説明

Fターム[5F045AB18]の内容

気相成長(金属層を除く) (114,827) | 成長層の組成 (12,584) | 3−5族 (4,971) | 4元混晶 (505)

Fターム[5F045AB18]に分類される特許

101 - 120 / 505


【課題】簡便な手法によってエピタキシャル基板の障壁層表面の平坦性を向上させ、ショットキーコンタクト特性の優れたエピタキシャル基板を実現する方法を提供する。
【解決手段】半導体素子用のエピタキシャル基板を製造する方法が、下地基板の上に、少なくともGaを含む、Inx1Aly1Gaz1N(x1+y1+z1=1)なる組成の第1のIII族窒化物からなるチャネル層をエピタキシャル形成するチャネル層形成工程と、チャネル層の上に、少なくともInとAlを含む、Inx2Aly2Gaz2N(x2+y2+z2=1)なる組成の第2のIII族窒化物からなる障壁層をエピタキシャル形成する障壁層形成工程と、障壁層形成工程における加熱温度よりも100℃以上250℃以下高い加熱温度で障壁層が形成された下地基板を加熱することにより、障壁層の表面平坦性を向上させる平坦化処理工程と、を備える。 (もっと読む)


【課題】基板上に成長結晶層の膜厚均一性を向上させることができ、歩留まりが高い気相成長装置を提供する。
【解決手段】基板15を支持する底面サセプタ部14aと、サセプタ14a,bの上面に沿って流れる材料ガス流を供給するノズル11と、を含む。サセプタ14a,bは、それぞれが基板と同一材料からなる、底面サセプタ部14aの上面に基板に嵌合する凹状の基板保持部を画定する外周サセプタ部14bとサセプタ14a,bの裏面を画定する底面サセプタ部14aとから構成されていること、外周サセプタ部14bは、基板15の上面と同一平面となる基板保持部を囲む上面を有しかつ、基板保持部を囲む上面が基板の上面の結晶面方位と同一の結晶面方位を有する。 (もっと読む)


【課題】比較的小さい膜厚で結晶性の良いIII族窒化物半導体の結晶を成長させることができるIII族窒化物半導体の成長方法を提供する。
【解決手段】本発明のIII族窒化物半導体の成長方法は、基板(10)上に、III族窒化物半導体の結晶核(40)を島状に形成する第1の工程と、窒素源ガスを供給しながら珪素源ガスとIII族源ガスを交互に供給することにより、前記結晶核(40)を島状に成長させる第2の工程と、該第2の工程後、窒素源ガスとIII族源ガスを供給し、前記島状の結晶核(40)からIII族窒化物半導体を各々成長させ、層状のIII族窒化物半導体(45)を形成する第3の工程と、を具備することを特徴とする。 (もっと読む)


【課題】サセプタとテーパ状の管フローブロックとを含むテーパ状の水平成長チャンバを有する、堆積を実行するためのシステム及び技術である。
【解決手段】テーパ状のチャンバは、サセプタとテーパ状の管フローブロックの間に形成される。導入されたガス種は、テーパ状の管ブロックによってサセプタに向かって流れることを強いられ、ガス種とサセプタ上のウエハとの間の反応効率を高める。 (もっと読む)


【課題】リーク電流が抑制された窒化物半導体、及び該窒化物半導体を備えた半導体素子を提供する。
【解決手段】Al原子,Ga原子及びIn原子から選択される1以上の金属原子と窒素原子とを少なくとも含むと共に、結晶面に対して垂直な転位線を持つらせん転位を有し、前記らせん転位の転位芯に相当する領域に位置された前記金属原子または窒素原子のうちの少なくとも一部が炭素原子で置換されている窒化物半導体である。 (もっと読む)


【課題】ウェーハ面内全域にて凹凸加工された構造を埋め込み成長可能であり、かつ、凹凸形状によらない安定した埋め込み平坦化が可能なIII−V族化合物半導体の気相成長方法を提供する。
【解決手段】III−V族化合物半導体基板の表面に形成された規則的な凹凸を有する四元系III−V族化合物半導体層の上に、有機金属気相成長法を用いて、上記凹凸の熱変形を抑制する保護膜となるIII−V族化合物半導体層を、第一の成長温度で所定の膜厚となるまでエピタキシャル成長させた後、上記第一の成長温度よりも高い第二の成長温度で連続して同一組成の半導体層を、トータルの厚さが上記凹凸の高さよりも大きくなるまで成長させるようにした。 (もっと読む)


【課題】高移動度と高耐圧を両立し、かつ大電流動作が可能なIII族窒化物半導体を用い
た半導体素子を提供する。
【解決手段】半導体素子は、III族窒化物系化合物半導体からなり、シートキャリア密度
が、1×1012cm−2以上5×1013cm−2以下である半導体動作層と、前記半
導体動作層上に形成された第1の電極及び第2の電極とを備え、前記半導体動作層におけ
る転位密度が1×10cm−2以上、5×10cm−2以下であることを特徴とする
(もっと読む)


【課題】エピタキシャル成長用基板上に直接GaN系半導体厚膜層を成長させるGaN系半導体基板の製造方法により、GaN系半導体基板を生産性よく製造できる技術を提供する。
【解決手段】900℃〜1050℃の成長温度で窒化物系化合物半導体層を直接エピタキシャル成長させる際に、成長温度までの昇温プロセスにおいて表面粗さが10nmを超えて劣化しないエピタキシャル成長用基板を用いる。
具体的には、1200℃以上1400℃以下で5〜20時間保持するインゴットアニール処理を施されたNGO基板を用いる。 (もっと読む)


【課題】低温保護層の成長プロセスを省略でき、GaN系半導体基板の製造コストを低減できるとともに、低温保護層の品質のばらつきによる影響を排除できる窒化物系化合物半導体基板の製造方法を提供する。
【解決手段】平均表面粗さが0.2〜10nmに制御された成長用基板上に、窒化物系化合物半導体層をエピタキシャル成長させる。例えば、成長用基板をエピタキシャル成長装置に投入した後、成長用基板の平均表面粗さが0.2〜10nmとなるようにアニール処理を施す。 (もっと読む)


【課題】気相成長装置の成長室内の基板以外の部分へのGa含有窒化物の随伴的な付着、特に厚膜形成を行いたい場合の当該Ga含有窒化物の随伴的な付着を防止することにより当該付着による様々な問題を解消し、且つ基板上へのGa含有窒化物半導体の成長が阻害されることなく、生産性が高いGa含有窒化物半導体の製造方法を提供する。
【解決手段】ガリウム化合物を含む第一ガスと、窒素化合物を含む第二ガスを、気相成長装置の成長室内へ供給して、成長室内に設置した基板上にGa含有窒化物半導体を成長させるGa含有窒化物半導体の製造方法であって、第一ガス及び第二ガスを成長室内へ供給している期間において、平均の成長速度が66μm/h以上となるように、特定の供給量となるHClガスを含む第三ガスを前記第一ガスの供給口とは別の供給口から前記成長室内へ供給することを特徴とするGa含有窒化物半導体の製造方法。 (もっと読む)


【課題】 窒化物半導体デバイスを提供する。
【解決手段】 一実施形態では、デバイスはIII族窒化物チャネル層(3)とIII族窒化物チャネル層(3)上のIII族窒化物障壁層(4)とを含み、III族窒化物障壁層(4)は第1部分(4−1)と第2部分(4−2)とを含み、第1部分(4−1)は第2部分(4−2)より薄い厚さを有する。pドープIII族窒化物ゲート層部(5)は、III族窒化物障壁層(4)の少なくとも第1部分(4−1)上に配置され、ゲートコンタクト(10)はpドープIII族窒化物ゲート層部(5)上に形成される。 (もっと読む)


【課題】凹凸を有する基板上に均一な結晶を成長させる結晶成長方法を提供する。
【解決手段】凹凸が設けられた主面を有する基板の前記主面に窒化物半導体の結晶を成長させる結晶成長方法であって、前記主面に、GaAl1−xN(0.1≦x<0.5)を含み、厚さが20ナノメートル以上50ナノメートル以下のバッファ層を、0.1マイクロメートル/時以下の速度で堆積し、前記バッファ層の上に、前記バッファ層の堆積における前記基板の温度よりも高い温度で、窒化物半導体を含む結晶を成長させる。このように、バッファ層の堆積レートRtとバッファ層の平均の厚さTを適切に管理することにより、バッファ層の上に形成された窒化物半導体結晶の表面モフォロジーの良好な平坦性が実現できるとともに、結晶欠陥であるピット発生数Npをきわめて小さくすることができる。 (もっと読む)


【課題】 窒化物半導体結晶膜を均一成長させることが出来る窒化物半導体結晶膜成長装置を提供する。
【解決手段】 窒化物半導体結晶膜成長装置は、内部の温度及び圧力を制御可能なチャンバと、前記チャンバ内において回転軸で支持され、成長基板を設置するためのサセプターと、前記サセプター上の成長基板に対して、前記成長基板表面と水平方向に原材料ガスを噴射する原材料ガス供給手段と、前記サセプター上の成長基板の上方から、前記成長基板表面に対して三次元方向45°〜90°の傾斜角度で、前記原材料ガスの噴射方向と同一面内方向に向けて、前記原材料ガスを押圧する第1の押圧ガスを噴射する第1の押圧ガス供給手段と、前記サセプター上の成長基板の上方から、前記成長基板表面に対して三次元方向45°〜90°の傾斜角度で、前記成長基板端部における前記原材料ガスを除去する第2の押圧ガスを噴射する第2の押圧ガス供給手段と、前記チャンバ内から排気ガスを搬出する排気手段とを有する。 (もっと読む)


【課題】ノーマリオフ特性が安定的に得られる窒化物半導体装置を提供すること。

【解決手段】基板1と、基板1上に形成され、且つ、ヘテロ接合界面22aを有する窒化物半導体層2と、窒化物半導体層2に形成されたリセス3と、を備える窒化物半導体装置であって、
窒化物半導体層2は、基板1上に形成されたAlx1Inx2Ga1−x1−x2N(0≦x1<1、0≦x2≦1、0≦(x1+x2)≦1)からなるキャリア走行層22と、キャリア走行層22上に形成されたAlyGa1−yN(0<y≦1、x1<y)からなる第1の層231、第1の層231上に形成されたGaNからなる第2の層232、及び、第2の層上に形成されたAlzGa1−zN(0<z≦1、x1<z)からなる第3の層233を有するキャリア供給層23と、を備え、
凹部3は、第3の層233を貫通し、凹部底面31において第2の層232の主面が露出するように形成される。 (もっと読む)


【課題】結晶性を良好に維持するとともに、成長させる結晶の面積を大きくする結晶成長方法、結晶基板、および半導体デバイスを提供する。
【解決手段】結晶成長方法によれば、複数の種基板10を、種基板10の成長する面が{001}面となるように種基板10の側部11側にずらして配置する配置工程と、ハイドライド気相成長法により、複数の種基板10の各々の表面12上にAlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)結晶20を成長させる成長工程とを備えている。そして、成長工程では、複数の種基板10の各々の表面12上に成長した結晶20の各々が一体化するように1100℃を超えて1300℃以下の温度で成長させることを特徴としている。 (もっと読む)


本発明は、電子デバイス用の、好ましくは、光電子デバイス用の、電流遮断構造を提供する。電流遮断構造が、n−型ルテニウムドープリン化インジウム(Ru−InP)層を備えた半導体材料配列と、第1p−型半導体材料層と、を備え、n−型Ru−InP層が、0.6μm未満の厚さである。半導体材料配列と、p−型半導体材料層と、が、電流遮断p−n接合を形成する。電流遮断構造が、他のn−型層および/または多数のn−型Ru−InP層および/または真性/ドープされていない層をさらに備えてよく、n−型Ru−InP層が、0.6μmよりも厚くてよい。
(もっと読む)


【課題】ハンドリング時やデバイスプロセス時に基板の欠けや割れが発生し難い半導体デバイスの製造方法を提供する。
【解決手段】エッジ部が面取りされた半導体基板1の少なくとも表面および表面側の前記エッジ部を覆うように保護層2を形成する保護層形成工程と、この保護層形成工程の後に、半導体基板1の表面に形成された保護層2の一部の領域を除去する工程とを含む。保護層2は、半導体基板1の裏面および裏面側のエッジ部も覆うように形成する。 (もっと読む)


エンハンスメント・モードGaN MOSFET(100)が、AlGaN(又はInAlGaN)障壁層(118)上のSiO/Siゲート絶縁層(124)を用いて形成される。SiO/Siゲート絶縁層(124)のSi部分(120)は、ゲート絶縁層(124)と障壁層(118)との間の接合での界面準位の形成を低減させ、SiO/Siゲート絶縁層(124)のSiO部分(122)は、漏れ電流を著しく低減させる。

(もっと読む)


【課題】安全かつ簡単に、効率よく反応生成物を除去することができるMOCVD装置のクリーニング方法を提供する。
【解決手段】ヒ素(As)原子又はリン(P)原子を含む原料ガスを使用してGaAs、GaInP、AlGaInP、AlGaAsなどのIII-V族化合物半導体材料の成膜を行うMOCVD装置の反応炉12や排気管15の内面に付着した反応生成物を除去するMOCVD装置のクリーニング方法において、クリーニングガスとしてアミン系ガス又は反応炉内でアミン系ガスに変化するガスと水素ガスとを前記反応炉内に供給して反応生成物を除去する。 (もっと読む)


【課題】十分な導電性を付与したIII族窒化物結晶を短時間で成長可能とする。
【解決手段】III族のハロゲン化物ガスとNHガスを用いてIII族窒化物結晶を下地基板上に450μm/hourよりも大きく2mm/hour以下の範囲の成長速度で成長する場合において、ドーピング原料としてGeClを用いることによりIII族窒化物結晶
中にGeをドーピングし、III族窒化物結晶の比抵抗が1×10−3Ωcm以上1×10
−2Ωcm以下となるようにする。 (もっと読む)


101 - 120 / 505