説明

Fターム[4M104BB13]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | 遷移金属 (20,763) | 高融点金属 (9,978)

Fターム[4M104BB13]の下位に属するFターム

Ti (3,278)
Mo (1,590)
Ta (1,541)
 (2,047)

Fターム[4M104BB13]に分類される特許

1,501 - 1,520 / 1,522


一対の電極と、該一対の電極間に設けられた、1本または複数のカーボンナノチューブにより構成されるキャリア輸送体と、を備え、前記一対の電極のうち、一方の電極および前記キャリア輸送体の第1の界面と、他方の電極および前記キャリア輸送体の第2の界面と、が異なる障壁レベルとなるように、これら2つの接続構成を異なる構成とすることで、高周波応答性、耐熱性に優れたキャリア輸送体を備えた整流素子を提供し、併せて、それを用いた電子回路、並びに整流素子の製造方法を提供する。
(もっと読む)


【課題】 炭化金属を含むゲート電極を含む少なくとも1つのFETを含む相補型金属酸化膜半導体(CMOS)などの半導体デバイスおよび形成方法を提供することにある。
【解決手段】 このCMOSは、ある金属とある金属の炭化物によって二重仕事関数が与えられる、二重仕事関数の金属ゲート電極を含む。 (もっと読む)


低接触抵抗を実現しつつ表面荒れの少ない電極が得られる技術を提供する。
半導体膜101の上部に設けられる電極であって、この半導体膜101の上部にこの半導体膜の側から順に積層された第一金属層102と第二金属層103とを有し、この第一金属膜102が、Alからなり、この第二金属膜103が、Nb、W、Fe、Hf、Re、TaおよびZrからなる群より選ばれる1種以上の金属からなることを特徴とする電極。 (もっと読む)


【課題】 製造コストを低減し品質の均一性および安定性を高めたモノリシック集積型エンハンスメントモード/デプリーションモードFETデバイスを提供する。
【解決手段】 単一の半導体多層構造でデプリーションモード(Dモード)FETをエンハンスメントモード(Eモード)FETとモノリシックに集積回路化する。上記多層構造にはチャネル層を設け、その上に障壁層をオーバーレイし、さらにその上にオームコンタクト層をオーバーレイする。これらDモードFETおよびEモードFETのソースコンタクトおよびドレーンコンタクトをオームコンタクト層に接続する。またDモードFETおよびEモードFETのゲートコンタクトを障壁層に接続する。障壁層の中のEモードゲートコンタクトの下に非晶質化領域を設ける。この非晶質化領域が障壁層との間の埋込みEモードSchottkyコンタクトを構成する。代わりに実施例ではDモードFETのゲートコンタクトを障壁層にオーバーレイした第1の層に接続し、その第1の層の中にDモード非晶質化領域を形成する。 (もっと読む)


【課題】
本発明は、少なくとも一つの電気的コンポーネントを有するフィルムと、そのようなフィルムの生産プロセスと、に関するものである。
【解決手段】
放射架橋性接着剤を備えた接着剤層はベースフィルム(61)に塗布される。接着剤層はベースフィルムへパターン形状に塗布され、及び/または、接着剤層がパターン形状に構造化して硬化するようにパターン形状に放射線照射される。キャリアフィルムと電気的機能層とを備えたトランスファーフィルム(41)が接着剤層に塗布される。キャリアフィルム(41)は、ベースフィルム、接着剤層、及び電気的機能層を含むフィルム体から剥がされ、そこではパターン形状に構造化された第一領域では電気的機能層はベースフィルム(61)に残り、パターン形状に構造化された第二領域では電気的機能層は前記キャリアフィルム(45)に残り、ベースフィルム(61)からキャリアフィルムとともに取り除かれる。

(もっと読む)


ソース/ドレイン領域の少なくともその幅が最も大きい部分では半導体領域の幅よりも大きく、かつソース/ドレイン領域の最上部側から基体側に向かって連続的に幅が大きくなっている傾斜部を有し、該傾斜部表面にシリサイド膜が形成されていることを特徴とする半導体装置とする。
(もっと読む)


【課題】 金属−カルボニルプリカーサからの金属層の低圧堆積を提供することである。
【解決手段】 半導体基板上に熱化学気相成長(TCVD)プロセスによって金属層を堆積させる方法は、処理チャンバに金属カルボニルプリカーサを含むプロセスガスを導入することと、基板上に金属層を堆積させることとを含む。TCVDプロセスは、低い抵抗率の金属層を形成するように、基板上方の処理ゾーン内のガス種の短い滞留時間を利用する。本発明の実施形態において、金属カルボニルプリカーサは、W(CO)、Ni(CO)、Mo(CO)、Co(CO)、Rh(CO)12、Re(CO)10、Cr(CO)、およびRu(CO)12のプリカーサの少なくとも1つから選ぶことができる。 (もっと読む)


【課題】 間欠的なプリカーサガスフロープロセスを使用して金属層を形成する方法を提供することである。
【解決手段】 間欠的なプリカーサガスフロープロセスを使用して基板上に金属層を形成する方法は、提供される。方法は、金属−カルボニルプリカーサガスのパルスに基板を曝すと共に、還元ガスに基板を曝すことを含む。所望の厚さを有する金属層が基板上に形成されるまで、プロセスは実行される。金属層は、基板上に形成されることができ、または、交互に、金属層は、金属核生成層上に形成されることができる。 (もっと読む)


【課題】 シーケンシャル流量堆積を使用して金属層を堆積させる方法を提供することである。
【解決手段】 シーケンシャル流量堆積を使用して良好な表面モホロジを有する金属層を堆積させる方法は、処理チャンバ内の基板を交互に金属−カルボニル前駆ガスと、還元ガスとに曝すことを含む。金属−カルボニルプリカーサガスにさらされる間、薄い金属層は、熱分解によって基板上に堆積され、その後の還元ガスに金属層を曝すことは、金属層から反応副生成物の除去するのを助ける。所望の厚さを有する金属層が達成されるまで、金属−カルボニルプリカーサガスと、還元ガスとの曝露ステップは、繰り返されることができる。 (もっと読む)


【課題】 金属−カルボニルプリカーサから金属層を堆積させる方法を提供することである。
【解決手段】 熱化学気相成長(TCVD)プロセスによって半導体基板上に金属層を堆積させる方法を提供する。TCVDプロセスは、金属層を堆積させるように金属−カルボニルプリカーサを含む希釈したプロセスガスの大流量を利用する。本発明の1つの実施形態では、金属−カルボニルプリカーサは、W(CO)、Ni(CO)、Mo(CO)、Co(CO)、Rh(CO)12、Re(CO)10、Cr(CO)、およびRu(CO)12の少なくとも1つから選ばれることができる。本発明の別の実施形態では、約410℃の基板温度および約200mTorrのチャンバ圧力で、W(CO)プリカーサを含むプロセスガスよりW層を堆積させる方法は、提供される。 (もっと読む)


基板の表面に向けて電磁放射を方向付けて、該基板の該表面上の部材から反射された該電磁放射の強度の変化を1つ以上の波長で検出することによって無電解堆積プロセスをコントロールするための装置および方法。一実施形態において、該基板が検出機構に対して移動されると、無電解堆積プロセスステップの検出された終了が測定される。別の実施形態において、多数の検出ポイントが、該基板の該表面にわたる該堆積プロセスの状態を監視するために使用される。一実施形態において、該検出機構は該基板上で無電解堆積流体に浸される。一実施形態において、コントローラは、記憶されたプロセス値、異なる時間に収集されたデータの比較、および種々の算出された時間依存データを使用して無電解堆積プロセスを監視、記憶および/またはコントロールするために使用される。 (もっと読む)


【課題】 接触なしで原料を蒸発させて、単元又は多元の層及びスタック層を堆積する方法及び装置を提供する。
【解決手段】 本発明は、プロセスチャンバー(2)内で少なくとも1層を少なくとも1つの基板上に堆積する装置であって、複数の成分からなり、絶縁性、パッシベーション性、又は導電性を有する層と、インジェクタユニット(5)を用いて液状又は液体に溶解した原料(3)を温度制御された蒸発チャンバ(4)に不連続に射ち込むことによって成分が蒸発され、これらの蒸気がキャリアガス(7)によってプロセスチャンバーに供給される装置に関する。各インジェクターユニット(5)を通る流量の時間プロファイルを決定する、射出圧、射出周波数、及びデューティ比、並びにオン/オフの他のインジェクターユニットのオン/オフに対する位相関係等の流量パラメータが個別に設定又は変更されることが基本である。 (もっと読む)


スパッタ用ターゲット組立体20を製造する方法、及びその製品が提供される。本方法はバッキングプレート26を製造するステップを含み、バッキングプレートは平坦な上面とそこに円筒形状凹部28を備える。次に、バッキングプレート26の円筒形状凹部に対応する円錐台背面24及び前面を有する最終形状に近いターゲットインサート22が製造される。ターゲットインサート22はバッキングプレート26の降伏強度よりも大きな降伏強度を有し、かつバッキングプレート26の円筒形状凹部の深さよりも高さが大きい。その後、バッキングプレート26にターゲットインサート22を拡散接合し、ターゲット組立体を形成するために、塑性変形の状態までターゲット22をバッキングプレート26の円筒形状凹部28へ加温圧縮する。ターゲットインサート22はバッキングプレート26の平坦な面上に突出する。
(もっと読む)


【課題】 高性能デバイスの金属置換ゲートのための構造および形成方法を提供する。
【解決手段】 まず、半導体基板(240)上に設けたエッチ・ストップ層(250)上に、犠牲ゲート構造(260)を形成する。犠牲ゲート構造(300)の側壁上に、1対のスペーサ(400)を設ける。次いで、犠牲ゲート構造(300)を除去して、開口(600)を形成する。続けて、スペーサ(400)間の開口(600)内に、タングステン等の金属の第1の層(700)、窒化チタン等の拡散バリア層(800)、およびタングステン等の金属の第2の層(900)を含む金属ゲート(1000)を形成する。 (もっと読む)


n型電界効果トランジスタおよびp型電界効果トランジスタとを含む半導体装置であって、n型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基板と平行な面が実質上{100}面であり、その側面が実質上前記{100}面と直交する{100}面であり、p型電界効果トランジスタを構成する突起状半導体領域の結晶方位は、その基板と平行な面が実質上{100}面であり、その側面が実質上前記{100}面と直交する{110}面である、という条件を満足する半導体装置とする。 (もっと読む)


1以上の物質層のバリヤ層を原子層堆積により堆積させるために基板を処理する方法が提供される。一態様においては、金属含有化合物の1以上のパルスと窒素含有化合物の1以上のパルスを交互に導入することにより基板表面の少なくとも一部上に金属窒化物バリヤ層を堆積させるステップと、金属含有化合物の1以上のパルスと還元剤の1以上のパルスを交互に導入することにより金属窒化物バリヤ層の少なくとも一部上に金属バリヤ層を堆積させるステップとを含む基板を処理する方法が提供される。金属窒化物バリヤ層及び/又は金属バリヤ層の堆積前に基板表面上で浸漬プロセスが行われてもよい。 (もっと読む)


一方のアセンブリ部材上に設けられた突起を熱膨張させ、もう一方のアセンブリ部材に熱接触を与えることによりスパッタカソードアセンブリの構成部分を組み立てる方法、及び当該方法によって形成されたスパッタカソードが記載される。本方法は、構成部材の一時的な機械的結合を形成し、この機械的結合は構成部分が所定の接触温度未満に冷却されると終わる。本方法は、任意選択でアセンブリの構成部分を互いに機械的に連結することを含む。
(もっと読む)


ショットキーのような動作を有するモノリシック集積パンチスルー・ダイオード。これは、ショットキー金属領域(16)が第1のpドープ・ウェル(9)の表面の少なくとも一部に堆積されるときに実現される。ショットキー金属領域(16)およびpドープ・ウェル(9)は、ショットキー・ダイオードの金属−半導体−遷移を形成する。順方向特性が0.5V未満の電圧降下を有するので、発明のPTダイオードの過電圧保護は改善される。
(もっと読む)


異種金属により形成されるデュアルメタルゲートを備えるMOSトランジスタ(10)を形成する方法を提供する。HfOのようなゲート誘電体(34)を半導体基板(31)の上に堆積させる。次に、犠牲層(35)をゲート誘電体(34)を覆うように堆積させる。犠牲層(35)をパターニングして、基板(31)の第1領域(32)(例えばpMOS)の上のゲート誘電体(34)が露出し、かつ基板(31)の第2領域(33)(例えばnMOS)の上のゲート誘電体(34)が犠牲層(35)によって保護されたままになるようにする。第1ゲート導体材料(51)を残りの犠牲領域(35)の上に、かつ露出したゲート誘電体(34)の上に堆積させる。基板(31)の第2領域(33)の上の第1ゲート導体材料(51)がエッチングにより全て除去されるように第1ゲート導体材料(51)をパターニングする。第1ゲート導体材料(51)を取り除く際に、第2領域(33)上の犠牲層(35)は、下層の誘電体材料(34)にダメージが加わるのを防止するように機能することができる。
(もっと読む)


【課題】より小型が可能なPN接合ダイオード装置及びその製造方法を提供することにある。
【解決手段】PN接合ダイオードのカソード電極22及びアノード電極23を共に、シリコン基板10の一方の主面に形成することにより、カソード電極22及びアノード電極23とをリードフレーム26に、ワイヤー等で接続することなく、接着することを可能にする。 (もっと読む)


1,501 - 1,520 / 1,522