説明

Fターム[5H026BB03]の内容

燃料電池(本体) (95,789) | 製造方法、処理方法 (13,294) | 浸漬、含浸、乾燥 (1,299)

Fターム[5H026BB03]に分類される特許

61 - 80 / 1,299


【課題】貴金属担持極細炭素繊維綿状体の製造方法。
【解決手段】以下(1)〜(6)の工程よりなる貴金属担持極細炭素繊維綿状体の製造方法。(1)熱可塑性樹脂と、レーヨン、ピッチ、ポリアクリロニトリル、等々から選ばれる少なくとも1種の熱可塑性炭素前駆体繊維を形成する。(2)溶剤により熱可塑性樹脂を溶解除去して熱可塑性炭素前駆体繊維とし、その分散液を作製する。(3)前記熱可塑性炭素前駆体繊維が分散した溶液を冷媒中に滴下させ、熱可塑性炭素前駆体繊維が分散した凍結体を作製する。(4)前記凍結体を凍結乾燥させることにより、熱可塑性炭素前駆体繊維から成る低密度構造体を形成させる。(5)前記低密度構造体を不融化処理した後、炭素化または黒鉛化し、極細炭素繊維綿状体を得る工程。(6)前記極細炭素繊維綿状体を、貴金属化合物溶液に浸漬させ、還元剤を添加することにより、極細炭素繊維綿状体の表面に貴金属を担持させる工程。 (もっと読む)


【課題】 電解質膜に電極層を塗工してなる膜電極接合体に皺が発生するのを防止することができる燃料電池用膜電極接合体の製造装置を提供する。
【解決手段】 固体高分子の電解質膜2に溶媒としてアルコールを含む電極ペースト1を塗工して電極層を形成する燃料電池用膜電極接合体の製造装置であって、電極ペースト1が塗工された電解質膜2が変形しないように固定すると共に電解質膜2を乾燥させる3つの第1固定ローラ3と、これらの第1固定ローラ3により送り出された電解質膜2が変形しないように固定すると共に電解質膜2に水分を吸収させる2つの第2固定ローラ4と、これらの固定ローラ3,4の間などに配設された6つの小径のローラ5などを備えてなる。水分の電解質膜2への吸収は、常温環境下で放置することにより行う。なお、作業環境の湿度を30%〜60%に調整しておくことが好ましい。 (もっと読む)


【課題】高い電気伝導度を有し、しかも反応の制御が比較的容易で、量産も可能な固体高分子電解質膜及びその製造方法を提供すること。
【解決手段】プレポリマを溶媒に溶解若しくは分散させたプレポリマ溶液、又は、前記プレポリマを溶融させたプレポリマ融液を用いて前駆体膜を作製する膜化工程と、前記前駆体膜内にある前記プレポリマ間を直接、又は、膜化と同時に若しくは膜化後に前記前駆体膜内に導入された架橋剤を介して架橋させる架橋工程とを備えた固体高分子電解質膜の製造方法、及び、このような方法により得られる固体高分子電解質膜。 (もっと読む)


【課題】固体高分子膜型燃料電池用の、ポリプロピレン系等の撥水性の熱可塑性樹脂をバインダとして使用した、表面が親水性のセパレータとその製造方法を提供する。
【解決手段】 セパレータの金型の、セパレータのガス流路を設けた片側表面に対応する表面に水溶性物質を塗布する工程(S101)と、導電性カーボンと、疎水性のバインダ樹脂とを混合してなる成型材料を金型に投入する工程(S102)と、金型を加熱加圧プレス成型してバインダ樹脂を溶融させ、成型材料を金型に充填する工程(S103)と、金型を冷却して金型に充填された成型材料を固化してセパレータとする工程(S104)と、セパレータを金型から取り出す工程(S105)と、金型から取り出したセパレータを加熱水で洗浄する工程(S106)と、セパレータを乾燥、拭取る工程(S107)と、を順に含むセパレータの製造方法。 (もっと読む)


【課題】生産性及び歩留率が高く、且つ、薄型化が可能な燃料電池及びその製造方法を提供する。
【解決手段】燃料電池100は、多孔質領域4及びシリコン領域3を有し、且つ、前記多孔質領域3に、触媒金属が担持された第1の多孔質金属領域8Aと、多孔質プロトン伝導領域6と、触媒金属が担持された第2の多孔質金属領域8Bと、をこの順で備えたシリコン基体2と、第1の多孔質金属領域8Aと接合する第1の集電層12と、第2の多孔質金属領域8Bと接合する第2の集電層14と、を備えている。 (もっと読む)


【課題】セパレータの使用環境下で接触抵抗を低く保持でき、また耐久性にも優れた固体高分子形燃料電池用セパレータを提供する。
【解決手段】金属板の表面に、SnOとNi3Sn4の薄膜X線回折ピーク強度比SnO/Ni3Sn4が0.046以下を満足するNi3Sn4系皮膜を形成する。 (もっと読む)


【課題】燃料電池に用いられる電解質膜の欠損部の発生を抑制する技術を提供する。
【解決手段】電解質ポリマー膜1fを準備し、電解質ポリマー膜1fの外表面に、電解質ポリマー溶液を塗布して乾燥させることにより、電解質ポリマー1sを補充する。そして、電解質ポリマー膜1fと、補充された電解質ポリマー1sとを加熱溶融して一体化させる。その後、電解質ポリマー膜1fに対して加水分解処理を施すことにより、イオン伝導性を付与して、電解質膜10とする。 (もっと読む)


【課題】燃料電池に用いるプレートアセンブリ及びそれを用いた燃料電池を提供する。
【解決手段】燃料電池に用いるプレートは、第一反応表面と第一冷却表面を含むプレートであり、第一反応表面は、第一流体を受け入れる第一流体入口と、ほぼ第一方向に延伸し、第一流体を輸送する複数の第一流路と、第一流体を排出する第一流体出口とを有しており、第一冷却表面は、第一冷却液を受け入れる第一冷却液入口と、ほぼ第一方向に延伸し、第一冷却液を輸送する複数の第二流路と、第一冷却液を排出する第一冷却液出口とを有している。第一流体入口と第一冷却液出口は、プレートの第一側辺近くに位置し、第一流体出口と第一冷却液入口は、プレートの第二側辺近くに位置する。プレートの第二側辺は、第一側辺と反対側にある。第一及び第二の流路のそれぞれは、ほぼ同一長さである。 (もっと読む)


【課題】燃料拡散性の向上を図ることができ、慣らし運転の期間を短縮しても、燃料電池の安定化を図り、低コストで燃料電池を製造することができる燃料電池の製造方法を提供すること。
【解決手段】
電解質層5および電解質層5に積層されるアノード電極6を備える膜・電極接合体2と、膜・電極接合体2に積層されるアノード側拡散層8とを備える単位セル16を有する燃料電池1の製造において、まずアノード側拡散層8を水に浸漬し、その後膜・電極接合体2に接触するようにアノード側拡散層8を積層する。この燃料電池1の製造方法ではアノード側拡散層8を水に浸漬するため、最初の運転時からアノード側拡散層8の液体燃料に対する親和性を確保し、優れた燃料拡散性を確保することができる。そのため、このような燃料電池1の製造方法によれば、慣らし運転の期間を短縮しても燃料電池1の安定化を図ることができる燃料電池1を低コストで製造することができる。 (もっと読む)


【課題】第2触媒層4bを形成する際に第2形状保持フィルム3が膨らむことを抑えることができる膜−触媒層接合体の製造方法を提供する。
【解決手段】第2形状保持フィルム3として蒸気排出用の孔3aを設けた形状保持フィルムを用い、当該孔3aが第1触媒層4a上に位置するように第2形状保持フィルム3を高分子電解質膜1に貼り付ける。 (もっと読む)


【課題】三相界面の面積が大きく触媒粒子表面利用率が高い、燃料電池用電極の製造方法を提供する。
【解決手段】燃料電池用電極の製造方法は、電解質前駆体溶液を調製する工程と、炭素粒子からなる多孔体S11と触媒粒子で構成される触媒多孔構造体に電解質前駆体を塗布する工程S12と、触媒多孔構造体に塗布された電解質前駆体を重合することで上記多孔構造体中において電解質層を形成する工程S13と、を有する。高分子電解質が導入できない細孔構造中の触媒粒子近傍まで、低分子状態の電解質前駆体は隈無く配置され、その後重縮合反応を経由した電解質前駆体の高分子量化が進行し、プロトン輸送パスとなる電解質層を触媒粒子近傍まで高密度高分散形成することができるので、三相界面の面積が大きくなり、触媒粒子表面利用率が高くなる。 (もっと読む)


【課題】固体高分子電解質膜の膜外縁部に枠体を設けた膜電極接合体において、電解質膜と枠体との間の接合性を高め、燃料電池の使用環境下においても、その界面における破損を防ぎ、電解質を保護する効果を持続する。
【解決手段】アノード触媒層13(アノード)と、カソード触媒層15(カソード)と、イオン伝導性の固体高分子電解質膜14と、非イオン伝導性の多孔質樹脂基材で形成された枠体104とを含み、固体高分子電解質膜14は、アノードとカソードとの間に挟まれた構成であり、アノード及びカソードは、固体高分子電解質膜14よりも面積を狭くしてあり、枠体104は、固体高分子電解質膜14の膜外縁部に付設してあり、枠体104のうち膜外縁部と接する電解質膜接着部(電解質含有層105)には、電解質樹脂が含浸してあり、枠体104の電解質膜接着部以外の部分は、バリア層106を有し、電解質膜接着部と比べて燃料透過性および酸化剤透過性が低い膜電極接合体を用いる。 (もっと読む)


【課題】プロトン伝導性が向上した、そして量産性が向上した燃料電池用塩基性ポリマーと強酸との複合高分子電解質膜を提供する。
【解決手段】ポリベンゾイミダゾール等の塩基性ポリマーを、前記塩基性ポリマーのポリマー繰り返し単位当たり6個以上の強酸分子を含浸させるのに十分な濃度の強酸に、30℃以上の温度にて5時間以下、浸漬させる工程を含むことを特徴とする高分子電解質膜12の製造方法並びに、前記高分子電解質膜を有する燃料電池とする。 (もっと読む)


【課題】電池セルとフレームとの間のシール性を向上できる固体電解質燃料電池を提供する。
【解決手段】電解質膜16の一方の面にカソード14、他方の面にアノードアノード12を備えるセル11と、セル11が収納されたセルフレーム51と、セル11の外周面11aとセルフレーム51との間をシールするシール部58と、を有し、セル11は、アノード12がカソード14よりも厚く形成され、セルフレーム51は、セル11の外周面11aからアノード14に亘ってセル11を収容する収容部54を備え、シール部58は、セル11の外周面11aを収容部54に対してセラミック接着剤56で固定し、セラミック接着剤56にガラス粒子を分散したガラス封着材57を、カソード14側からカソード14の厚さ以上に染み込ませ、熱処理することにより、セル11の外周面11aとセルフレーム51との間をシールしたことを特徴とする。 (もっと読む)


【課題】本発明は、液体燃料のクロスオーバー現象の抑制及び化学的安定性に優れ高濃度のアルコールを燃料とすることが可能なアニオン型燃料電池の電解質膜並びにそれを用いた膜電極接合体及び直接型アルコール燃料電池を提供することを目的とするものである。
【解決手段】木材を厚さ10mm以下の薄板状に形成した基体と、基体の内部及び表面に生成されたアニオン型無機イオン交換体を備えた電解質膜1と、電解質膜1の両側にそれぞれ接合する一対の電極体2及び3とを備えた膜電極接合体Aを、空気極セパレータ4及び燃料極セパレータ5で挟持し、空気極側プレート6及び燃料極側プレート7で圧接保持して直接型アルコール燃料電池を構成した。 (もっと読む)


【課題】サクションローラの吸着面に吸着された電解質膜の表面に触媒電極層を形成して、触媒被覆膜を製造する技術において、比較的簡易な構成で、サクションローラの吸着力を向上させる。
【解決手段】触媒被覆膜製造装置100は、帯状の電解質膜Smを、吸着面に吸着しつつ、回転して搬送するサクションローラ30と、サクションローラ30の吸着面に吸着された電解質膜Smの表面に触媒ペーストを塗布する触媒ペースト塗布器70と、サクションローラ30の吸着面における、電解質膜Smが吸着されていない非被覆領域Dncの少なくとも一部に、この非被覆領域Dncの少なくとも一部を覆うためのカバーフィルム56を吸着させるカバーフィルム吸着機構(懸架ローラ50,52,54,カバーフィルム56)と、を備える。 (もっと読む)


【課題】電解液が染み込み・浸透しやすい性質を有し、熱収縮が低減され、取り扱い性に優れ、電解液中でも視認可能であるフィルムおよびその製造方法を提供する。
【解決手段】下記工程(1A)、工程(2A)、工程(3)および工程(4)を含む、または
工程(1B)、工程(3)および工程(4)を含む
ことを特徴とするフィルムの製造方法。
工程(1A):延伸ポリテトラフルオロエチレン膜と、無機粉体が含まれた溶液とを接触させる工程、
工程(2A):工程(1A)で得られた膜と、親水性基を有する樹脂が含まれた溶液とを接触させる工程、
工程(1B):延伸ポリテトラフルオロエチレン膜と、無機粉体および親水性基を有する樹脂が含まれた溶液とを接触させる工程、
工程(3):工程(2A)または工程(1B)で得られた膜に、シランカップリング剤を付着させる工程、
工程(4):工程(3)で得られた膜を、50〜200℃で加熱し、乾燥させる工程。 (もっと読む)


【課題】接触抵抗が低く、かつCrが過不動態溶解する電位域における耐食性を確保することが可能であり、固体高分子型燃料電池セパレータとして好適な耐食性および電気伝導性に優れたステンレス鋼を提供すること。
【解決手段】質量%で、C:0.001〜0.05%、Si:0.001〜0.5%、Mn:0.001〜1.0%、Al:0.001〜0.5%、N:0.001〜0.05%、Cr:17〜23%、Mo:0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、その表面に、弗酸または弗硝酸を主体とし、弗酸濃度を[HF]、硝酸濃度を[HNO]と表した場合に、[HF]≧[HNO]の関係を有する浸漬処理溶液に浸漬することで得られた皮膜を有する耐食性および電気伝導性に優れたフェライト系ステンレス鋼。 (もっと読む)


【課題】 Ptを使用することなく高い触媒活性を示す燃料電池用触媒、およびその製造方法、並びに前記触媒を用いた膜電極接合体および燃料電池を提供する。
【解決手段】 樹脂由来の炭素系触媒と、担体とを有しており、前記炭素系触媒は、前記担体の表面の少なくとも一部を被覆しており、比表面積が100〜800m/gであることを特徴とする燃料電池用触媒により、前記課題を解決する。本発明の燃料電池用触媒は、炭素系触媒の原料となる樹脂と金属錯体と担体との混合物を非酸化性雰囲気中で、600〜1200℃で焼成し、その後に金属を除去する工程を有する本発明の製造方法によって製造できる。 (もっと読む)


【課題】寿命と信頼性を大きく改善した固体電解質型燃料電池とその製造方法を提供する。
【解決手段】少なくとも一つ以上積層され一体化された固体電解質型燃料電池において、単位モジュールは、それぞれの一面に一定距離離れているストリップ形状の複数の燃料極26を具備する第1及び第2固体電解質層22と、これと等しいストリップ形状でできている複数のスリット28をそれぞれ具備する第1及び第2支持体24とを含み、第1及び第2固体電解質層は、第1支持体の複数のスリット内でその各複数の燃料極が相互対向するように第1支持体の下側及び上側にそれぞれ重畳され、第2支持体は、そのスリットが第1支持体のスリットと直交するように第1支持体の下側に重畳している第1または第2固体電解質層の下側に重畳され、第1支持体のスリットは、燃料極を有する燃料流路38を成し、第2支持体のスリットは、空気極36を有する空気流路34を成す。 (もっと読む)


61 - 80 / 1,299