説明

Fターム[5H050FA17]の内容

電池の電極及び活物質 (183,817) | 形状,構造,形態 (13,788) | 構成要素の形態 (8,259) | 粉末状,粒状(球状)又は顆粒状 (2,537)

Fターム[5H050FA17]に分類される特許

81 - 100 / 2,537


【課題】放電レート特性に優れたリチウムイオン二次電池用負極板の製造方法を提供すること。
【解決手段】リチウムイオン二次電池用負極板の製造方法において、負極活物質粒子と、アルミニウムおよびケイ素のいずれか一方、もしくは双方を含有する金属元素含有化合物と、が含有される負極活物質層形成液を、集電体上の少なくとも一部に塗工して塗膜を形成する塗工工程と、前記塗膜を前記金属元素含有化合物が熱分解する温度以上で加熱して、金属元素含有粒子を生成させ、前記負極活物質粒子同士を前記金属元素含有粒子によって固着させる加熱工程と、を行う。 (もっと読む)


【課題】リン酸バナジウムリチウム(LVP)を活物質とする正極材料において、高電圧、高容量の充放電反応を確保しつつ、種々の電池特性、例えば、サイクル特性、保存特性、レート特性を向上させた正極材料、リチウムイオン二次電池を提供する。
【解決手段】正極活物質としてのリン酸バナジウムリチウム粒子を、膜厚1nm〜60nmの金属フッ化物で被覆した正極材料とする。また、リン酸バナジウムリチウム、水溶性金属塩およびフッ化物を含有する水性懸濁液を得る工程と、前記水性懸濁液を70〜90℃で加熱処理してリン酸バナジウムリチウム粒子上に金属フッ化物の水和物が析出した粉末を得る工程と、前記粉末を不活性ガス雰囲気下で100〜500℃で焼成する工程とにより、正極活物質としてのリン酸バナジウムリチウムが、膜厚1nm〜60nmの金属フッ化物で被覆された正極材料を製造する方法とする。 (もっと読む)


【課題】 オリビン型リン酸鉄リチウム微粒子を有し、特性の良好なリチウムイオン二次電池を構成可能な正極活物質を製造する方法を提供する。
【解決手段】 オリビン型リン酸鉄リチウム微粒子を有するリチウムイオン二次電池用正極活物質の製造方法であって、上記正極活物質は、二次凝集体を形成せずに単一粒子として存在しており、上記オリビン型リン酸鉄リチウム微粒子は、平均粒子径が5〜50nmであり、全個数中90%以上の微粒子の粒子径が3〜70nmの範囲内にあり、平均粒子径が50nm以下である鉄酸化物微粒子を成長核に用い、該鉄酸化物微粒子とリチウム源およびリン酸源を含む溶液とを混合し、得られた混合物を加熱することを特徴とするリチウムイオン二次電池の製造方法である。 (もっと読む)


【課題】 高出力であり、且つ高容量で充放電サイクル特性に優れた蓄電デバイスを提供すること。
【解決手段】 正極活物質を含む正極合材層を備えた正極を有し、正極活物質が、リチウムニッケル複合酸化物の粒子と、そのリチウムニッケル複合酸化物の粒子表面の少なくとも一部を被覆したリン酸バナジウムリチウムの粒子とを含み、且つリチウムニッケル複合酸化物粒子に対するリン酸バナジウムリチウム粒子の質量比が5:85〜60:30の範囲であることを特徴とする蓄電デバイス。 (もっと読む)


【課題】電極活物質層と集電体との密着性が高く、電解液に対する濡れ性に優れ、これにより、電池とした場合における、内部抵抗が低く、サイクル特性に優れた電気化学素子用電極を提供すること。
【解決手段】電極活物質及びバインダを含有する電極活物質層を備える電気化学素子用電極であって、前記電極活物質210の表面の少なくとも一部に前記バインダで被覆されてなるバインダ被覆部220と、複数の前記電極活物質210から構成される空隙部240内に、前記空隙部240を形成する複数の電極活物質210の表面に形成されたバインダ被覆部220同士を前記バインダにより連結してなるバインダ連結部230と、を備える電気化学素子用電極を提供する。 (もっと読む)


【課題】従来よりも高密度の電極を作製することができるリチウム過剰型のリチウム金属複合酸化物を提供する。
【解決手段】リチウム過剰型のリチウム金属複合酸化物であって、リチウム以外の金属全量に対して50モル%以上のMnと、他の金属とを含み、かつ、タップ密度が1.0g/ml〜2.0g/mlの範囲であることを特徴とする、リチウム金属複合酸化物。 (もっと読む)


【課題】高率充電性能に優れた二次電池とすることのできる正極活物質及びそれを用いた二次電池を提供する。
【解決手段】ナシコン構造のリン酸バナジウムリチウムを含有する二次電池用活物質であって、前記リン酸バナジウムリチウムは、バナジウムの一部がマンガンにより置換されたリン酸バナジウムマンガンリチウムであり、かつ、前記二次電池用活物質は、リチウム、バナジウム、マンガン、リン及び酸素の各原子を含み、バナジウムに対するマンガンの原子数の比率が、0.5%以上8%以下である二次電池用活物質とすることにより、高率充電性能に優れる。従って、この二次電池用活物質を含有する二次電池用電極からなる二次電池の高率充電性能を向上することができる。 (もっと読む)


【課題】高い電極特性を発揮し、かつ優れた導電性を有する電極形成材とその用途を提供する。
【解決手段】電極活物質100質量部に対して0.5〜10質量部のカーボンナノファイバーによって電極活物質表面の40〜80%が網目状に被覆されることによって導電層が形成されていることを特徴とし、好ましくは、表面が酸化処理されており、該酸化処理による酸素含有量が8〜20wt%に制御されているカーボンナノファイバーを用いて導電層が形成されている電極形成材。 (もっと読む)


【課題】体積あたりの容量密度が大きく、不可逆容量が小さい、リチウムの吸蔵及び放出が可能な負極活物質を提供する。
【解決手段】本発明の負極活物質は、一酸化スズの板状粒子と、ナノサイズを有する導電性炭素粒子と、該炭素粒子の表面に担持されている二酸化スズの球状粒子とを含むことを特徴とする。この負極活物質は、スズ(II)塩を溶解させた溶液に上記炭素粒子を添加した反応液であって、上記炭素粒子の質量に対する上記スズ(II)塩の質量を二酸化スズ換算で3〜9倍に調整した反応液を、旋回可能な反応器内に導入する工程、及び、上記反応器を旋回させて、上記反応液にずり応力と遠心力とを加えながらスズ(II)塩の加水分解反応と重縮合反応とを行う工程を含む方法により得ることができる。 (もっと読む)


【課題】高容量かつ高寿命な非水電解液二次電池用電極を容易に低コストで提供する。
【解決手段】集電体上に所定パターン状に形成された活物質層を備えた非水電解液二次電池用電極の製造方法である。前記活物質層は、所定パターンの凸形状母型に、液状樹脂を塗工後、硬化し、凹形状の樹脂版を作製する工程と、前記樹脂版凹部にのみ活物質層形成用スラリーを充填し、集電体と接合させる工程と、活物質層形成用スラリーを乾燥させた後に前記樹脂版を剥離し、活物質層を集電体に転写する工程を用いて形成される。 (もっと読む)


【課題】 リチウムとナトリウムを同時に含むマンガンフッ化リン酸化物LiNa2−XMnPOFを電極材料として使用できる2次電池用正極材料及びその製造方法を提供する。
【解決手段】 化学的方法によりリチウムをナトリウムの位置に部分置換したLiNa2−XMnPOFを製造し、電極素材として使用可能にした点、及びカーボンコーティングにより電気伝導度を向上させて電気化学的活性を有するリチウム電池の正極材料を提供できることを特徴とする。 (もっと読む)


【課題】充放電容量密度と、充放電サイクル特性を一層向上させたリチウムイオン二次電池を提供し得るリチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極及びリチウムイオン二次電池を提供すること。
【解決手段】リチウムイオン二次電池負極材用炭素複合材を形成するために用いる熱処理前の組成物であって、シリカ粒子と、フェノール樹脂を含有し、前記シリカ粒子の含有量が、前記フェノール樹脂を熱処理した後の残炭率をA重量%としたとき、前記シリカ粒子およびフェノール樹脂の合計重量に対し、100A/(100+A)重量%以上、4900A/(100+49A)重量%以下であることを特徴とする組成物。 (もっと読む)


【課題】200mAh/gを超える高容量を有し、且つ、高い電流密度条件下で高い充放電特性を有するリチウム系二次電池用正極活物質及びこれを用いた非水系二次電池を提供する。
【解決手段】層状構造を有する一般式Li[LiMnMe]O2−d(Meは遷移金属の中から選ばれる少なくとも1種類以上の元素を含む)(0<a<1/3、0<b<2/3、0<c<1、0≦d≦0.2)で表わされる複合酸化物正極活物質であって、粉末X線回折パターンにおける結晶子サイズが2nm以上19nm以下である非水系二次電池用正極活物質。 (もっと読む)


【課題】 長寿命で初期充放電容量効率に優れ、かつ高容量な非水電解質二次電池を提供する。
【解決手段】 炭素質物と、前記炭素質物中に分散されたシリコン酸化物と、前記シリコン酸化物中に分散されたシリコンとを有する複合体であり、粉末X線回折測定におけるSi(220)面の回折ピークの半値幅が1.5°以上、8.0°以下であり、かつ前記シリコン酸化物相の平均サイズが50nm以上、1000nm以下であり、かつ前記シリコン酸化物相のサイズの分布が(d84%−d16%)/2で定義される標準偏差において、(標準偏差/平均サイズ)の値が1.0以下を示すことを特徴とする非水電解質二次電池用負極活物質、及び該活物質を用いた非水電解質二次電池、及び該非水電解質二次電池用負極活物質の製造方法が提供される。 (もっと読む)


【課題】集電体と活物質粒子との間の剥離強度および活物質粒子間の接合強度の双方を高いレベルで両立できる電池電極用バインダーを提供する。
【解決手段】電池電極用バインダーは、コアシェル構造を有するポリマー粒子を含み、ポリマー粒子のコアを形成する第1ポリマー材料のガラス転移温度が、シェルを形成する第2ポリマー材料のガラス転移温度よりも高く、第1ポリマー材料のゲル含有量が、第2ポリマー材料のゲル含有量よりも高い。第1ポリマー材料のゲル含有量は50〜80質量%であり、第2ポリマー材料のゲル含有量が50質量%未満であることが好ましい。第1ポリマー材料のガラス転移温度は0℃以上であり、第2ポリマー材料のガラス転移温度は0℃未満であることが好ましい。 (もっと読む)


【課題】遠心式分級装置にて微細リチウム二次電池用正極材粉末を製造する際に、遠心式分級装置のメッシュスクリーンを通過できなかった凝集粒を含有する粉体を、簡易、効率的に再処理する方法を提供する。
【解決手段】
粗粉末を含有する原料リチウム二次電池用正極材粉末を遠心式分級装置にて分級し、微細リチウム二次電池用正極材粉末を製造する際に、遠心式分級装置のメッシュスクリーンを通過できなかった凝集粒を含有する粉体を、次の工程にて処理する微細リチウム二次電池用正極材粉末の製造方法。
(1)粉体中の凝集粒を粉砕して粉末とする工程
(2)前記(1)で得られた粉末を、再度遠心式分級装置に供給し分級する工程 (もっと読む)


【課題】出力特性に優れ、かつ充放電を繰り返した後も出力低下の少ないリチウムイオン二次電池を提供すること。
【解決手段】本発明により提供されるリチウムイオン二次電池100は、正極30と負極40と非水電解液90とを備える。正極30は、正極活物質として、層状構造を有するリチウム遷移金属酸化物を有する。当該正極活物質は、Ni,CoおよびMnのうち少なくとも一種の金属元素Mを含み、さらにWを含む。この電池100は、ジフルオロリン酸塩およびモノフルオロリン酸塩の少なくともいずれかを含む組成の非水電解液90を用いて構築されたものである。 (もっと読む)


【課題】表面に炭素質被膜が形成された電極活物質を電極材料として用いる場合に、炭素質被膜の担持量のムラが小さく、しかも電子導電性を改善することが可能な電極材料及び電極並びに電極材料の製造方法を提供する。
【解決手段】本発明の電極材料は、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体からなり、この凝集体の平均粒子径は1.0μm以上かつ100μm以下、体積密度の割合は50体積%以上かつ80体積%以下、この凝集体に内在する細孔の細孔分布は単峰性であり、かつ、この細孔分布における平均細孔径は0.3μm以下である。 (もっと読む)


【課題】負極の両端部分でのリチウムイオンの受け入れ性能を向上させて、金属リチウムの析出防止性能を高めた負極を備えるリチウムイオン二次電池を提供すること。
【解決手段】本発明のリチウムイオン二次電池は、正極集電体露出部から負極集電体82露出部に向かう方向における負極合材層88の両端部分86A,86Aと、該幅方向における負極合材層の中央部分86Bとの間で、黒鉛材料85の配向が相互に異なっており、上記両端部分における黒鉛材料のX線回折法による(110)面のピーク強度A及び(002)面のピーク強度Bの比であるA/Bは、上記中央部分における(110)面のピーク強度C及び(002)面のピーク強度Dの比であるC/Dよりも増大している。ここで、負極合材層の上記幅方向の長さをLaとし、同方向の上記両端部分の合計長さをLbとしたときのLb/Laの値が0.3よりも大きい。 (もっと読む)


【課題】非水電解質電池の出力特性を向上させ、また、この非水電解質電池を含む電池パックを提供する。
【解決手段】非水電解質電池が、非水電解液と、正極3と、負極4と、セパレータ5とを含み、非水電解液は、式1で表される非対称スルホン系化合物と、式2で表される対称スルホン系化合物とを含有する。正極は、Li1-xMn1.5-yNi0.5-zy+z4(0≦x≦1、0≦y+z≦0.15、MはMg、Al、Ti、Fe、Co、Ni、Cu、Zn、Ga、Nb、Sn、Zr及びTaから選ばれる少なくとも1種の元素)で表される複合酸化物を含有する。負極は、Tiを含有するリチウム吸蔵放出可能な酸化物を含有する。セパレータは、不織布からなる。式1…R−SO−R(但し、R≠R、R,Rは炭素数が1〜10のアルキル基。)、式2…R−SO−R(但し、Rは炭素数が1〜6のアルキル基。) (もっと読む)


81 - 100 / 2,537