説明

Fターム[5H505GG05]の内容

交流電動機の制御一般 (51,584) | 制御系 (3,480) | 電圧フィードバックするもの (317)

Fターム[5H505GG05]に分類される特許

21 - 40 / 317


【課題】駆動する永久磁石同期電動機が任意のモータであっても、弱め界磁制御と最大トルク制御との切り換えを安定して行うことができる同期電動機の制御装置及び制御方法を提供する。
【解決手段】最大線間電圧演算部11によって演算された最大線間電圧VmaxとPMモータ1の電気角速度ωeとを用いて弱め界磁制御用のd軸電流演算値を演算するd軸電流演算部12と、最大線間電圧VmaxとPMモータ1の電気角速度ωeとに基づいて、弱め界磁制御用のd軸電流演算値と最大トルク制御用のd軸電流設定値とのいずれかをd軸電流指令値Id*として出力させる弱め界磁制御切換部13とを設ける。また、d軸電流演算部12によって、最大線間電圧Vmaxと、PMモータ1の電気角速度と、PMモータ1のモータパラメータである逆起電力係数及びd軸インダクタンスとからd軸電流演算値を演算する。 (もっと読む)


【課題】モータに矩形波電圧を印加するモータ制御装置において、過電流の発生を抑制する。
【解決手段】モータに印加する電圧の位相を変化させてトルクを調整するとともに、モータに印加する電圧波形を矩形波形とPWM波形の間で切り替えてモータを制御するモータ制御装置であって、モータの回転数に応じて電圧位相の下限値を規定する下限値曲線a,c,eを含むマップを備え、モータの回転数Nに応じた電圧位相φvが所定の下限値曲線a,c,e以下となった場合に、モータに印加する電圧波形を矩形波形からPWM波形に切り替える。 (もっと読む)


【課題】モータの駆動を制御する駆動制御手段の制御内容を変更することなく、高トルク運転時にモータに対して十分な電力を供給可能とするか、または減速動作時にモータから生じる回生エネルギーを有効利用可能とする。
【解決手段】昇降圧回路29は、入力電圧を昇圧して出力する昇圧動作、入力電圧を降圧して出力する降圧動作および入力電圧をそのまま出力する非昇降圧動作のいずれかの動作を実行する。電源制御部26は、エコモードに設定されると、モータMの動作状態にかかわらず、降圧動作を実行するように昇降圧回路29の動作を制御する。電源制御部26は、トルク重視モードに設定されると、バス電圧の検出値に基づいてモータMが加速動作されていると考えられる期間に昇圧動作を実行するとともに、その期間を除く期間には非昇降圧動作を実行するように昇降圧回路29の動作を制御する。 (もっと読む)


【課題】モータの駆動を制御する駆動制御手段の制御内容を変更することなく、高トルク運転時にモータに対して十分な電力を供給することができるとともに、減速動作時にモータから生じる回生エネルギーを有効利用することを可能とする。
【解決手段】昇降圧回路29は、入力電圧を昇圧して出力する昇圧動作、入力電圧を降圧して出力する降圧動作、入力電圧の供給が遮断する電源遮断動作などを実行する。電源制御部26は、バス電圧の検出値に基づいて、モータMが加速動作状態であると判断される期間には昇圧動作を実行し、減速動作状態であると判断される期間には電源遮断動作を実行し、それらの期間を除く期間には降圧動作を実行するように昇降圧回路29の動作を制御する。 (もっと読む)


【課題】コンデンサ容量を更に低減することで一層のコンデンサの小型化および低コスト化が実現できる電源装置を提供する。
【解決手段】電源装置1は、整流回路12と平滑コンデンサ13とを備え交流電源40から供給される交流電力から直流電力を生成してファンモータ20に供給する直流電源部と、ファンモータ20に加わる直流電圧を検出する電圧検出手段14と、電圧検出手段14で検出した直流電圧を取り込んでファンモータ20の駆動制御を行う制御手段11と、整流回路12の出力側に並列に接続され制御手段11や外部負荷30に直流電力を供給するスイッチング電源15と、制御手段11により開閉制御されることでスイッチング電源15から外部負荷30への駆動電力の供給を開始もしくは停止する開閉手段16とを備える。 (もっと読む)


【課題】電流センサの出力値に実際の電流の振幅に対して所定の比率(≠1)だけ相違する誤差であるいわゆるゲイン誤差が含まれる場合、これに起因してモデル予測制御の制御性が低下するおそれがあること。
【解決手段】偏差算出部40,44では、予測電流ide,iqeのそれぞれと同位相の実電流id,iqとの差が算出される。フィードバック制御部42,46のそれぞれでは、偏差算出部40,44の出力値をゼロにフィードバック制御するための操作量(補償量idcomp,iqcomp)が算出される。これら補償量idcomp,iqcompによって、予測部33によって予測される予測電流ide,iqeが補正される。 (もっと読む)


【課題】矩形波制御実行中にコンバータによる昇圧動作の開始を適時に行ってシステム損失の増加を抑制することができるモータ制御システムを提供する。
【解決手段】モータ制御システムは、電源、コンバータ、インバータおよび交流モータと、コンバータおよびインバータの作動を制御することにより、正弦波PWM制御、過変調制御および矩形波制御のいずれかの制御方式でモータを駆動させる制御部とを備える。制御部は、電源から供給される直流電圧をコンバータで昇圧せずにインバータに供給し、モータについて、モータ電流のd軸q軸平面上における電流ベクトルの電流位相が最適電流進角またはその近傍で矩形波制御が実行されるように制御する。この場合において、制御部は、電流ベクトルが昇圧開始前後でシステム損失が等しくなるモータトルクT2に相当する電流位相になったときにコンバータによる昇圧動作を開始させる。 (もっと読む)


【課題】変調PWM制御および正弦波PWM制御を切換えて制御する交流電動機の駆動装置において、交流電動機の回転速度が急変した場合の緊急切換動作時におけるトルク急減を抑制する。
【解決手段】車両100は、ECU300によってPWM制御を用いてインバータ130が制御されてモータジェネレータ140を駆動することによって走行する。ECU300は、正弦波PWM制御および過変調PWM制御を含む複数の制御モードを切換えてインバータ140を制御する。ECU300は、過変調PWM制御を実行中に、駆動輪160がスリップ状態からグリップ状態に変化することに伴って電流が急増した場合に、過変調PWM制御から正弦波PWM制御に強制的に切換えるとともに、正弦波PWM制御における変調率の上限値を緩和して、正弦波PWM制御において通常時よりも大きなトルクが出力できるようにする。 (もっと読む)


【課題】 インバータを利用したモータ駆動システムにおいて、同期PWMモードでのインバータの運転時に、トルク不足の問題を発生させることなく、モータの損失の増加を回避し、効率低下を抑える。
【解決手段】 インバータ制御部110は、インバータ40のスイッチング素子のON/OFF切替を行うためのゲート信号の生成モードとして、非同期PWMモードと同期PWMモードとを有する。直流電圧指令値演算部143は、インバータ制御部110が同期PWMモードでゲート信号を生成している場合に、インバータ40からモータ50に供給される電流のうちd軸電流が0または負になるように、DC−DCコンバータ20からインバータ40に供給する直流電圧を指示する指令値を演算する。 (もっと読む)


【課題】1つのコンバータの出力電圧で複数のモータを駆動するモータ制御システムにおいて、各モータに対応して行われるフィードバック制御同士の干渉を防止してシステム電圧の可変制御を安定して滑らかに行えるようにする。
【解決手段】モータ制御システムは、コンバータと、2つのインバータと、2つの交流モータと、制御部とを備える。制御部は、少なくとも一方のモータついて、モータ電流のd軸q軸平面上における電流ベクトルの電流位相が最適電流進角またはその近傍で矩形波制御されるようにシステム電圧を電流位相のフィードバック制御により可変するにあたり、電流ベクトルからそれぞれ求めたシステム電圧偏差が大きい方のモータをフィードバック制御の対象として選択する(S20〜S28)。 (もっと読む)


【課題】交流モータにおいて最適電流進角ライン上か又はその近傍での電流位相による矩形波制御を積極的に用いることによってシステム全体の損失を効果的に低減する。
【解決手段】モータ制御システム10は、バッテリ11からの直流電圧を昇降圧可能なコンバータ20と、コンバータ20による昇圧直流電圧を交流電圧に変換するインバータ22と、インバータ22から交流電圧が印加されて駆動される交流モータM1と、入力されるトルク指令値に応じてコンバータ20およびインバータ22を作動制御することにより交流モータを矩形波制御等の複数の制御方式で駆動制御可能な制御部26とを備える。制御部26は、交流モータM1が矩形波制御中であるとき、交流モータM1に流れるモータ電流のd軸q軸平面上における電流ベクトルの電流位相(id,iq)が最適電流進角ライン上に近づくようにシステム電圧指令値VH*を補正する。 (もっと読む)


【課題】電流センサ16にオフセット誤差が生じる場合、モデル予測制御の制御性が低下するおそれがあること。
【解決手段】電流再現部22は、電流センサ16の検出する母線電流IDC等をdq変換することで実電流id,iqを算出し、予測部33に出力する。UVW変換部40の出力する予測電流iue,ive,iweは、セレクタ42によって選択的に偏差算出部44に出力される。一方、母線電流IDCは、セレクタ46を介して、そのままの値か、乗算器48によって「−1」が乗算された値かのいずれかが偏差算出部44に出力される。偏差算出部44では、セレクタ46の出力に対するセレクタ42の出力の差を算出し、フィードバック制御部50に出力する。フィードバック制御部50では、偏差算出部44の出力値をゼロにフィードバック制御するための操作量を算出する。 (もっと読む)


【課題】電流の予測に用いる電流の初期値を取得すべく利用される電流センサがコストアップの要因となっていること。
【解決手段】電流センサ16は、インバータINVの入力端子を流れる電流(母線電流IDC)を検出する。予測部33は、dq変換部22の出力する実電流id,iqを初期値として用いて、モータジェネレータ10を流れる電流を予測し、予測電流ide,iqeを算出する。UVW変換部40は、予測電流ide,iqeを3相の相電流に変換する。セレクタ42では、UVW変換部40の出力値と母線電流IDCとのうちの3つを、モータジェネレータ10の各相を流れる電流値としてdq変換部22に入力する。この際、インバータINVの操作状態を表現する電圧ベクトルが有効電圧ベクトルであるなら、母線電流IDCがいずれか1相の電流値とされる。 (もっと読む)


【課題】モデル予測制御において想定したモータジェネレータのモデルと実際のモータジェネレータの特性とにずれがある場合等にあっては、電流の予測精度が低下するため、制御性が低下するおそれがあり、これを改善する。
【解決手段】電流センサ16によって検出される実電流は、dq変換部22によって実電流id,iqに変換される。予測部33は、dq変換部22の出力する実電流id,iqを初期値として用いて、モータジェネレータ10を流れる電流を予測し、予測電流ide,iqeを算出する。フィードバック制御部40は、予測電流ideを実電流idにフィードバック制御するための操作量(補正量Δid)を算出し、フィードバック制御部44は、予測電流iqeを実電流iqにフィードバック制御するための操作量(補正量Δiq)を算出する。 (もっと読む)


【課題】デッドタイム付与後の実際のスイッチング状態の切替タイミングが複数のレッグ間で重なることで、サージ電圧が大きくなるおそれがあること。
【解決手段】ノルム設定部30では、要求トルクTrと電気角速度ωとに基づき、インバータINVの出力電圧ベクトルのノルムを設定する。位相設定部26では、推定トルクTeを要求トルクTrにフィードバック制御するための操作量として位相δを設定する。操作状態設定部34では、ノルム設定部30によって設定されたノルムVnと、位相設定部26によって設定された位相δとに基づき操作信号を生成してインバータINVに出力する。操作状態設定部34には、デッドタイム付与後における実際のスイッチング状態の切り替えが複数レッグで同時になされない波形が記憶されている。 (もっと読む)


【課題】昇圧コンバータにおける共振の発生を回避しつつ車両挙動の急激な変動を抑制する電動車両およびその制御方法を提供する。
【解決手段】制御装置40は、PWM制御モードと矩形波電圧制御モードとを選択的に切替えてインバータ20を制御する。制御装置40は、モータジェネレータMGの回転数が所定範囲内となることによって平滑コンデンサCおよび昇圧コンバータ10のリアクトルLにより形成されるLC回路の共振条件が成立したとき、モータジェネレータMGのトルクを制限することによって矩形波電圧制御モードでのインバータ20の制御を禁止する。さらに、制御装置40は、上記共振条件の成立に伴なうトルクの制限およびその解除時にトルクの変化率を制限する。 (もっと読む)


【課題】小型で安価な構成であり、かつ効率の高いインバータ制御回路を提供すること。
【解決手段】インバータ制御回路は交流電源21を入力とし、直流電力に変換する全波整流回路23と、全波整流回路23に接続され複数個のスイッチング素子を有し直流電力から交流電力に変換するインバータ25と、インバータ25により駆動されるモータ26と、全波整流回路23の交流入力側に接続される小容量のリアクトル22と、全波整流回路23とインバータ25間に接続される小容量の平滑コンデンサ24とを備え、小容量のリアクトル22と小容量の平滑コンデンサ24の共振周波数と、インバータの出力周波数との共振を回避するように矩形波駆動方式と正弦波駆動方式を切り換えてモータ26を駆動させる構成としたことにより、高速回転時での直流電圧の変動を抑制することができ、また大容量のコンデンサを使用せずに高速回転制御が行なえ回路の小型化が実現できる。 (もっと読む)


【課題】モータ駆動制御システムにおいて、交流電動機の駆動制御に支障を来たすことなく、交流電動機に流れる電流を検出する電流センサの故障診断を高い信頼性をもって行なうことを可能とする。
【解決手段】相電流演算部320は、電流センサ180による母線電流Idcの検出値と、インバータ140のスイッチング素子Q3〜Q8のオン・オフの組合せを示すスイッチングパターンとに基づいて、交流電動機200の相電流を推定する。相電流比較部330は、相電流演算部320による相電流の推定値と、電流センサ240による相電流の検出値との比較結果に基づいて、電流センサ240の故障を診断する。制御部340は、交流電動機200の駆動に基づく暗騒音が発生しているときに電流センサ240の故障診断の実行期間を設けるとともに、故障診断の実行期間中は、制御指令演算部310で用いる搬送波の周波数を一時的に低下させる。 (もっと読む)


【課題】電力変換器により給電される車両用3相駆動電動機のトルクを推定するための方法であって、3つの相線路が電力変換器から駆動電動機に導くことによって、車両用駆動電動機のトルクを確実に推定する。
【解決手段】3つの相線路6,7,8のうち少なくとも2つの相線路においてそれぞれ電流i1,i2,i3が測定され、3つの相線路6,7,8においてそれぞれ電圧u1,u2,u3が測定される。測定された電流又は測定された電圧から回転磁界周波数がが求められる。最終的に、測定された電流と、測定された電圧と、求められた回転磁界周波数とからトルクが推定される。 (もっと読む)


【課題】蓄電池設備の容量(設置スペースおよび重量)を大きくせずに、船舶航行中の電池切れを防止するようにした電気推進装置を提供する。
【解決手段】陸上電源8から船舶内の蓄電池3を充電し、その電力によって推進用電動機2を駆動する船舶用電気推進装置において、船舶の目的地までの距離S1、速度の計画値v1、推進用電動機の消費電力計画値P1からなる第1群のデータまたは、GPS28、電力検出器32で実測された距離S2、速度v2、推進用電動機2の消費電力P2からなる第2群のデータのいずれかと蓄電池の電池残量A1とから、目的地まで到達可能な推進電動機の消費電力上限値を求め、電力上限値を推進用電動機2に印加された電圧で除算してトルク分電流上限値IqLIMを求め、推進力指示器によって設定される推進用電動機のトルク分電流指令値Iq*がトルク分電流上限値IqLIMを超えないように制限して推進用電動機2を駆動する。 (もっと読む)


21 - 40 / 317