説明

Fターム[5F033PP12]の内容

半導体集積回路装置の内部配線 (234,551) | 導電膜の成膜方法 (14,896) | CVD(化学的気相成長法) (3,065) | プラズマCVD (289)

Fターム[5F033PP12]に分類される特許

101 - 120 / 289


【課題】CVDによりTi膜を成膜する際に、より低抵抗でかつ抵抗のばらつきが小さいTi膜を成膜することができ、プラズマダメージを小さくすることができるTi膜の成膜方法を提供すること。
【解決手段】チャンバ内にシリコンウエハを配置し、TiClガスおよびHガスを含む処理ガスを導入しつつチャンバ内にプラズマを生成し、そのプラズマにより処理ガスの反応を促進してシリコンウエハ上にTi膜を成膜するにあたり、チャンバ内にシリコンウエハが配置された状態でTiClガスを導入した後、チャンバ内にプラズマを生成する。 (もっと読む)


【課題】配線抵抗を低下させて、均一かつ確実に動作させる透明薄膜トランジスタ及び画像表示装置を提供すること。
【解決手段】実質的に透明な基板と、基板上に実質的に透明な導電材料の第1の薄膜と金属材料の第2の薄膜とを2層以上積層して形成されたゲート配線と、ゲート配線上に形成された実質的に透明なゲート絶縁膜と、ゲート絶縁膜上に形成された実質的に透明な半導体活性層と、実質的に透明な半導体活性層を挟んで離間して形成された実質的に透明な導電材料の第5の薄膜と金属材料の第6の薄膜とを2層以上積層して形成されたソース配線と、実質的に透明な半導体活性層を挟み、ソース配線に離間して実質的に透明な導電材料の第7の薄膜で形成されたドレイン電極と、を備えることを特徴とする透明薄膜トランジスタ。 (もっと読む)


【課題】銅を主成分とするコンタクトプラグを有する半導体装置において、コンタクトプラグに隆起が発生することを防止する。
【解決手段】第1の層間絶縁膜102に、金属シリサイド層101に到達するコンタクトホール103を形成する工程(c)と、コンタクトホールの底面及び側壁に、高融点金属膜104を形成する工程(d)と、高融点金属膜上に、銅を主成分とする金属膜106Aを形成し、コンタクトホール内に、高融点金属膜を介して、金属膜が埋め込まれてなるコンタクトプラグ107を形成する工程(e)と、第1の層間絶縁膜及びコンタクトプラグの上に、第2の層間絶縁膜108を形成する工程(f)とを備え、工程(f)は、コンタクトプラグの表面に存在する酸素ガスを除去する工程(f1)と、工程(f1)の後に、コンタクトプラグの表面に存在する酸素ガスが除去された状態で、第2の層間絶縁膜を形成する工程(f2)とを含む。 (もっと読む)


【課題】 修正の領域、材料、あるいは種類等における適用範囲を大幅に拡大できる表示装置の修正方法およびその装置の提供。
【解決手段】 基板の表面にパターン欠陥を有する電子回路パターンが形成された表示装置の前記パターン欠陥を修正する修正装置であって、
前記パターン欠陥の領域に局所的なプラズマの照射によって前記パターン欠陥を修正するプラズマ照射手段を備えてなる。 (もっと読む)


ルテニウム(Ru)金属の堆積を半導体デバイスの製造に統合することで、銅(Cu)金属のエレクトロマイグレーション及びストレスマイグレーションを改善する方法が供される。本発明の実施例は、NHx(x≦3)ラジカル及びHラジカルによって、金属層及びlow-k誘電材料を含むパターニングされた基板を処理することで、前記low-k誘電材料に対する前記金属層上でのRu金属キャップ層の選択形成を改善する方法を有する。
(もっと読む)


【課題】絶縁体上にもグラファイト層を容易に形成することができる集積回路装置及びその製造方法を提供する。
【解決手段】絶縁基板1上に触媒層2を形成し、その上にサポート層3を形成しておく。触媒層2としてCo層を形成し、サポート層としてTiN層を形成する。これらは、例えばスパッタリング法により形成する。次いで、アセチレンを含む原料ガスを用いて熱CVD処理を行う。この結果、触媒層2が絶縁基板1及びサポート層3に挟み込まれているが、カーボン原料はサポート層3を透過して触媒層2まで到達するので、グラファイト11が絶縁基板1と触媒層2との間に成長する。 (もっと読む)


【課題】半導体装置の金属配線として用いられる銅層が塊状になるのを抑え、さらに拡散バリア層との密着性を向上させるため、改良された付着方法、又はメタライゼーション方法を提供する。
【解決手段】銅シード層とバリア層の間に密着促進層を被着する。コンピュータを用いたシミュレーションで銅膜の塊状化が起こる状況および銅層の密着性に関する評価を行い、密着促進層材料にクロム合金を用いることで、銅膜の密着性を著しく高める。さらにポリデンテートβ−ケトイミネートのクロム含有錯体を密着促進層材料のクロム合金を作るためのクロム含有前駆物質とする。 (もっと読む)


本発明の実施形態は、障壁層上にコバルト層を堆積させた後、コバルト層上に銅または銅合金などの導電材料を堆積させるプロセスを提供する。一実施形態では、基板表面上に材料を堆積させる方法であって、基板上に障壁層を形成するステップと、気相成長プロセス(たとえば、CVDまたはALD)中に基板をジコバルトヘキサカルボニルブチルアセチレン(CCTBA)および水素に露出させて障壁層上にコバルト層を形成するステップと、コバルト層を覆うように導電材料を堆積させるステップとを含む方法が提供される。いくつかの例では、障壁層および/またはコバルト層は、熱プロセス、インサイチュプラズマプロセス、または遠隔プラズマプロセスなどの処理プロセス中にガスまたは試薬に露出させることができる。
(もっと読む)


【課題】絶縁耐性を向上することが可能な半導体装置の製造装置を提供する。
【解決手段】半導体基板上に形成され、トレンチが形成された層間絶縁膜と、前記トレンチの内面に成膜された第1の拡散防止膜と、前記トレンチ内に前記第1の拡散防止膜を介して埋め込まれたCu配線層と、前記層間絶縁膜上および前記Cu配線層上に形成された第2の拡散防止膜と、前記Cu配線層と前記第2の拡散防止膜との間の第1の界面に形成され、Cuを主成分とする合金層と、Cu以外の前記合金層を構成する元素と同じ種類の元素が前記層間絶縁膜の上層部と反応して前記層間絶縁膜と前記第2の拡散防止膜との間の第2の界面に形成された前記第1の反応層と、Cu以外の前記合金層を構成する元素と同じ種類の元素が前記第2の拡散防止膜の下層部と反応して前記第1の界面および前記第2の界面に形成された第2の反応層と、を備える。 (もっと読む)


【課題】被処理体の凹部の径が小さくても、例えばバリヤ層として機能する薄膜が凹部の側壁へ堆積することを抑制しつつ、凹部の底部に効率的に堆積させることが可能な薄膜の成膜方法を提供する。
【解決手段】表面に凹部6が形成されている被処理体Wの表面に薄膜を形成する成膜方法において、凹部の内面を含む被処理体の表面にチタン化合物ガスと還元ガスとを用いてチタン膜100を形成するチタン膜形成工程と、窒化ガスを用いてチタン膜を全て窒化して第1の窒化チタン膜104を形成する窒化工程と、凹部の内面を含む被処理体の表面に第2の窒化チタン膜106を堆積させて形成する窒化チタン膜堆積工程と、を有する。これにより、被処理体の凹部の径が小さくても、薄膜が凹部の側壁へ堆積することを抑制しつつ、凹部の底部に効率的に堆積させる。 (もっと読む)


【課題】配線抵抗の面内ばらつきを低減することが可能な半導体装置の製造方法を提供する。
【解決手段】低誘電率膜101上にキャップ絶縁膜102を形成し、キャップ絶縁膜および低誘電率膜の上部をエッチングして、配線層105aを形成する領域にキャップ絶縁膜を貫通して低誘電率膜にトレンチ103を形成する。トレンチ内およびキャップ絶縁膜上に、バリアメタル膜104と導電性材料を成膜する。バリアメタル膜をストッパとして導電性材料を第1のCMPにより平坦化する。次に、導電性材料に対する濡れ性が低誘電率膜に対する濡れ性よりも高いスラリーを用いた第2のCMPにより、導電体層、バリアメタル膜およびキャップ絶縁膜を研磨する。このとき、キャップ絶縁膜は途中まで研磨する。残ったキャップ絶縁膜をエッチング除去する。この後、バリア膜、層間絶縁膜を形成する。 (もっと読む)


【課題】多層配線構造における硼窒化ジルコニウム膜のパーティクルレベルを低減させて、また当該硼窒化ジルコニウム膜の耐酸化性や抵抗選択性を向上させることで半導体装置の信頼性を向上させた半導体装置の製造装置及び半導体装置の製造方法を提供することを目的とする。
【解決手段】窒素ガスにマイクロ波を照射することで生成した窒素ラジカルと成膜流量のZr(BHとを成膜室31Sへ供給して成膜温度下にある基板Sの表面に硼窒化ジルコニウム膜を成膜するに際し、成膜装置は、成膜流量のZr(BHが熱分解により形成する膜の成膜速度に関して成膜温度の増加に対するその成膜速度の増加率を基準増加率とすると、硼窒化ジルコニウム膜の成膜速度に関しては成膜温度の増加に対するその成膜速度の増加率を前記基準増加率にする。 (もっと読む)


【解決手段】 パターニングされた金属フィーチャの上方に誘電体エッチストップ層を選択的に形成する方法を開示する。実施形態には、当該方法に従って形成されたエッチストップ層をゲート電極の上方に設けているトランジスタが含まれる。本発明の特定の実施形態によると、ゲート電極の表面上に金属を選択的に形成して、当該金属をケイ化物またはゲルマニウム化物に変換する。他の実施形態によると、ゲート電極の表面上に選択的に形成された金属によって、ゲート電極の上方にシリコンまたはゲルマニウムのメサを触媒成長させる。ケイ化物、ゲルマニウム化物、シリコンメサ、またはゲルマニウムメサの少なくとも一部を酸化、窒化、または炭化して、ゲート電極の上方にのみ誘電体エッチストップ層を形成する。 (もっと読む)


【課題】高い電流密度を持つカーボンナノチューブを利用した半導体素子の配線形成方法、およびその方法により製造される超高集積度の半導体素子を提供する。
【解決手段】半導体素子の電極120表面を前処理して活性化させる段階と、電極の活性化した表面122上に絶縁層130を形成した後、電極の活性化した表面の一部を露出させるために絶縁層を貫通するコンタクトホール132を形成する段階と、コンタクトホールを通じて電極の活性化した表面に炭素が含まれているガスを供給して前記電極の活性化した表面からカーボンナノチューブ140を成長させて配線を形成する段階と、を具備する半導体素子の配線形成方法およびその方法により製造された半導体素子。 (もっと読む)


【課題】 ビア開口の下部分を多層ライナで内側を覆うことにより強化したエレクトロマイグレーション耐性を有する相互接続構造体を提供する。
【解決手段】 多層ライナは、誘電体材料のパターン付けされた表面から外側に、拡散障壁、マルチ材料層、及び金属含有ハード・マスクを含む。マルチ材料層は、下層の誘電体キャッピング層からの残留物からなる第1材料層と、下層の金属キャッピング層からの残留物からなる第2材料層とを含む。本発明はまた、誘電体材料内に形成されたビア開口の下部分内に多層ライナを含む相互接続構造体を形成する方法を提供する。 (もっと読む)


【課題】三次元半導体装置における特性を向上させることができる製造方法および装置構成を提供する。
【解決手段】第1半導体膜(9)上にカーボンナノチューブを備えるプラグ電極(15)を形成する工程、形成されたプラグ電極(15)の周囲に層間絶縁膜(16,18)を形成する工程、層間絶縁膜の表面を平滑化してプラグ電極(15)の頂部を露出させる工程、層間絶縁膜およびプラグ電極の頂部上に非晶質の第2半導体膜を形成する工程、非晶質の第2半導体膜にエネルギーを供給して露出したプラグ電極(15)を触媒として機能させて非晶質の第2半導体膜を結晶化させ結晶化した第2半導体膜(23)とする工程を備える。 (もっと読む)


【課題】 キーホール・シームの形成を排除した信頼性が高い高アスペクト比のコンタクト構造体を含む半導体構造を提供する。
【解決手段】 キーホール・シームの形成は、本発明においては、誘電体材料内部に存在する高アスペクト比のコンタクト開口部内に高密度化貴金属含有ライナを設けることによって排除される。高密度化貴金属含有ライナは拡散バリアの上に配置され、これら両方の要素は、本発明のコンタクト構造体の導電性材料を、下層の半導体構造体の導電性材料から分離する。本発明の高密度化貴金属含有ライナは、第1の抵抗率を有する貴金属含有材料の堆積、及び、堆積した貴金属含有材料の抵抗率をより低い抵抗率に減少させる高密度化処理プロセス(熱又はプラズマ)を、堆積した貴金属含有材料に施すことによって形成される。 (もっと読む)


【課題】半導体装置の配線構造の信頼性を高める。
【解決手段】半導体装置は、素子103a,103bが形成された半導体基板101と、半導体基板101上に設けられた、少なくとも1層の金属層118及び水素含有ガスを原料ガスとしたプラズマCVD法により形成された第1の膜123を有する配線構造と、前記金属層118と非接触に前記半導体基板101上に形成されたTiNx(但し、0≦x)からなる第2の膜120とを具備する。 (もっと読む)


【課題】 優れたコンタクト特性及び優れた素子特性を持った薄膜半導体装置及びその製造方法を提供すること。
【解決手段】 透明絶縁性基板上に形成され、所定の間隔を隔てて不純物を含むソース領域ドレイン領域を有する島状半導体層、前記ソース領域及びドレイン領域の間の島状半導体層上に形成されたゲート絶縁膜、前記ゲート絶縁膜上に形成されたゲート電極、前記島状半導体層及びゲート電極を覆う層間絶縁膜、前記ソース領域及びドレイン領域にそれぞれ接続する、前記層間絶縁膜に形成されたコンタクト孔内にそれぞれ埋め込まれた不純物を含む多結晶半導体層、及び前記多結晶半導体層に接続する高融点金属層を含む配線層を具備し、前記多結晶半導体層と配線層の高融点金属層との間には、高融点金属と半導体との化合物からなる薄層が形成されていることを特徴とする。 (もっと読む)


サブリソグラフィック寸法又は高アスペクト比を含む小寸法を有する開口内に均一で均質に電極材料を形成する方法を提供する。この方法は、内側に形成された開口を有する絶縁層を提供し、開口上及び開口内に均質な導電又は準抵抗材料を形成するステップを含んでいる。この方法は、金属窒化物、金属アルミニウム窒化物及び金属ケイ素窒化物電極組成を形成するCLD又はALDプロセスである。この方法は、アルキル、アリル、アルケン、アルキン、アシル、アミド、アミン、イミン、イミド、アジド、ヒドラジン、シリル、アルキルシリル、シリルアミン、キレーティング、ヒドリド、サイクリック、カルボサイクリック、シクロペンタジエニル、ホスフィン、カルボニル又はハライドから選択された1以上のリガンドを含む金属前駆体を利用する。公的な前駆体は、一般式MRnを有し、Mは金属、Rは上述のリガンド、nは主要な金属原子に結合したリガンドの数に対応している。Mは、Ti、Ta、W、Nb、Mo、Pr、Cr、Co、Ni又は他の遷移金属である。
(もっと読む)


101 - 120 / 289