説明

Fターム[4M104DD91]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の処理 (7,014) | 基板へ不純物導入、拡散領域形成(析出後) (478)

Fターム[4M104DD91]の下位に属するFターム

Fターム[4M104DD91]に分類される特許

21 - 40 / 423


【課題】高集積化を図ることができる半導体装置の製造方法を提供することである。
【解決手段】実施形態に係る半導体装置の製造方法は、半導体基板に第1の方向に延びる複数の溝を形成する工程と、前記溝の内面上及び前記半導体基板の上面上に絶縁膜を形成する工程と、前記絶縁膜上に、前記溝を埋めるように、第1の導電層を堆積する工程と、前記第1の導電層上に第2の導電層を堆積する工程と、前記第2の導電層上における前記溝の直上域の一部を含む領域にハードマスクを形成する工程と、前記ハードマスクをマスクとして前記第2の導電層をエッチングすることにより、前記ハードマスク及び前記第2の導電層を含む柱状体を形成する工程と、前記柱状体における前記溝の幅方向に面する2つの側面上に、電極加工側壁を形成する工程と、前記柱状体及び前記電極加工側壁をマスクとしてエッチングすることにより、前記第1の導電層における露出した部分の上部を除去し下部を残留させる工程と、前記電極加工側壁を除去する工程とを備える。 (もっと読む)


【課題】ドレイン電極とドレイン層とのコンタクト抵抗を低減できる半導体素子及び半導体素子の製造方法を提供する。
【解決手段】半導体素子は、第1導電型のドレイン層と、ドレイン層上に形成された第1導電型のドリフト層と、ドリフト層上に選択的に形成された第2導電型のベース層と、ベース層上に選択的に形成された第1導電型のソース層と、ゲート絶縁膜を介して、ドリフト層、ベース層及びソース層に跨って形成されたゲート電極と、ベース層及びソース層に電気的に接続されたソース電極と、ドリフト層を貫通して、底部の少なくとも一部がドレイン層にまで達する第1のトレンチ内に形成され、ドレイン層と電気的に接続されたドレイン電極と、を備え、底部には、凹凸が形成されている。 (もっと読む)


【課題】本発明の実施形態は、トレンチ構造におけるゲート・ソース間容量を低減できる半導体装置およびその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、第1導電形の半導体層と、前記半導体層の第1の主面側に設けられた第1主電極と、前記半導体層の第2の主面側に設けられた第2主電極と、前記半導体層の前記第1の主面側から前記第2の主面の方向に形成されたトレンチの内部に設けられ、前記第1主電極と前記第2主電極との間に流れる電流を制御する2つの第1制御電極と、前記トレンチの内部において、前記2つの第1制御電極と、前記第2の主面側の底面と、の間に設けられた第2制御電極と、を備える。前記2つの第1制御電極は、前記第1の主面に平行な方向に離間して設けられ、それぞれ第1の絶縁膜を介して前記トレンチの内面に対向し、前記第2制御電極は、第2の絶縁膜を介して前記トレンチの内面と対向する。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】本発明は、製造コストの増大を抑制しつつ、簡易な構成で、絶縁膜とさらに上部に形成された絶縁膜との界面の電荷を低減することができる半導体装置の製造方法の提供を目的とする。
【解決手段】本発明にかかる半導体装置の製造方法は、(a)SiC半導体を用いた基板を用意する工程と、(b)前記基板の表層部において、前記基板の素子領域を囲むように、リセス構造と前記リセス構造の下部にガードリング層とを形成する工程と、(c)前記ガードリング層を覆って、第1絶縁膜を形成する工程と、(d)前記第1絶縁膜を覆って、前記第1絶縁膜とは異なる材質の第2絶縁膜を形成する工程と、(e)前記第1絶縁膜上に蓄積する電荷とは逆電荷のイオンを、前記工程(d)の前、又は、前記工程(d)中、又は前記工程(d)の後に照射する工程とを備える。 (もっと読む)


【課題】超音波振動を利用したワイヤボンディングの際にオーミック電極が破壊されない炭化珪素半導体装置及びその製造方法を提供する。
【解決手段】本発明に係る炭化珪素半導体装置は、炭化珪素基板1と、炭化珪素基板1上に形成されたn型炭化珪素層2と、n型炭化珪素層2の表面近傍に形成されたp型不純物領域3と、p型不純物領域上に形成されたp型オーミック電極4と、p型オーミック電極4を覆うようにn型炭化珪素層2上に形成されたショットキー電極5と、を備え、p型オーミック電極4はp型不純物領域3の表面に設けられた凹部3a内に形成されており、p型オーミック電極の上面はn型炭化珪素層の表面2aよりも低い位置にある、ことを特徴とする。 (もっと読む)


【課題】低いオン抵抗を有するドリフト経路/ドリフト領域を有する、半導体素子、特にパワー半導体素子を提供する。
【解決手段】半導体基材100と、上記半導体基材100内の、半導体材料からなるドリフト領域2と、ドリフト領域2に対し、少なくとも部分的に隣り合って配置され、接続電極19を含む、半導体材料からなるドリフト制御領域3と、ドリフト領域2とドリフト制御領域3との間に配置された蓄積誘電体4と、第1素子領域8と、第1素子領域8との間にドリフト領域2が配置され、第1素子領域8から離れて配置された第2素子領域5と、ドリフト制御領域3の接続電極19および第1素子領域8の間に接続された容量性素子50とを含む。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】高歩留まりの薄型半導体装置の製造方法を提供する。
【解決手段】まず、半導体ウェハ10の第1の主面S1に、複数の素子領域3およびこの素子領域3にコンタクトする端子電極5を形成し、こののち半導体ウェハ10の第1の主面S1と対向する第2の主面S2を、半導体ウェハ10の外周縁部を残して、所望の厚さとなるまで、薄肉化する。そして、薄肉化された半導体ウェハ10の前記第2の主面S2に、金属層6を形成し、こののち、金属層6上に絶縁被膜7を形成し、最後に、半導体ウェハ10の素子領域3毎にダイシングラインD.L.に沿って分割することで、分断された個々の半導体装置を得るものである。 (もっと読む)


【課題】SiCやGaNなどの半導体材料を主要な半導体基板として用いた場合に、大電流を低オン電圧で流すことができ、高信頼性の逆耐圧特性を備えるワイドバンドギャップ逆阻止MOS型半導体装置を提供すること。
【解決手段】SiCのn-型のドリフト層1の一方の主面側に、p+型基板100と、該p+型基板100を貫通して前記n型のSiCのn-型のドリフト層1に達する複数の裏面トレンチ101と、該複数の裏面トレンチ101底部に前記n型のSiCのn-型のドリフト層1とショットキー接合を形成するチタン電極102とを備え、該ショットキー接合領域に対向する他方の主面側領域に、MOSゲート構造を含む活性領域200と、該活性領域200の外周を取り巻く耐圧構造領域203と、該耐圧構造領域203を取り巻き前記他方の主面から前記p+型基板100に達するとともに内部に絶縁膜21が充填されるトレンチ分離層20とを備える構造とする。 (もっと読む)


【課題】ゲート電極同士の間の突合わせ部を挟むように形成されたコンタクトプラグ同士が、当該突合わせ部の絶縁膜内に形成されたボイドを介してショートすることを防ぐ。
【解決手段】ゲート電極G2およびG5間の突合わせ部において対向するサイドウォールSW上には、ライナー絶縁膜6と層間絶縁膜7が形成されている。サイドウォールSW同士の間において、サイドウォールSWの側壁にそれぞれ形成されたライナー絶縁膜6を接触させてサイドウォールSW間を閉塞させることにより、層間絶縁膜7とライナー絶縁膜6の内部にボイドが発生することを防ぐ。 (もっと読む)


【課題】占有面積が小さく、高集積化、大記憶容量化が可能な半導体装置を提供する。
【解決手段】第1の制御ゲート、第2の制御ゲート及び記憶ゲートを有するトランジスタを用いる。記憶ゲートを導電体化させ、該記憶ゲートに特定の電位を供給した後、少なくとも該記憶ゲートの一部を絶縁体化させて電位を保持させる。情報の書き込みは、第1及び第2の制御ゲートの電位を記憶ゲートを導電体化させる電位とし、記憶ゲートに記憶させる情報の電位を供給し、第1または第2の制御ゲートのうち少なくとも一方の電位を記憶ゲートを絶縁体化させる電位とすることで行う。情報の読み出しは、第2の制御ゲートの電位を記憶ゲートを絶縁体化させる電位とし、トランジスタのソースまたはドレインの一方と接続された配線に電位を供給し、その後、第1の制御ゲートに読み出し用の電位を供給し、ソースまたはドレインの他方と接続されたビット線の電位を検出することで行う。 (もっと読む)


【課題】電気特性の変動が生じにくく、且つ電気特性の良好な半導体装置、およびその作製方法を提供することである。
【解決手段】基板上に下地絶縁膜を形成し、下地絶縁膜上に第1の酸化物半導体膜を形成し、第1の酸化物半導体膜を形成した後、第1の加熱処理を行って第2の酸化物半導体膜を形成した後、選択的にエッチングして、第3の酸化物半導体膜を形成し、第1の絶縁膜および第3の酸化物半導体膜上に絶縁膜を形成し、第3の酸化物半導体膜の表面が露出するように絶縁膜の表面を研磨して、少なくとも第3の酸化物半導体膜の側面に接するサイドウォール絶縁膜を形成した後、サイドウォール絶縁膜および第3の酸化物半導体膜上にソース電極およびドレイン電極を形成し、ゲート絶縁膜およびゲート電極を形成する。 (もっと読む)


【課題】半導体装置の高集積化を図り、単位面積あたりの記憶容量を増加させる。
【解決手段】半導体装置は、半導体基板に設けられた第1のトランジスタと、第1のトランジスタ上に設けられた第2のトランジスタとを有する。また、第2のトランジスタの半導体層は、半導体層の上側で配線と接し、下側で第1のトランジスタのゲート電極と接する。このような構造とすることにより、配線及び第1のトランジスタのゲート電極を、第2のトランジスタのソース電極及びドレイン電極として機能させることができる。これにより、半導体装置の占有面積を低減することができる。 (もっと読む)


【課題】製造工程数を大幅に増加することなく高性能な薄膜トランジスタを備えた薄膜トランジスタ回路基板、及び、薄膜トランジスタ回路基板の製造方法を提供する。
【解決手段】 絶縁基板上に配置されたゲート電極と、前記ゲート電極の上に配置されたゲート絶縁膜と、前記ゲート絶縁膜の上に配置されたポリシリコンによって形成され、前記ゲート電極の直上に位置するチャネル領域、前記チャネル領域に隣接するとともに前記チャネル領域よりも高濃度の不純物を含む低濃度不純物領域、及び、前記低濃度不純物領域に隣接するとともに前記低濃度不純物領域よりも高濃度の不純物を含む高濃度不純物領域を含む半導体層と、前記チャネル領域及び前記低濃度不純物領域の上に配置され、前記チャネル領域の直上の膜厚が前記低濃度不純物領域の直上の膜厚よりも厚い保護膜と、前記高濃度不純物領域に電気的に接続された電極と、を備えたことを特徴とする薄膜トランジスタ回路基板。 (もっと読む)


【課題】タングステン膜を使用した部分の抵抗を低減した半導体装置を提供する。
【解決手段】半導体装置の製造方法では、基板内に設けた開口部内、又は基板上にタングステン膜を形成する。タングステン膜の形成後、エッチバック又はエッチングを行う前にタングステン膜に対してアニール処理を行う。これにより、タングステン膜の結晶状態を変化させる。 (もっと読む)


【課題】ドレイン端側においてゲート絶縁膜の膜厚を増大させる構成のMOSトランジスタにおいて、オン抵抗を低減し、耐圧を向上させる。
【解決手段】高電圧トランジスタ10のゲート電極構造をチャネル領域CHを第1の膜厚で覆う第1のゲート絶縁膜12G1と、第1の膜厚よりも大きい第2の膜厚で覆う第2のゲート絶縁膜12G2とし、第1のゲート絶縁膜12G1上の第1のゲート電極13G1と、第2のゲート絶縁膜12G2上の第2のゲート電極13G2の構成とする。更に、第1のゲート電極13G1と前記第2のゲート電極13G2とは、前記第1のゲート絶縁膜12G1から延在する絶縁膜12HKで隔てられる。 (もっと読む)


【課題】DRAMセルとロジックを混載したLSIデバイスにおけるアスペクト比の大きいコンタクト構造において、素子分離絶縁膜および不純物拡散層のオーバエッチングを抑制して、接合リークを抑制することを課題とする。
【解決手段】周辺MOSトランジスタを覆う第1エッチングストッパ層121と、DRAMメモリセルのキャパシタ部上層に第2エッチングストッパ層122が形成され、周辺MOSトランジスタの不純物拡散層113は、第1、第2エッチングストッパ層121、122を貫通する電極層131により、上記キャパシタ部上層に形成された金属配線層と接続され、不純物拡散層113の少なくとも一つは素子分離絶縁膜102の境界上に電極層131を接続し、素子分離絶縁膜102上に形成された電極層131の底部の不純物拡散層113表面からの深さ寸法は、不純物拡散層113の接合深さ寸法もより短く形成されたものである。 (もっと読む)


【課題】本発明は、薄膜トランジスタのソース領域やドレイン領域へのコンタクトを確実
にした半導体装置を提供するものである。
【解決手段】本発明における半導体装置において、半導体層上の絶縁膜およびゲイト電極
上に形成された第1の層間絶縁膜と、前記第1の層間絶縁膜の上に形成された第2の層間
絶縁膜と、前記第2の層間絶縁膜、前記第1の層間絶縁膜、および前記絶縁膜に設けられ
たコンタクトホールとを有する。前記第1の絶縁層の膜厚は、前記積層の絶縁膜の合計膜
厚の1/3以下に形成する。 (もっと読む)


【課題】微細化されたN+型ソース層とソース電極のコンタクト抵抗が低減されたパワーMOSトランジスタの実現を図る。
【解決手段】N型ドリフト層2の表面にP型ボディ層6を形成し、該P型ボディ層6の表面にN+型ソース層7を形成する。N+型ソース層7上を被覆する層間絶縁膜8に第1のコンタクトホール9を形成し、N+型ソース層7の一部を露出する。第1のコンタクトホール9の底面に露出したN+型ソース層7の表面からP型ボディ層6内まで第2のコンタクトホール10を形成する。第2のコンタクトホール10の底面に露出したP型ボディ層6の表面にP+型コンタクト層11を形成する。第1のコンタクトホール9の底面にフォトリソグラフィ工程のマスク合わせ精度のばらつき幅より小さい幅のN+型層7aを形成し、第1、第2のコンタクトホール9、10内をタングステン層12等で埋設する。 (もっと読む)


21 - 40 / 423