡便に、安全に、且つ効率的に、アルミニウム、銅、マンガン、コバルト、ニッケル、リチウムを効率的に回収する方法を提供する。
【解決手段】 リチウムイオン電池の解体において、
第1工程として、リチウムイオン電池を電解質が含まれる水溶液中に浸漬し、放電させ、機能破壊を行った後、切断し、アルミニウムおよびステンレス筐体及び電極端子を除去し、
第2工程として、正極材及び負極材及びセパレータを含む混合体を水浸漬により電解液及び有機接合材を除去する金属の回収方法。 (もっと読む)


1以上の標的金属を含む硫化鉱及び硫化精鉱の少なくともいずれかから前記標的金属を浸出する方法であって、(a)次亜塩素酸が塩素系酸化種のうちの少なくとも10モル%を占める塩素系酸化種の水溶液に前記硫化鉱及び/又は精鉱を曝露する工程と;(b)次亜塩素酸により前記標的金属を酸化させて及び/又は酸化を促進して、優勢塩素系酸化種が塩素になるようにpHを低下させる工程と;(c)塩素により前記標的金属を酸化させる及び/又は酸化を促進する工程と;(d)次亜塩素酸及び/又は塩素による酸化中に形成される溶液種により前記標的金属を溶解させる及び/又は溶解を促進する工程と;(e)生成された標的金属富化溶液を金属回収手段に通す工程と;を含む方法。 (もっと読む)


固体金属化合物等の固体原料の還元のための方法において、電解装置の中で、原料の一部分が、2つ以上の電解槽(50、60、70、80)のそれぞれの中に配置される。溶融塩は、各槽の中に電解質として提供される。溶融塩は、塩が槽のそれぞれを通って流動するように、溶融塩容器(10)から循環させられる。原料は、各槽の中の電極にわたって電位を印加することによって、各槽の中で還元され、その電位は、原料の還元を引き起こすのに十分である。また、本発明は、本方法を実装するための装置も提供する。 (もっと読む)


【課題】金属保持物質から銅を回収する効果的且つ効率的な方法を提供すること。
【解決手段】銅溶媒/溶液抽出技法又は装置を使用することなく浸出溶液から高品質のカソード銅を生成するための、銅含有鉱石、濃縮物、又はその他の銅保持物質から銅を回収するシステム又はプロセス。銅含有鉱石から銅を回収するプロセスは、一般的に、粉砕した銅含有鉱石、濃縮物、又はその他の銅保持物質を含有する供給流(101)を提供する工程、供給流を浸出して銅含有溶液を生成する工程(1030)、銅含有溶液を一つ以上の物理的又は化学的コンディショニング工程でコンディショニングする工程、及び銅含有溶液を電解抽出の前に溶媒/溶液抽出に付すことなく、多電解抽出段階(1070、1080)で銅含有溶液から銅を直接電解抽出する工程を含む。 (もっと読む)


【課題】 硫化銅鉱石や銅精鉱などの硫化物中に硫化物として存在する硫黄(硫化物硫黄)を、酸化されて硫酸塩として存在する硫黄(硫酸塩硫黄)と区別して、選択的に定量分析する方法を提供する。
【解決手段】 反応容器1に入れた銅精鉱などの硫化物に、その硫化物を形成する金属よりも卑な金属と、塩化第一スズなどの金属塩と、酸溶液とを添加し、得られたスラリーを撹拌する。金属と酸の反応で生成した水素により、硫化物中の硫化物硫黄から硫化水素を発生させ、発生した硫化水素ガスを吸収容器4、4に導き、吸収液に吸収してICP発光分光分析法により測定する。 (もっと読む)


【課題】粒径の大きい金属パウダーを用いても従来より平滑な表面をもった造形物を製作可能な電子ビーム造形装置を提供する。
【解決手段】溶融ステップ(一次溶融)の後に、溶融体14の上面が集束点61に位置するように、エレベータにてベースプレイトをH1だけ上昇させて、該ベースプレイト上の溶融体に電子ビームを走査して該溶融体を再溶融(二次溶融)することにより、電子ビームの集束点を調整することなく、一次溶融と同一の集束径で電子ビームによる二次溶融を行うことができるので、粒径の大きい金属パウダーを用いても従来より平滑な表面をもった造形物を製作可能となる。 (もっと読む)


【課題】溶媒抽出工程を構成する逆抽出段から産出される、脱離されずに残留する金属元素のクロロ錯イオンを担持したアミン系抽出剤を含む有機相(A)から、該有機相から形成した金属元素の中和沈澱物のろ過操作を必要としない処理方法で金属元素を除去することができる方法を提供する。
【解決手段】下記のアルカリ中和工程1及び酸溶解工程2を含むことを特徴とする。アルカリ中和工程:前記有機相(A)3にアルカリ水溶液4を添加して混合し、中和処理に付し、次いで、油水分離に付し、中和沈殿物の混入がない有機相を、有機相の一部、中和沈殿物及び水相からなる混合相5と分別する。酸溶解工程:前記混合相に、酸性水溶液7を添加して混合し、前記中和沈殿物を溶解処理に付し、次いで、油水分離に付し、金属元素を含む有機相8と金属元素を含む水相9とに分別する。 (もっと読む)


【課題】溶媒抽出工程を構成する逆抽出段から産出される、脱離されずに残留された鉄、亜鉛又は銅から選ばれる少なくとも1種の金属元素のクロロ錯イオンを担持したアミン系抽出剤を含む有機相から該金属元素を除去する方法において、従来のアルカリ中和法又は非塩化物溶液による洗浄と異なり、設備が簡便で、かつコスト上有利な有機相からの鉄、亜鉛及び銅の除去方法を提供する。
【解決手段】前記抽出段に供給する抽出始液は、ニッケルとコバルトを含有し、鉄を25mg/L以下及び亜鉛を0.1mg/L以下に除去された塩化物水溶液であり、かつ逆抽出後有機相を、下記の(1)及び(2)の要件を満足する条件下に水相を形成して、洗浄処理に付すことを特徴とする。
(1)前記洗浄処理の水相は、水又は塩酸水溶液であり、その塩素濃度が0〜5g/Lである。
(2)前記洗浄処理の有機相と水相の容量比を表す(有機相/水相)比は、1〜10である。 (もっと読む)


【課題】ニッケル及びコバルトと鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、鉄、アルミニウム及びマンガンその他の不純物元素と効率的に分離することにより、ニッケル工業材料の原料として効果的に利用することができる形態でニッケルを回収する硫酸酸性水溶液からのニッケルの回収方法を提供する。
【解決手段】下記の工程(1)〜(5)を含むことを特徴とする。
工程(1):前記硫酸酸性水溶液を酸化中和処理に付す。
工程(2):次いで、中和処理に付し、ニッケル及びコバルトを含有する混合水酸化物を分離回収する。
工程(3):前記混合水酸化物を、濃度50質量%以上の硫酸溶液中で溶解処理に付す。
工程(4):前記濃縮液を、燐酸エステル系酸性抽出剤を用いて溶媒抽出処理に付す。
工程(5):得られた抽出残液に、中和剤を添加して中和処理に付し、生成された水酸化ニッケルを分離回収する。 (もっと読む)


【課題】本発明は、バイオマス廃棄物を有効利用することによって、有用金属を選択的に回収することが可能な金属吸着剤を提供することを解決課題とする。
【解決手段】本発明は、アセチル化キトサンと、該アセチル化キトサンの構成単位上の水酸基に、ラジカル重合性二重結合を有するモノマーをグラフト重合させて形成されたグラフト鎖と、該グラフト鎖の側鎖に導入された金属配位性官能基とを有するアセチル化キトサン誘導体を含む金属吸着剤を提供する。 (もっと読む)


【課題】金属塩化物水溶液からなる抽出始液とアミン系抽出剤を含む有機溶媒とを用いる金属の溶媒抽出工程において、塩酸を付加することにより活性化処理する際、大掛かりな設備を用いることなく行なうことができ、抽出段の各段の有機相を常に活性化された状態に保ちつつ、さらに、抽出始液中に微量の固形分を含有する場合においても、クラッドの発生を抑制することができる方法を提供する。
【解決手段】溶媒抽出工程を構成する抽出段に、前記有機溶媒は、活性化処理を施さないでそのまま供給し、一方、前記抽出始液は、下記の要件(1)或いは(2)を満足するように塩酸を添加した後に、供給する。要件(1):塩酸を添加した後の抽出始液の遊離塩酸濃度は、0.5〜5g/Lである。要件(2):塩酸を添加した後の抽出始液のpHは、−0.5〜0.5である。 (もっと読む)


121 - 140 / 263