説明

Fターム[4M104DD55]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の析出 (10,624) | 電極への不純物導入(析出時又は後) (529)

Fターム[4M104DD55]の下位に属するFターム

Fターム[4M104DD55]に分類される特許

61 - 80 / 448


【課題】パワーMOSトランジスタのサイズの縮小を図り、ソース・ドレイン間絶縁破壊電圧の低下を防止する。
【解決手段】P+型コンタクト層17をN+型ソース層18の底面の直下のP型ベース層13内に埋め込んで形成する。これによりP型ベース層13の表面にN+型ソース層18と並列にP+型コンタクト層17を形成する必要がなくなりN+型ソース層18の幅を狭くできる。また、N+型ソース層18の底面の直下のP型ベース層13内にP+型コンタクト層17を形成するため、従来に比して、P+型コンタクト層17のN+ソース層18に対する面積占有率を大きくできる。この結果、NPN寄生トランジスタがオンすることを妨げる事ができる。 (もっと読む)


【課題】SRAM回路の動作速度を向上させる。
【解決手段】駆動MISFETと転送MISFETとそれらの上部に形成された縦型MISFETとでメモリセルを構成したSRAMにおいて、周辺回路を構成するMISFET間の電気的接続を、メモリセルの縦型MISFET(SV、SV)よりも下部に形成されるプラグ28および中間導電層46、47で行うとともに、縦型MISFET(SV、SV)よりも上部に形成されるプラグ、第1および第2金属配線層を用いて行うことにより、配線の自由度を向上でき、高集積化できる。また、MISFET間の接続抵抗を低減でき、回路の動作スピードを向上できる。 (もっと読む)


【課題】ゲート電極抵抗の増大や工程数の増加を招くことなく、シリコン混晶層を用いた歪技術により、半導体装置の高性能化を実現する。
【解決手段】半導体基板100における第1のゲート電極106Aから見て第1の絶縁性サイドウォールスペーサ111Aの外側に第1のソースドレイン領域114Aを形成する。その後、半導体基板100における第2のゲート電極106Bから見て第2の絶縁性サイドウォールスペーサ111Bの外側にリセス部119を形成すると共に、第2のゲート電極106Bを部分的に除去する。その後、リセス部109内に、第2のソースドレイン領域114Bとなるシリコン混晶層120を形成する。 (もっと読む)


【課題】ゲート閾値電圧を低下させることなく、チャネル移動度を向上できる炭化珪素MOSFETを提供する。
【解決手段】炭化珪素半導体装置200は、炭化珪素基板10と、炭化珪素基板10上に形成された炭化珪素層20と、炭化珪素層20上に形成されたゲート絶縁膜30と、ゲート絶縁膜30を介して炭化珪素層20上の所定位置に形成され、III族軽元素であるB、AlまたはGaをp型ドーパントとして含む多結晶シリコンからなるゲート電極40とを有する。そして、ゲート電極40中の上記p型ドーパントを、ゲート電極40直下の炭化珪素層20とゲート絶縁膜30との界面近傍に拡散させ、上記p型ドーパントによって界面近傍の不純物準位をパッシベーションする。 (もっと読む)


種々の材料及びアプローチの1以上を用いてナノ構造体を接続する。種々の例示的実施形態で、ナノ構造体間の接続部で2つ以上のナノ構造体が接続される。ナノ構造体は、接続部で接触するかほぼ接触してよく、接続材料を接続部で堆積及び核形成させてナノ構造体同士を結合する。種々の用途で、核形成した接続材料はナノ構造体間の伝導率(熱的及び/又は電気的)を向上させる。いくつかの実施形態では、接続材料は更に、例えばナノ構造体に沿って成長することにより及び/又はナノ構造体にドープすることにより、ナノ構造体自身の伝導率を上昇させる。
(もっと読む)


半導体デバイスは、フィン及び金属ゲート膜を有する。フィンは半導体材料の表面に形成されている。金属ゲート膜は、フィン上に形成され、且つ金属ゲート内に圧縮応力を形成するために当該金属ゲート膜内に注入されたイオンを有する。典型的な一実施形態において、半導体材料の表面は(100)結晶格子方向を有し、フィンの方向は、半導体材料の結晶格子に関して<100>方向に沿っている。典型的な他の一実施形態において、半導体材料の表面は(100)結晶格子方向を有し、フィンの方向は、半導体材料の結晶格子に関して<110>方向に沿っている。フィンは、金属ゲート膜内の圧縮応力によって生成される面外圧縮を有する。
(もっと読む)


【課題】トレンチ構造のゲート絶縁膜がエミッタ層等を形成するときの砒素イオンよる損傷を受けることがなく、その絶縁耐圧が向上する半導体装置を低コストで製造できる方法を確立する。
【解決手段】トレンチ3内に埋め込まれて形成されたポリシリコンからなるゲート電極5を高温炉中等で熱酸化してゲート電極5上に厚いポリシリコン熱酸化膜6を形成する。その後に不純物イオンをイオン注入してエミッタ層等となるN型半導体層8を形成する。この場合、ポリシリコン熱酸化膜6の膜厚を、イオン注入によりエミッタ層等となるN型半導体層8を形成するための不純物イオンのシリコン酸化膜中の平均飛程より厚く形成する。これにより、不純物イオンがゲート電極5とN型半導体層8に挟まれたゲート絶縁膜4に損傷を与えるのを防止する。 (もっと読む)


【課題】チャネル領域に強い歪みを印加することによりデバイス特性を改善した半導体装置を提供すること。
【解決手段】半導体基板1と、半導体基板1の第1の面に形成されたゲート絶縁膜2と、ゲート絶縁膜2の上に形成されたゲート電極3と、ゲート電極3の側壁に形成されたゲート側壁絶縁膜4と、ゲート電極3の下の半導体基板1中に形成されるチャネル領域に隣接し、不純物が注入されたソース/ドレイン拡散層領域5、6と、ゲート電極3の上方を除き、ソース/ドレイン拡散層領域5、6の上に形成された応力印加膜8と、を有し、半導体基板1の第1の面におけるソース/ドレイン拡散層領域5、6が形成された領域には、凹部または凸部50、51、60、61が設けられている半導体装置を提供する。 (もっと読む)


【課題】ゲート電極を形成してからチャネル形成用半導体部を形成する方法において、結晶品質の良い単結晶Siを用いて良質なゲート絶縁膜を形成した縦型半導体装置を提供する。
【解決手段】単結晶半導体基板に少なくとも第1絶縁層を有する積層体を形成する工程S1と、前記積層体に、前記単結晶半導体基板が露出する孔を形成する工程S2と、前記孔の底面に露出している前記単結晶半導体基板を種結晶領域とすることにより、前記第1絶縁層の上にゲート電極となる単結晶半導体部を形成する工程S3と、前記孔内に埋められた前記単結晶半導体部を除去することで、前記孔の底面に前記単結晶半導体基板を再び露出させる工程S4と、前記単結晶半導体部の前記孔の側面に露出している部分にゲート絶縁膜を形成する工程S5と、前記孔にチャネル形成用半導体部を形成する工程S6と、を有する半導体装置の製造方法。 (もっと読む)


【課題】p型MISトランジスタ及びn型MISトランジスタの特性を向上した相補型MISトランジスタを備えた半導体装置を容易に実現できるようにする。
【解決手段】半導体装置の製造方法は、p型半導体領域10A及びn型半導体領域10Bを有する半導体基板101の上に、高誘電率膜106、アルミニウムからなる第1のキャップ膜107及びハードマスク108を順次形成する。次に、第1のキャップ膜107及びハードマスク108におけるn型半導体領域10Bの上に形成された部分を除去する。その後、半導体基板101の上に、実効仕事関数を低下させる効果を有する元素を含む第2のキャップ膜109を形成する。 (もっと読む)


【課題】デュアルメタルゲートプロセスを用いることなく、p型MISトランジスタ及びn型MISトランジスタ双方の特性を向上した半導体装置を実現できるようにする。
【解決手段】半導体装置は、p型半導体領域10Aの上に順次形成された第1の界面シリコン酸化膜105、アルミニウムを含む第1のゲート絶縁膜106A及び第1のゲート電極119Aと、n型半導体領域10Bの上に順次形成された第2の界面シリコン酸化膜105、実効仕事関数を低下させる効果を有する元素を含む第2のゲート絶縁膜106B及び第2のゲート電極119Aとを備えている。第1のゲート絶縁膜106Aの上部におけるアルミニウムの濃度は、1×1020/cm3以上である。第2のゲート絶縁膜106Bの上部におけるアルミニウムの濃度は、1×1019/cm3以下である。第1の界面シリコン酸化膜105の膜厚と第2の界面シリコン酸化膜105の膜厚との差は0.2nm以下である。 (もっと読む)


【目的】ラッチアップ耐量が高く、低抵抗な縦型半導体装置を提供する。
【解決手段】n型ソース領域4の上面にp型第1ベース領域2aおよびp型第2ベース領域2bが形成され、該n型ソース領域4の下面にソース電極5が設けられ、p型第2ベース領域2bの上面に絶縁膜を介してドレイン電極9が形成されている。該p型第2ベース領域2bの上面にはゲート電極用トレンチと、該第1ベース領域2aと第2ベース領域2bおよびn型ソース領域4を短絡する短絡用トレンチが並設されている。該ゲート電極用トレンチの側壁にはn型ドリフト領域6とn型ドレイン領域8がRESURF状に形成され、短絡用トレンチには短絡用導電体12が形成されて該導電体12は該ドレイン電極9と絶縁されている。 (もっと読む)


【課題】信頼性の高い半導体装置を高い製造歩留まりで提供し得る半導体装置の製造方法を提供することにある。
【解決手段】側壁にサイドウォール絶縁膜が形成されたゲート配線20を形成する工程と、第1の応力膜38を形成する工程と、第1の応力膜上にエッチングストッパ膜40を形成する工程と、エッチングストッパ膜をエッチングし、第1の応力膜のうちのサイドウォール絶縁膜を覆う部分上にエッチングストッパ膜を選択的に残存させる工程と、第2の領域4を露出する第1のマスクを用いて第2の領域内の第1の応力膜をエッチングする工程と、第2の応力膜42を形成する工程と、第1の領域2を露出する第2のマスクを用いて第1の領域内の第2の応力膜をエッチングする工程と、第1の領域と第2の領域との境界部におけるゲート配線に達するコンタクトホール46aを形成する工程とを有している。 (もっと読む)


【課題】ゲート電極に対する不純物の突き抜けを抑止する。
【課題を解決するための手段】半導体装置の製造方法は、基板上方に成膜した多結晶シリコンをエッチングして基板の第1領域上方に第1ゲート電極を形成し、基板の第2領域上方に第2ゲート電極を形成し、第1領域及び第1ゲート電極を覆う第1パターンを形成し、第2ゲート電極及び第1パターンをマスクにして第2領域に第1不純物を第1ドーズ量で注入して第2領域に第1エクステンション領域を形成し、第1ゲート電極、第1領域及び第2ゲート電極の上面を露出させた第2パターンを形成し、第1エクステンション領域を覆い、第1ゲート電極、第2ゲート電極及び第2パターンをマスクにして第1領域に第2不純物を第1ドーズ量よりも多いドーズ量で注入して第1領域に第2エクステンション領域を形成するとともに、第1ゲート電極及び第2ゲート電極の少なくとも上部をアモルファス化する。 (もっと読む)


【課題】複数ゲートトランジスタの改良された構造、およびその製造プロセスの提供。
【解決手段】相補型金属酸化膜半導体(CMOS)デバイス100は、第1のパラメータを有する少なくとも2つの第1のゲート電極を備えたPMOSトランジスタと、上記第1のパラメータとは異なる第2のパラメータを有する少なくとも2つの第2のゲート電極を備えたNMOSトランジスタと、を有している。上記第1のパラメータおよび上記第2のパラメータは、上記PMOSおよびNMOSトランジスタの上記ゲート電極材料120の厚さ、またはドーパントプロファイルを含んでいる。上記少なくとも2つの第1のゲート電極および上記少なくとも2つの第2のゲート電極の上記第1および第2のパラメータは、それぞれ、上記PMOSおよびNMOSトランジスタの仕事関数を規定する。 (もっと読む)


半導体p−i−nダイオードおよび半導体p−i−nダイオードを形成する方法を開示する。一形態において、一の導電型(p+またはn+の一方)を有するようにドープされた領域と、p−i−nダイオードへの電気コンタクトの間に、SiGe領域が形成される。SiGe領域は、コンタクト抵抗を低減する働きをすることができ、順バイアス電流を増加させることができる。ドープされた領域は、ドープされた領域がSiGe領域とダイオードの真性領域との間に存在するように、SiGe領域の下方を伸びている。p−i−nダイオードは、シリコンから形成することができる。SiGe領域の下方のドープされた領域は、付加されたSiGe領域によって逆バイアス電流が増加することを防止する働きをすることができる。一実施形態では、メモリアレイ内の上向きのp−i−nダイオードの順バイアス電流が、下向きのp−i−nダイオードの順バイアス電流に実質的に一致するように、SiGeは形成される。これらのダイオードが3Dメモリアレイの読み出し/書き込み材料に用いられた場合に、より良いスイッチング結果を達成することができる。
(もっと読む)


【課題】
【解決手段】本発明は基板と、該基板上のGaNを含む第1層とAlGaNを含む第2層とを含む構成を含む半導体装置に関する。第1層上に第2層を堆積させ、第1層及び第2層は少なくとも部分的に基板を被覆する。また該構造はダイヤモンドを含む第3層を含む。 (もっと読む)


【目的】拡散層とゲート電極との少なくとも1つの上に耐熱性が向上したNiSi膜が形成された半導体装置を提供することを目的とする。
【構成】本発明の一態様の半導体装置は、Si基板200と、Si基板200内に形成された拡散層10と、Si基板200上にSiを用いて形成されたゲート電極20との少なくとも1つと、前記拡散層10と前記ゲート電極20との少なくとも1つ上に接触して形成されたP元素を含有したNiSi膜40,42と、を備えたことを特徴とする。 (もっと読む)


【課題】
太幅配線の添加元素を細幅配線の添加元素とは独立に制御する。
【解決手段】
層間絶縁膜に、第1の幅を有する第1の配線溝および第1の幅より広い第2の幅を有する第2の配線溝を形成し、第1の配線溝および第2の配線溝内に、第1の添加元素を含む第1のシード層を形成し、第1のシード層上に第1の銅層を形成し、第1の配線溝内の第1の銅層および第1のシード層を残存させつつ、第2の配線溝内の第1の銅層および第1のシード層を除去し、その後、第2の配線溝内に、第2の添加元素を含む又は添加元素を含まない第2のシード層を形成し、第2のシード層の上に第2の銅層を形成する。 (もっと読む)


【課題】
微細化したMOSトランジスタを含む半導体装置において、リーク/ショートの可能性を抑制する。
【解決手段】
半導体装置の製造方法は、活性領域上に、ゲート絶縁膜とシリコン膜とを形成し、シリコン膜上方にゲート電極用レジストパターンを形成し、レジストパターンをマスクとして、シリコン膜を厚さの途中までエッチングしてレジストパターン下方に凸部を残し、レジストパターンを除去した後シリコン膜を覆うダミー膜を形成し、ダミー膜を異方性エッチングして、凸部の側壁にダミー膜を残存させつつ、平坦面上のダミー膜を除去し、ダミー膜をマスクとして、シリコン膜の残りの厚さをエッチングしてゲート電極を形成し、ゲート電極両側の半導体基板に、ソース/ドレイン領域を形成し、シリコン領域にシリサイドを形成する。 (もっと読む)


61 - 80 / 448