説明

Fターム[4K017CA07]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉形状 (2,443) | 微粉 (773)

Fターム[4K017CA07]に分類される特許

41 - 60 / 773


【課題】500℃における熱収縮率が8.7〜13.0%となる新たな銀粉を提供する。
【解決手段】BET法により測定される比表面積から算出される粒子径(「BET径」と称する)が1.10μm〜2.60μmであり、炭素含有量が0.11〜0.22質量%である銀粉であれば、500℃における熱収縮率を8.7〜13.0%とすることができる。 (もっと読む)


【課題】 飽和磁束密度、非晶質性および耐候性に優れた垂直磁気記録媒体用軟磁性合金において、マグネトロンスパッタ時に効率良く使用できるターゲット材を提供する。
【解決手段】 Zr、Hf、Nb、TaおよびBの2種以上を含有し、残部CoおよびFe、ならびに不可避的不純物よりなり、下記式1および式2を満足し、相対密度99%以上であることを特徴とする垂直磁気記録媒体における軟磁性膜層用合金ターゲット材。
0.60≦Fe/(Fe+Co)≦0.65(at.%比) … (1)
5at%≦(Zr+Hf+Nb+Ta)+B/2≦10at% … (2)
ただし、B:7%以下とする。 (もっと読む)


【課題】組成比が一定で、微生物発生防止効果を安定して確保することができ、表面積が大きく微生物発生防止効果が大きく、粉体であることで、パッケージに封入して空気及び/又は水の微生物発生の防止に用いることができ、又は他の素材に混練し微生物発生防止作用を与える等に応用することができる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートを提供する。
【解決手段】電解めっきにより形成されためっき皮膜を粉砕して得られた微生物発生防止粉体であって、この微生物発生防止粉体は、ニッケル又はクロムを含有する微生物発生防止金属の金属元素間に、リン、イオウ、塩素、コバルト及び銀のいずれか1つ以上を含有する微生物発生防止元素が均一に分散してなる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートである。 (もっと読む)


【課題】磁化容易軸制御に必要な印加磁場を低減しつつ透磁率を向上させ、磁性粒子の酸化の影響を軽減して高性能化した磁気部品を提供する。
【解決手段】乾式法を用いてパラジウムを含む非磁性材料で磁性粒子を被覆する工程と、非磁性材料で被覆された磁性粒子を、回転磁場、加熱、および振動下でプレスする工程とを含む磁気部品の製造方法である。パラジウムを含む非磁性材料で被覆された磁性粒子を含み、周波数100kHz時の透磁率が150を超えて200以下であり、印加磁場800kA/m時の飽和磁束密度が2.20Tを超えて2.45T以下である、磁気部品である。 (もっと読む)


【課題】 電解再生液を用いた製造方法で、初回の還元剤含有液(バージン反応液)を用いた場合と遜色ない程度の金属微粒子を得ることができる製造方法を提供する。
【解決手段】 使用済み還元剤含有液を電解処理することにより、使用済み還元剤を還元再生した電解再生液を用いて、金属微粒子を繰り返し製造する方法であって、電解再生液に、金属イオン及び分散剤を補充する工程;並びに前記金属イオン及び分散剤が添加された電解再生液のpHを、前記還元剤の電極電位が前記金属イオンが原子となる電極電位よりも低くなるように調節して、還元反応を開始させる工程を含む。前記還元剤は、チタン塩であることが好ましい。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】樹脂成形体とりわけ三次元網目構造を有する多孔質樹脂成形体の表面にアルミニウムをめっきするに際し、電流値を高くして効率よくアルミニウムめっき膜を形成する方法を提供することを目的とする。
【解決手段】表面に導電層2を形成することにより導電化された樹脂成形体1にアルミニウムを溶融塩浴中で電気めっきしてアルミニウムめっき層3を形成するアルミニウム多孔体の製造方法であって、陽極がアルミニウムエキスパンドメタルからなり、該陽極の表面積が樹脂成形体の表面積の1.3倍以上であることを特徴とするアルミニウム多孔体の製造方法。 (もっと読む)


【課題】従来になく高い充填密度を有する混合導電粉を用いた導電ペーストを提供する。
【解決手段】相対充填密度が68%以上である混合導電粉と樹脂バインダとを含む導電ペーストであって、前記混合導電粉が、実質的に球状で表面が平滑化された銀被覆銅粉60〜96重量%と銀粉4〜40重量%とを含み、前記銀被覆銅粉が、銀および銀と銅との合金により銅粉の表面が部分的に被覆され、銀の合計量が銅に対して3〜30重量%である銀被覆銅粉の表面に、銀被覆銅粉に対して0.02〜1.0重量%の量の脂肪酸が付着してなる実質的に球状の脂肪酸付着銀被覆銅粉である導電ペースト。 (もっと読む)


【課題】銀ペーストの低コスト化を図る。
【解決手段】硝酸銀、酸化銀又はこれらの混合物に、純水と、アンモニア水又は他のアミン化合物とを添加し錯体化して、銀錯体水溶液又は酸化銀残留スラリーを作製し、この銀錯体水溶液又は酸化銀残留スラリーに、銀をキレート化する添加剤を添加してキレート化銀溶液を作製し、キレート化銀溶液に還元剤を添加し、還元剤の添加後2〜10秒の間の酸化還元電位を−30mV〜170mVに制御して還元することにより、平均粒径が0.4μm〜1.5μm、タップ密度が4.0g/cm〜6.0g/cmであり、粒子断面の空孔率が5%〜20%である銀粉を得る。 (もっと読む)


【課題】バージン磁粉に対する再生磁粉の混合割合を増大させることができ、もって資源の有効利用を図る。
【解決手段】超急冷法によって得たバージン磁粉を含む原料を熱間塑性加工することにより製造された磁石体の、使用不可部分に対して水素吸蔵粉砕処理を施して磁石製造用の再生磁粉を得る。そして、再生磁粉をバージン磁粉に対し全体量の40質量%以上で80質量%以下の割合で混合して混合磁粉とし、当該混合磁粉を熱間塑性加工して磁石体を得る。 (もっと読む)


【課題】低コストで、に第三元素を添加しない、低酸素MoCrターゲット材を製造する方法およびMoCrターゲット材を提供すること。
【解決手段】Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材の製造方法であって、(1)Mo焼結体を平均粒径20〜500μmに粉砕してMo粉末を作製する工程と、(2)該Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程と、(3)平均粒径20〜500μmのCr原料粉末を準備する工程と、(4)前記還元処理Mo粉末と前記Cr原料粉末とを混合した混合粉末を作製する工程と、(5)該混合粉末を加圧焼結してMoCr焼結体を作製する工程とを有するMoCrターゲット材の製造方法。 (もっと読む)


【課題】本発明は、金属微粒子の品質を損なうこと無く、高い生産性かつ低コストで金属微粒子の平均粒径を自在に制御可能な金属微粒子の製造方法を提供することを課題とする。
【解決手段】炉内でバーナを用いて火炎を形成し、該火炎中に、燃料ガスにより輸送された原料粉体である金属或いは金属化合物を通過させることで金属微粒子を生成する方法であって、該火炎は、還元性火炎であり、該還元性火炎の火炎長を調整することで金属微粒子の平均粒径を制御する。 (もっと読む)


【課題】炭素の含有量が低減されたものでありながら、微粒でかつ粒度分布の揃った銅粒子を提供すること。
【解決手段】本発明の銅粒子は、炭素の含有量が0.01重量%未満であり、かつリンの含有量が0.01重量%未満である。また、(σ/D50)×100で定義される変動係数CV値が10〜35%である。σは画像解析による粒子の粒径の標準偏差を表し、D50は画像解析による粒子の50%体績累積粒径を表す。銅粒子は、表面の一部に非曲面部を有する略球状である。 (もっと読む)


【課題】インダクタ、チョークコイル、トランス等電磁気部品の小型化及び高周波域で使用可能な磁気特性の優れた複合磁性材料を提供する。
【解決手段】Fe−Si−Al系の金属磁性粉末と結着材とを添加混合し、加圧成形して成形体とした後、前記成形体に熱処理を施した複合磁性材料において、前記金属磁性粉末は異なる酸素濃度を有した金属磁性粉末A、金属磁性粉末Bからなり、前記金属磁性粉末Aの酸素濃度が1500〜6500ppm、前記金属磁性粉末Bの酸素濃度が400ppm以下であり、前記金属磁性粉末中における前記金属磁性粉末Bの含有量を5〜25wt%の範囲とし、前記金属磁性粉末Aの平均粒径をDA、前記金属磁性粉末Bの平均粒径をDBとしたとき、DBとDAが、DB/DA≦0.16となる関係を満たすこととする。 (もっと読む)


【課題】良好な印刷適性を有し、高温プロセスを用いることなく、良好な電気的特性を得ることができる微細パターンを形成することが可能な導電性ペーストを提供する。
【解決手段】導電性ペーストにおいて、タップ密度が4.9〜6.0g/cmで、比表面積が0.7〜1.3m/gで、平均粒径が0.6〜1.0μmである銀粉末と、熱硬化性樹脂、熱可塑性樹脂および熱乾燥性樹脂の少なくとも一種の有機バインダー樹脂と、有機溶剤と、を含有する。 (もっと読む)


【課題】焼成型導電性ペーストの銀粉として用いたとき、当該焼成型導電性ペーストの焼成の際、ガス発生に起因する膨張が起こらない銀粉およびその製造方法、並びに導電性ペーストを提供する。
【解決手段】50〜900℃の範囲において、50℃における値を基準とした熱膨張率の最大値が0.3%以下であり、かつ、BET値(比表面積)が0.1m/g以上0.9m/g以下である銀粉を提供する。 (もっと読む)


【課題】複数のターゲットを用いることなく、炭素含有量の多いFePtC系薄膜を単独で形成できるFePt−C系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】Fe、PtおよびCを含有するFePt−C系スパッタリングターゲットであって、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金相と、C相とが互いに分散した構造を有するようにし、ターゲット全体に対するCの含有量を21〜70at%にする。
また、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金粉末にC粉末を添加し、酸素の存在する雰囲気下で混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形する。 (もっと読む)


【課題】 太陽電池の光吸収薄膜層を製造するための低酸素Cu−Ga系合金粉末、およびスパッタリングターゲット材の製造方法を提供する。
【解決手段】 原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が200ppm以下としたCu−Ga系合金粉末。また、原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が250ppm未満、かつ結晶粒径が10μmを超え、100μm以下としたCu−Ga系合金スパッタリングターゲット材。さらには、上記Cu−Ga系合金粉末を原料とし、これを400〜850℃の温度で固化成形するCu−Ga系スパッタリングターゲット材の製造方法。 (もっと読む)


【課題】Nd−Fe−B系永久磁石薄膜などの永久磁石薄膜の磁気特性を向上させることができる、永久磁石薄膜用スパッタリングターゲット及びその製造方法の提供。
【解決手段】原子比率による組成式が、R100−x−y(Rは希土類元素のうち少なくとも一種であってNd及び/又はPrを必ず含み、Tは遷移元素のうち少なくとも一種であってFeを必ず含み、MはB又はBとCであって50原子%≦B/Mを満足する)で表され、x、yが、17≦x≦20、7≦y≦10を満足する組成からなり、酸素含有量が1500ppm以下の焼結体である。 (もっと読む)


【課題】高温強度等に非常に優れた耐熱高強度アルミニウム合金を提供する。
【解決手段】本発明の耐熱高強度アルミニウム合金は、全体を100質量%(以下単に「%」という)としたときに、Fe:3〜6%、Zr:0.66〜1.5%、Ti:0.6〜1%、Tiに対するZrの質量比(Zr/Ti):1.1〜1.5、残部:Alと不可避不純物および/または改質元素となる合金組成を有することを特徴とする。本発明の耐熱高強度アルミニウム合金は、主に母相とAl−Fe系金属間化合物相(第一化合物相)からなり、この第一化合物相との境界近傍にある母相中にL1型Al−(Zr、Ti)系金属間化合物(第二化合物相)が整合的に析出し得る。この第二化合物相は高温環境下でも安定であり、高温強度等を担う第一化合物相の粗大化等を第二化合物相が阻止することにより、本発明の耐熱高強度アルミニウム合金は優れた耐熱性を発揮すると考えられる。 (もっと読む)


41 - 60 / 773