説明

Fターム[5H307AA01]の内容

流量の制御 (3,234) | 適用分野、用途 (326) | プラント (114)

Fターム[5H307AA01]の下位に属するFターム

Fターム[5H307AA01]に分類される特許

21 - 40 / 81


【課題】添加ガスを一方のサブラインに供給する前後で、メインラインから第1及び第2サブラインへ分流されるメインガスの分流比を維持できる流体制御方法を提供すること。
【解決手段】メインライン17から第1及び第2サブライン19,20にメインガスを分流させてチャンバ31に供給するときに、第2サブライン20に添加ガスを供給する場合に、第1及び第2サブライン19,20からチャンバ31に供給されるメインガスの流量を第1及び第2サブライン19,20の圧力に基づいて制御する流体制御方法において、添加ガスを供給されない第1サブライン19の圧力を一定にするように、第1サブライン19の圧力を制御しながら、第2サブライン20に添加ガスを供給する。 (もっと読む)


【課題】流体中の同一点の流体圧力と流体温度を同時に測定してオリフィス通過流量を高精度に制御できる圧力式流量制御装置を実現する。
【解決手段】圧力式流量制御装置に於いて、圧力センサ及び温度センサを、受圧面に形成した4個の抵抗を4辺とするブリッジ回路の入力端子間に定電流電源を接続してその出力端子間の電圧変化で流体圧力を検出すると共に、入力端子間の電圧変化で流体温度を検出する構成の温度と圧力を同時に検出する一つの圧力温度センサ10とし、流体温度Tに対応した補正を行ってこれを流体圧力Pに変換すると共に、温度変換手段からの流体温度Tに対応して流量演算式の比例定数Kの温度補正を行うガス温度補正手段と,補正後の後の演算流量Qと設定流量Qとの差を制御信号としてコントロールバルブへ出力する比較回路と,から構成する。 (もっと読む)


【課題】単一のセンサを使って流量を制御できるフロー制御装置を提供すること。
【解決手段】制御装置(30)は、フローを受け入れるための流入口(32);フローをフロー・システムの他の構成要素に導くための流出口(34);圧力低減エレメント(36);上流の圧力を測定するよう構成された、圧力低減エレメント(36)の上流の圧力センサ(38);下流の圧力を測定するよう構成された、圧力低減エレメント(36)の下流の圧力センサ(40);プロセッサ、メモリ、及び流体の流量を算定しバルブ制御信号を発生させるためのソフトウエア命令を包含させることが可能なコントローラ(42);ならびに、バルブ制御信号に反応して流体フローを調節する、ちょう型バルブ、油圧駆動バルブなどのバルブ(44)を含む。 (もっと読む)


【課題】適切な測定範囲を選択可能な分流式流量計を提供する。
【解決手段】主流路11、及び主流路11に通じる一対の分流孔4a,4bが設けられた主流路保持体10と、一対の分流孔4a,4bを介して主流路11と連通する分流路25が設けられた、主流路保持体10に着脱可能な分流路保持体30と、分流路25を流れる流体の流量を検出するための流れセンサ8と、流れセンサ8によって検出される流体の流量と主流路11を流れる流体の流量との分流比を設定するために、分流路25に配置される分流比設定部材と、流れセンサ8によって検出された流量、及び分流比に基づいて、主流路11を流れる流体の流量を算出する算出回路301と、を備える。 (もっと読む)


【課題】気体の検出圧力と目標圧力との偏差が大きくなった場合に偏差を迅速に小さくすることのできる圧力制御装置および圧力の制御された気体を用いる流量制御装置を提供する。
【解決手段】電空レギュレータ40は、エアの供給源に接続されるとともに所定周期を有するパルス信号により開閉駆動される給気用電磁弁43と、電磁弁43の下流に接続されるとともに所定周期を有するパルス信号により開閉駆動される排気用電磁弁44とを備える。エア通路35に導出されるエアの圧力センサ72による検出圧力を目標圧力にするために、電磁弁43,44を各周期において駆動するパルス信号をエアの検出圧力と目標圧力との偏差に基づいてPID演算により生成するともに、エアの検出圧力と目標圧力との偏差が判定値以上であることを条件に、電磁弁43,44が駆動される周期おいて偏差を小さくするように、PID演算により生成されるパルス信号を変更する。 (もっと読む)


【課題】固形分を含有する流体の流量が設定値からズレないように流量計の測定値をオンラインで校正すること。
【解決手段】固形分を含有する流体を貯蔵するタンク1と、タンク1へ流体を送るポンプ8と、流体の貯蔵レベルがタンク1の上限/下限レベルに到達した際にポンプ8を停止/稼働するタンクレベル制御手段6と、タンク1から流体配管3を通って流出する流体の流量を測定する流量計4と、流量計4の測定値を校正する校正手段6と、流量計4の測定値に基づいて流体配管3を流れる流体の流量を調節する流量調節手段5とから構成される流量制御装置15において、前記校正手段6は、タンク1内の流体の貯蔵レベルが上限レベルから下限レベルまで低下するまでの期間内に、流体の貯蔵量の変化量を求め、当該貯蔵量の変化量に基づき前記期間の少なくとも一部の時間内の流体の平均流量を計算し、当該平均流量の計算値により流量計4の測定値を校正する。 (もっと読む)


【課題】装置の損傷程度を検知し、損傷部位を特定する装置を提供する。
【解決手段】圧力調整器10は流体流路に配置されて、流路内を移動可能な絞り要素22を有している。軸30が絞り要素22に取りつけられている。その装置は、絞り要素の上流圧力を測定するための第一圧力センサ34、絞り要素22の下流圧力を測定するための第二圧力センサ35および絞り要素22の位置を検知するための作動センサ44とを有している。測定された圧力と作動距離に基づいて流量を定めるためのアルゴリズムを備えたプロセッサ52が提供される。 (もっと読む)


流体調整器特徴付けシステム100、212が、受け取った制御信号に応答して生じる流体調整器108の流量を特徴付けることができる。流体調整器特徴付けシステムは、特徴付けを使用して、流体調整器に関する全動作範囲にわたって(例えば、0パーセント移動から100パーセント移動まで)、受け取った制御信号に対する線形流体調整器流量ゲインを達成することができる。線形流体調整器流量ゲインは、プロセス制御を改善し、プロセス変動性を低減することができる。
(もっと読む)


流体の流量を制御するマスフローコントローラのための弁システムが開示される。弁システムは流体の流量を所望の設定点に調整するように開位置と閉位置との間を移動できる弁と、弁コントローラとを含む。弁コントローラは、流体の実際の測定された流量が所望の設定点に実質上等しくなるまで、流体の流量を調整するように弁を通る弁電流を送る。弁コントローラは、弁電流、及び、弁が閉位置へ移動しているときの流量を監視し、流体がほぼゼロの流量を有するときの弁電流の値を決定し、更新される弁クラッキング電流をほぼゼロの流量での弁電流の値に設定することにより、次の運転のための弁クラッキング電流を更新する。 (もっと読む)


低い流入圧力において広い流量検証範囲にわたって高い測定精度をもたらす高精度質量流量検証器(HAMFV)が、流体送達デバイスによる流量測定値を検証するために開示される。HAMFVは、上流バルブを有する複数Nの流入口を画定するチャンバ、1つの下流バルブを有する1つの流出口、チャンバ内の流体圧力を測定するように構成される圧力センサ、およびチャンバ内の流体温度を測定するように構成される温度センサを備える。複数Nの臨界流ノズルが、対応する上流バルブに隣接して配設される。HAMFVは、所望の流量検証範囲および流体の種類に基づいて、対応する上流バルブを開き、他の全ての上流バルブを閉じることによって、複数Nの臨界流ノズルの1つを起動するように構成されるコントローラをさらに備える。複数Nの臨界流ノズルの少なくとも2つは、異なる断面積を有する。 (もっと読む)


本発明は、冶金炉の冷却要素(1)の個々の冷却要素流路(3)を流れる冷却液の温度、流量、または圧力などの物理量のうち少なくとも1つを計測する方法および装置に関する。本装置は、冷却液を分配して冷却要素(1)の冷却要素流路(3)に供給する供給母管(2)と、冷却液を冷却要素(1)の冷却要素流路(3)から回収して収容する回収母管(4)とを備える。本装置は測量ライン(5)を備え、測量ラインはバルブ機構(6)を介して少なくとも1つの冷却要素流路(3)に流体接続され、冷却液は測量ライン(5)を経由して回収母管(4)に案内されるか、または測量ライン(5)を経ずに回収母管(4)に案内される。測量ライン(5)は、測量ライン(5)を流れる冷却液の物理量のうちの少なくとも1つを計測し、また冷却要素流路(3)を計測する計測器(7)を少なくとも1つ含む。
(もっと読む)


流体調整制御は、様々なシステム、装置、および技法によって達成することができる。1つの応用例において、流体調整制御装置(200)は、プロセッサ(211)、流体制御アセンブリ(220)、および電源(215)を含むことができる。プロセッサ(211)は、流体レギュレータを制御するためのコマンド(270)を生成して、装置の電力条件を調節するように適合することができるが、電力条件は低電力モードおよび高電力モードを含むことができる。装置(200)は、低電力モード時には、消費する電力を高電力モード時よりも著しく小さくすることができる。流体制御アセンブリ(220)は、変換器(225)を含むことができ、この変換器(225)は、制御流体(135)を受け取り、高電力モード時にコマンド(270)に応答してその制御流体を調節することができる。流体制御アセンブリ(220)はまた、低電力モード時に調節済み制御流体(145)をほぼ一定の値に保持することができる。
(もっと読む)


システムおよびプロセスにより、流体調節システムの実地始動型検査および/または制御を行うことができる。一態様では、流体調節検査システムは、現地試験始動装置(110、200、300、510)および流体調整装置制御システム(120、520)を含み得る。現地試験始動装置は、ユーザ入力装置(111、220、511)が活動化されると、流体調整装置制御システムに配信される制御信号(150、210、310、535)を変更することができる。流体調整装置制御システムは、現地試験始動装置から制御信号を受信し、流体調整装置(130、540)制御信号(150、535)を生成することができる。流体調整装置制御システム(120、520)は、制御信号(530)が変更されているかどうか検出し、制御信号が変更されている場合、流体調整装置検査シーケンス(685)を始動することもできる。流体調整装置制御システム(820)は、ラッチ・モードを含み得る。ラッチ・モードが開始されると、受信制御信号に基づく流体調整装置制御信号(830)の生成および/または流体調整装置(840、870)の位置の変更を阻止することができる。
(もっと読む)


【課題】プロセス内の構成要素の制御をより大きな中央処理能力に対する要求を減少することを可能とする工業システムを提供する。
【解決手段】流体流量調整装置は、流体流路内で移動可能な絞り要素を有するレギュレータ本体12と、パイプライン14,16、レギュレータ本体12及び前記絞り要素18の状態を測定してその状態を示すセンサ信号を出力する複数のセンサ26,30,34と、前記複数のセンサ26,30,34から出力された一又は複数のセンサ信号に応じて複数の外部プロセスコントロール装置を制御するため出力信号を生成するように構成されているプロセッサ28と、前記複数の外部プロセスコントロール装置と通信し、また前記プロセッサ28と通信するように構成されている通信ユニット36とを備える。前記プロセッサ28は、一又は複数のセンサ信号及び前記装置信号に応じてレギュレータ本体12を制御することができる。 (もっと読む)


質量流量コントローラにおいてガスの温度を測定するための方法および装置が記載される。一実施形態は、別個の温度センサに頼ることなく、ガスの温度情報を質量流量コントローラの質量流量センサから引き出す。この実施形態は、実質的に一定の電流を質量流量コントローラの熱式質量流量センサに供給し、熱式質量流量センサは、ガスの質量流量レートを測定するように設計されており、現在の入力電圧を取得するために、熱式質量流量センサの入力電圧を測定する。入力電圧は、熱式質量流量センサの一対の感知要素の間の温度差によって変化する。ガスの質量流量レートに依存する現在の入力電圧の成分を計上することによって、調整入力電圧を計算し、調整入力電圧に基づいてガスの温度を計算する。 (もっと読む)


流動体流動調節装置が開示される。この装置は、弁座(168)へ力を配する変形可能な弁部材(164)を含み、当該弁部材が害されることを防いでいる。 (もっと読む)


流量制御装置(100)において自己漏洩を判定する方法を開示する。流量制御装置(100)は、流量センサ(102)、流量制御バルブ(106)、及び電子回路(104)を備えている。電子回路は、流量センサ、流量制御弁に結合されており、流量制御装置を通過する物質の設定流速を維持するように、物質の流速を示す流量センサの信号に応答して、流量制御弁を調節するように構成されている。本方法のステップは、流量センサ(102)についてゼロ・ドリフト(Qdrift)を判定するステップ(302)を備えている。制御弁(106)が全閉位置にあるときに、流量制御装置(100)を通過する流速(Qflow)を判定する(304)。そして、流量制御装置(100)を通過する自己漏洩を判定する(306)。自己漏洩は、Qflow−Qdriftに等しい。
(もっと読む)


【課題】単一の質量流量を多数の流れラインに分割するための流量比制御装置を含むガス送出システム用のマルチ反対称最適(MAO)制御アルゴリズムを開示する。
【解決手段】MAO制御アルゴリズムでは、各流れラインには、流れセンサ及びバルブが設けられている。このバルブは、ターゲット流量比設定点を得るため、線型サチュレータと組み合わせたSISOフィードバック制御装置によって積極的に制御される。最適制御性能のため、これらのSISO制御装置及び線型サチュレータは実質的に同じである。各バルブ制御コマンドは、全ての他のバルブ制御コマンドに対してマルチ反対称であるということがわかっている。従って、MAO制御アルゴリズムは、任意の時期に少なくとも一つのバルブが許容可能な最大開放位置にあり、これによって、流量比設定点の所与の組について、最大総バルブコンダクタンスに関して最適解を提供することを保証する。 (もっと読む)


【課題】強制遮断機能を使用したいたずらを防止する。
【解決手段】再入力判定部13が、強制遮断入力手段5からの強制遮断信号を受け取り、第1のカウンタが所定時間を経過したのち作動を開始する第2のカウンタの計時動作中に再度、強制遮断入力手段5からの強制遮断信号を受け取ったとき強制閉栓信号を出力するようにした。 (もっと読む)


【課題】 高流量域における測定を行った場合に生じるセンサ出力信号のふらつきの影響を無くす。
【解決手段】 表示器193に流量を表示する際の表示分解能および、流路12を通流する被測定流体の流量設定を行う際の分解能を流量に応じて変更するようにする。すなわち、表示部によって流量を表示する際の表示分解能を、表示値のふらつきが小さい低流量領域では表示分解能を小さくし、ふらつきが大きくなる流量域では表示分解能を大きくすることによって、表示値のふらつきをなくした流量計測が可能となる。流量設定を行う際の分解能も同様に設定することで、表示値のふらつきの影響をなくした流量制御が可能となる。 (もっと読む)


21 - 40 / 81