説明

モータ制御システム

【課題】交流モータにおいて最適電流進角ライン上か又はその近傍での電流位相による矩形波制御を積極的に用いることによってシステム全体の損失を効果的に低減する。
【解決手段】モータ制御システム10は、バッテリ11からの直流電圧を昇降圧可能なコンバータ20と、コンバータ20による昇圧直流電圧を交流電圧に変換するインバータ22と、インバータ22から交流電圧が印加されて駆動される交流モータM1と、入力されるトルク指令値に応じてコンバータ20およびインバータ22を作動制御することにより交流モータを矩形波制御等の複数の制御方式で駆動制御可能な制御部26とを備える。制御部26は、交流モータM1が矩形波制御中であるとき、交流モータM1に流れるモータ電流のd軸q軸平面上における電流ベクトルの電流位相(id,iq)が最適電流進角ライン上に近づくようにシステム電圧指令値VH*を補正する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータ制御システムに係り、特に、コンバータで昇圧された直流電圧をインバータで交流電圧に変換して印加することにより交流モータを駆動制御するモータ制御システムに関する。
【背景技術】
【0002】
従来、バッテリからの電力により駆動されて動力を出力する電動機を走行用動力源として備えた電気自動車が知られている。上記電動機には、三相同期型交流モータが用いられることがある。この三相同期型交流モータは、電源から供給される直流電圧をインバータによって三相交流電圧に変換して印加されることによって駆動される。
【0003】
また、上記電気自動車では、バッテリから供給される直流電圧をそのままインバータへ供給するのではなく、昇降圧コンバータで所定の指令値まで昇圧してから上記インバータへ入力することがある。このように昇降圧コンバータで昇圧してシステム電圧VHを高くすることで、交流モータに関してより高トルク高回転での駆動が可能になるという利点がある。
【0004】
上記三相交流モータの制御方式として、正弦波パルス幅変調(PWM)制御、過変調制御および矩形波制御が周知である。これらの制御方式が車両の運転条件や後述する変調率等に応じて選択的に切り替えられて用いられることが広く行われている。
【0005】
例えば、特許文献1(特開2006−311768号公報)には、インバータへの入力電圧を可変制御可能なモータ制御システムにおいて、特定の制御方式における変調率を目標値に維持することが開示されている。このモータ制御システムでは、インバータ(14)が、PWM制御ブロック(200)によるトルク制御に従って、システム電圧VHを交流電圧に変換して交流モータ(M1)へ印加する。変調率目標値設定部(310)は、変調率が固定されないインバータ(14)での特定の制御方式において、システム全体での損失が低減されるような変調率を変調率目標値(Kmd♯)として設定する。変調率演算部(330)は、インバータ(14)への入力電圧すなわちシステム電圧(VH)に対するモータ必要電圧の振幅(Vamp)の比を演算して実際の変調率(Kmd)を求める。電圧指令値発生部(340)は、実際の変調率(Kmd)および変調率目標値(Kmd♯)の比較に基づき、システム電圧(VH)の電圧指令値(VH♯)を生成する。コンバータ(12)は、電圧指令値(VH♯)に基づきシステム電圧(VH)を可変制御するというものである。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−311768号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記特許文献1のモータ制御システムのように、コンバータ、インバータおよび交流モータを含むモータ制御システムでは、コンバータによる昇圧電圧を低くして所謂1パルス制御の矩形波制御で交流モータを動作させることがコンバータおよびインバータでのスイッチング損失を低減するのに有利であるが、矩形波制御は弱め界磁制御の下での電圧位相制御であるため弱め界磁電流が増加するとモータ損失が増加することになる。逆に、コンバータによる昇圧電圧を高くして正弦波PWM制御で交流モータを動作させるとモータ損失は低減できるが、スイッチング回数の増加に伴うスイッチング損失により、コンバータおよびインバータでの損失が増加することになる。したがって、交流モータを含むシステム全体の損失を最小にするには、矩形波制御で且つモータ電流の電流ベクトルが最大トルクを出力する最適電流進角ライン上か又はその近傍にあるときである。
【0008】
このようにモータ電流の電流位相が最適電流進角ライン上か又はその近傍の矩形波制御モードで交流モータの動作を制御しようとするとき、矩形波制御における変調率が一定(例えば0.78)となるため、上記特許文献1に記載のように変調率を目標としてシステム電圧を可変制御することができない。
【0009】
本発明の目的は、交流モータにおいて最適電流進角ライン上か又はその近傍での矩形波制御を積極的に用いることによりシステム全体の損失を効果的に低減できるモータ制御システムを提供することである。
【課題を解決するための手段】
【0010】
本発明に係るモータ制御システムは、電源から供給される直流電圧をシステム電圧指令値に従って昇降圧可能なコンバータと、前記コンバータから出力されるシステム電圧としての直流電圧を交流電圧に変換するインバータと、インバータから交流電圧が印加されて駆動される交流モータと、入力されるトルク指令値に応じて前記コンバータおよびインバータを作動制御することにより前記交流モータを正弦波PWM制御、過変調制御および矩形波制御のいずれかの制御方式で駆動制御可能な制御部と、を備えるモータ制御システムであって、前記制御部は、前記交流モータが矩形波制御中であるとき、前記交流モータに流れるモータ電流のd軸q軸平面上における電流ベクトルの電流位相が最適電流進角ライン上に近づくように前記システム電圧指令値を補正するものである。
【0011】
本発明に係るモータ制御システムにおいて、前記制御部は、前記モータ電流の電流ベクトルの電流位相フィードバック制御により前記システム電圧指令値を補正するシステム電圧補正部を含んでもよい。
【0012】
この場合、前記システム電圧補正部は、前記モータ電流に基づいてシステム電圧偏差を生成するシステム電圧偏差生成部と、前記システム電圧偏差を解消すべくシステム電圧補正値を生成する比例積分制御部とからなってもよい。
【0013】
また、本発明に係るモータ制御システムにおいて、前記制御部は、前記d軸q軸平面上において前記最適電流進角ラインの進角側に昇圧閾値ラインが規定されるとともにその遅角側に降圧閾値ラインが規定されたマップを記憶しており、前記電流位相が前記昇圧閾値ラインを進角側に下回ったとき最適電流進角ラインへ戻すように前記コンバータを所定レートで昇圧動作させ、前記電流位相が前記降圧閾値ラインを遅角側に上回ったときに前記コンバータを所定レートで降圧動作させてもよい。
【0014】
さらに、本発明に係るモータ制御システムにおいて、前記制御部は、前記交流モータに印加される交流電圧の電圧位相が目標電圧位相となるよう電圧位相フィードバック制御を行うことにより前記システム電圧指令値を補正するシステム電圧補正部を含んでもよい。
【0015】
この場合、前記システム電圧補正部は、補正後のシステム電圧指令値に応じて目標電圧位相を生成する目標電圧位相生成部と、前記目標電圧位相と実際の指令電圧位相との偏差を解消すべくシステム電圧補正値を生成する比例積分制御部とからなってもよい。
【発明の効果】
【0016】
本発明に係るモータ制御システムによれば、コンバータによる昇圧電圧をできるだけ低く抑えながら最適電流進角ライン上か又はその近傍の電流位相で交流モータを矩形波制御により動作させることができる。これにより、システム全体の損失を効果的に低減できる。
【図面の簡単な説明】
【0017】
【図1】モータ制御システムの全体構成を概略的に示す図である。
【図2】正弦波PWM制御、過変調PWM制御および矩形波制御の電圧波形と変調率を示す図である。
【図3】モータの運転条件をトルクおよび回転数で規定するマップを示す図である。
【図4】d軸q軸平面上において正弦波PWM制御、過変調制御および矩形波制御のモータ電流の電流位相を示す図である。
【図5】(a)は3制御モードにおけるシステム電圧VHとシステム損失との関係を示すグラフ、(b)は3制御モードにおけるシステム電圧と変調率との関係を示すグラフ、(c)は3制御モードにおけるシステム電圧とモータ電流値との関係を示すグラフである。
【図6】制御部を示すブロック図である。
【図7】図6における電流位相フィードバック部の一例を示すブロック図である。
【図8】システム電圧が補正されることにより制御方式切替ラインが変位する様子を示す、図3と同様の図である。
【図9】図6における電流位相フィードバック部の変形例を示すブロック図である。
【図10】電流位相フィードバック部に代わる電圧位相フィードバック部を含む制御部を示す、図6と同様のブロック図である。
【図11】図10における電圧位相フィードバック部の一例を示すブロック図である。
【発明を実施するための形態】
【0018】
以下に、本発明に係る実施の形態(以下、実施形態という)について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。
【0019】
図1は、一実施形態であるモータ制御システム10の全体構成を示す図である。モータ制御システム10は、モータを走行用動力源として搭載するハイブリッド自動車や電気自動車等に好適に用いることができる。
【0020】
モータ制御システム10は、直流電源であるバッテリ11と、電圧センサ12,14と、システムメインリレーSMR1,SMR2と、平滑コンデンサ16,18と、昇降圧コンバータ(以下、単に「コンバータ」という)20と、インバータ22と、電流センサ24と、制御部26と、交流モータM1とを備える。
【0021】
交流モータM1は、例えばハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動用電動機である。あるいは、この交流モータM1は、エンジンにて駆動される発電機の機能を持つように構成されてもよく、電動機および発電機の機能を併せ持つように構成されてもよい。さらに、交流モータM1は、エンジンに対して電動機として動作し、例えば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
【0022】
バッテリ11は、ニッケル水素またはリチウムイオン等の二次電池からなる。あるいは、二次電池以外に、化学反応を伴わないキャパシタや、燃料電池が電源装置として用いられてもよい。電圧センサ12は、バッテリ11から出力される直流電圧またはバッテリ電圧Vbを検出し、その検出した直流電圧Vbを制御部26へ出力する。また、バッテリ11には温度センサ28が設けられている。温度センサ28によって検出されたバッテリ温度Tbは、制御部26へ出力される。
【0023】
システムメインリレーSMR1は、バッテリ11の正極端子および電力線30の間に接続され、システムメインリレーSMR2は、バッテリ11の負極端子およびアース線32の間に接続される。システムメインリレーSMR1,SMR2は、制御部26からの信号SEによりオン・オフされる。より具体的には、システムメインリレーSMR1,SMR2は、制御部26からのH(論理ハイ)レベルの信号SEによりオンされ、制御部26からのL(論理ロー)レベルの信号SEによりオフされる。平滑コンデンサ16は、電力線30およびアース線32の間に接続される。
【0024】
コンバータ20は、リアクトルLと、電力用半導体スイッチング素子E1,E2と、ダイオードD1,D2とを含む。電力用半導体スイッチング素子E1およびE2は、電力線30およびアース線32の間に直列に接続される。電力用スイッチング素子E1およびE2のオン・オフは、制御部26からのスイッチング制御信号S1,S2によって制御される。
【0025】
電力用半導体スイッチング素子(以下、単に「スイッチング素子」という)としては、IGBT(Insulated Gate Bipolar Transistor)等を好適に用いることができる。スイッチング素子E1,E2に対しては、逆並列ダイオードD1,D2が配置されている。
【0026】
リアクトルLは、スイッチング素子E1およびE2の接続ノードと電力線30の間に接続される。また、平滑コンデンサ16は、電力線30およびアース線32の間に接続される。平滑コンデンサ16は、バッテリ電圧Vbを平滑化してインバータ22へ供給する機能を有する。
【0027】
インバータ22は、電力線30およびアース線32の間に並列に設けられる、U相アーム34と、V相アーム36と、W相アーム38とからなる。各相アーム34〜38は、正極側の電力線31とアース線32との間に直列接続されたスイッチング素子から構成される。例えば、U相アーム34はスイッチング素子E3,E4からなり、V相アーム36はスイッチング素子E5,E6からなり、W相アーム38はスイッチング素子E7,E8からなる。また、スイッチング素子E3〜E8に対して、逆並列ダイオードD3〜D8がそれぞれ接続されている。スイッチング素子E3〜E8のオン・オフは、制御部26からのスイッチング制御信号S3〜S8によって制御される。
【0028】
各相アーム34〜38の中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、三相同期型の永久磁石モータであり、U,V,W相の3つのコイルの一端が中性点39に共通接続されて構成される。さらに、各相コイルの他端は、各相アーム34〜38のスイッチング素子の中間点と接続されている。
【0029】
コンバータ20は、昇圧動作時には、バッテリ11から供給された直流電圧を昇圧した直流電圧(インバータ22への入力電圧に相当するこの直流電圧を、以下「システム電圧VH」という)をインバータ22へ供給する。より具体的には、制御部26からのスイッチング制御信号S1,S2に応答して、スイッチング素子E1のオン期間およびE2のオン期間が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。
【0030】
昇降圧コンバータ20は、バッテリ11から供給された例えば300Vの直流電圧を最
大で例えば600Vの昇圧上限電圧まで昇圧可能である。ただし、この昇圧上限電圧は、固定値ではなく、例えば車両の要求等に応じて可変であってもよく、例えば、ドライバーのスイッチ操作によってエコモードが選択されたとき、制御部26にECO信号が入力されることによってコンバータ20の昇圧上限値が例えば400Vに制限されてもよい。
【0031】
また、昇降圧コンバータ20は、降圧動作時には、平滑コンデンサ18を介してインバータ22から供給された直流電圧を降圧してバッテリ11を充電する。より具体的には、制御部26からのスイッチング制御信号S1,S2に応答して、スイッチング素子E1のみがオンする期間と、スイッチング素子E1,E2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。
【0032】
平滑コンデンサ18は、コンバータ20からの直流電圧を平滑化してインバータ22へ供給する機能を有する。電圧センサ14は、平滑コンデンサ18の両端の電圧、すなわち、システム電圧VHを検出し、その検出値VHを制御部26へ出力する。
【0033】
インバータ22は、交流モータM1のトルク指令値Tq*が正(Tq*>0)の場合には、平滑コンデンサ18から直流電圧が供給されると制御部26からのスイッチング制御信号S3〜S8に応答した、スイッチング素子E3〜E8のスイッチング動作により直流電圧を交流電圧に変換して正のトルクを出力するように交流モータM1を駆動する。また、インバータ22は、交流モータM1のトルク指令値Tq*が零の場合(Tq*=0)には、スイッチング制御信号S3〜S8に応答したスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるように交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値Tq*によって指定された正または零のトルクを発生するように駆動される。
【0034】
また、モータ制御システム10が搭載された車両の回生制動時には、交流モータM1のトルク指令値Tq*は負に設定される(Tq*<0)。この場合には、インバータ22は、スイッチング制御信号S3〜S8に応答したスイッチング動作により、交流モータM1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧を平滑コンデンサ18を介してコンバータ20へ供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0035】
電流センサ24は、交流モータM1に流れるモータ電流を検出し、その検出したモータ電流を制御部26へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ24は2相分のモータ電流(例えば、V相電流ivおよびW相電流iw)を検出するように配置すれば足りる。
【0036】
交流モータM1には、例えばレゾルバ等の回転角センサ40が設けられている。回転角センサ40は、交流モータM1のロータ回転角θを検出し、その検出した回転角θを制御部26へ送出する。制御部26では、回転角θに基づき交流モータM1の回転数や回転速度を算出する。
【0037】
制御部26は、外部に設けられた電子制御ユニット(ECU)から入力されたトルク指令値Tq*、電圧センサ12によって検出されたバッテリ電圧Vb、電圧センサ14によって検出されたシステム電圧VHおよび電流センサ24からのモータ電流iu,iv、回転角センサ40からの回転角θに基づいて、後述する方法により交流モータM1がトルク指令値Tq*に従ったトルクを出力するように、スイッチング制御信号S1〜S8を生成してコンバータ20およびインバータ22の動作を制御する。
【0038】
コンバータ20の昇圧動作時には、制御部26は、平滑コンデンサ18の出力電圧VHをフィードバック制御し、コンバータ20の出力電圧VHがシステム電圧指令値VH*となるようにスイッチング制御信号S1,S2を生成する。
【0039】
また、制御部26は、車両が回生制動モードに入ったことを示す信号を外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するようにスイッチング制御信号S3〜S8を生成してインバータ22へ出力する。これにより、インバータ22は、交流モータM1で発電された交流電圧を直流電圧に変換してコンバータ20へ供給する。
【0040】
さらに、制御部26は、車両が回生制動モードに入ったことを示す信号を外部ECUから受けると、インバータ22から供給された直流電圧を降圧するようにスイッチング制御信号S1,S2を生成し、コンバータ20へ出力する。これにより、交流モータM1が発電した交流電圧は、降圧された直流電圧に変換されてバッテリ11に充電される。
【0041】
次に、制御部26によって制御される、インバータ22における電力変換について詳細に説明する。本実施形態のモータ制御システム10では、インバータ22における電力変換について図2に示すような3つの制御方式(または制御モード)を切替えて使用する。
【0042】
正弦波PWM制御方式は、一般的なPWM制御として用いられるものであり、各相アームにおけるスイッチング素子のオン・オフを、正弦波状の電圧指令値と搬送波(代表的には、三角波)との電圧比較に従って制御する。この結果、上アーム素子のオン期間に対応するハイレベル期間と、下アーム素子のオン期間に対応するローレベル期間との集合について、一制御周期内でその基本波成分が正弦波状交流電圧(モータ必要電圧)となるようにデューティ比が制御される。周知のように、一般的な正弦波PWM制御方式では、システム電圧VHに対するモータ必要電圧の振幅の比として定義される変調率Kmdを0.61まで高めることができる。ただし、2相変調方式または3次高調波重畳制御による正弦波PWM制御の場合には、変調率Kmdを0.70まで高められることが知られている。
【0043】
一方、矩形波制御方式では、上記一制御周期内で、ハイレベル期間およびローレベル期間の比が1:1の矩形波1パルス分を交流モータM1に印加する。矩形波制御方式では、基本波成分の振幅が固定されるため、電力演算によって求められるトルク実績値とトルク指令値との偏差に基づく、矩形波パルスの電圧位相制御によってトルク制御が実行される。これにより、変調率Kmdは0.78まで高められる。
【0044】
過変調制御方式は、上記正弦波PWM制御方式と同様に正弦波状の電圧指令値と搬送波との電圧比較に従ってPWM制御を行なうものであるが、この場合、電圧指令値が搬送波よりも大きくなる領域で比較的大きなデューティ比の矩形パルスが生成される結果として略正弦波状をなす基本波成分の振幅を拡張することができ、これにより変調率Kmdを0.61〜0.78の範囲で高めることができる。
【0045】
本実施形態のモータ制御システム10では、コンバータ20を昇圧動作させることなくバッテリ電圧Vbをシステム電圧VHとしてインバータ22に供給することによって、交流モータM1を上記3つの制御方式のいずれかで駆動することができる。図3は、その場合の制御方式の適用を示すマップの例を示す。このマップでは、横軸にモータ回転数が、縦軸にモータ出力トルクがとられている。図3に示すように、低回転数域から中回転数域にかけては正弦波PWM制御が適用され、中回転領域から高回転領域にかけては過変調制御が適用され、より高回転領域では矩形波制御が適用されるようになっている。
【0046】
制御部26は、3つの制御方式から次のようにして制御方式を選択する。図示しない外部ECUにおいてアクセル開度等に基づく車両要求出力から交流モータM1のトルク指令値Tq*が算出されて入力されるのを受けて、制御部26は、予め設定された図3に示すようなマップ等に基づいて、交流モータM1のトルク指令値Tq*およびモータ回転数Nからモータ必要電圧を算出する。
【0047】
そして、制御部26は、このモータ必要電圧とバッテリ電圧Vbとの関係に従って、弱め界磁制御(矩形波制御方式)および最大トルク制御(正弦波PWM制御方式/過変調制御方式)のいずれかを適用してモータ制御を行なうかを選択する。最大トルク制御適用時に、正弦波PWM制御方式および過変調制御方式のいずれを用いるかについては、ベクトル制御に従う電圧指令値の変調率範囲に応じて選択する。すなわち、0<変調率≦0.61で正弦波PWM制御が、0.61<変調率<0.78で過変調制御が選択される。また、変調率≦0.78では矩形波制御が選択される。
【0048】
上記のように矩形波制御では変調率Kmdが0.78で一定になるため、バッテリ電圧Vbをそのままシステム電圧VHとして用いて実行される矩形波制御によって得られる出力トルクおよび回転数には限界がある。そのためバッテリ電圧Vbではトルク指令値に見合った出力トルクを出せなくなったときに、コンバータ20による昇圧動作を開始してシステム電圧VHを高くするよう制御される。ただし、コンバータ20には、コンバータ20およびインバータ22を構成するスイッチング素子等の耐圧性能に起因する昇圧上限値(または昇圧最大値)が存在する。したがって、システム電圧VHが昇圧上限値にまで達すると、その状態を維持した上で弱め界磁制御に従った矩形波制御方式が適用されることになる。
【0049】
図4は、d軸q軸平面上において正弦波PWM制御、過変調制御および矩形波制御のモータ電流の電流位相を示すグラフである。このグラフでは、横軸にd軸電流idが、縦軸にq軸電流iqがとられている。そして、最適電流進角ラインが破線で示されている。この最適電流進角ラインは、交流モータM1での損失が最小となる最適電流位相(id,iq)optの点を連ねて描かれるラインであり、予め実験、シミュレーション等によって得られたものを記憶させておくことができる。
【0050】
図4に示すように、交流モータM1を正弦波PWM制御および過変調制御によって駆動するとき、モータ電流の電流位相が最適電流進角ライン上に一致する電流位相となるようにインバータ22によるモータ電流制御が行われる。これに対し、矩形波制御では、弱め界磁制御を行うために界磁電流であるd軸電流idの絶対値が増加するために、零点位置を基点とする電流ベクトルの先端位置すなわち電流位相が最適電流進角ラインから図中左側(または進角側)へ離れることになってモータ損失が増加する。その様子を、図5を参照して次に説明する。
【0051】
図5(a)は3制御モードにおけるシステム電圧VHとシステム損失との関係を示すグラフ、同(b)は3制御モードにおけるシステム電圧VHと変調率Kmdとの関係を示すグラフ、同(c)は3制御モードにおけるシステム電圧VHとモータ電流位相との関係を示すグラフである。
【0052】
図5(a)を参照すると、コンバータ20による昇圧電圧を低くして所謂1パルス制御の矩形波制御で交流モータM1を動作させることがコンバータ20およびインバータ22でのスイッチング損失を低減してシステム全体の損失を最小にするのに有利である。しかし、矩形波制御は上記のように弱め界磁制御の下での電圧位相制御であるため弱め界磁電流が増加するほどにモータ損失が増加し、それに伴ってシステム全体の損失も大きくなる。
【0053】
逆に、コンバータ20による昇圧電圧を高くして正弦波PWM制御で交流モータM1を動作させるとモータ損失は低減できるが、スイッチング回数の増加に伴うスイッチング損失により、コンバータおよびインバータでの損失が増加することになる。したがって、交流モータM1を含むシステム全体の損失を最小にするには、矩形波制御で且つモータ電流の電流ベクトルが最大トルクを出力する最適電流進角ライン上か又はその近傍にあるときである。以下、このような最適電流進角ライン上か又はその近傍の電流位相を最適電流位相(id,iq)optという。また、図4および図5(a)において、このような最適電流位相(id,iq)optでの矩形波制御による交流モータM1の動作点が符号42で示されている。
【0054】
このようにモータ電流が最適電流位相(id,iq)optで且つ矩形波制御にて交流モータM1の動作を制御しようとするとき、図5(b),(c)に示すように、矩形波制御における変調率Kmdが一定(0.78)となるため、変調率Kmdのフィードバック制御によってシステム電圧VHを最適に可変制御することができない。
【0055】
そこで、本実施形態のモータ制御システム10において、制御部26は、交流モータM1を流れるモータ電流の電流位相(id,iq)のフィードバック制御によってシステム電圧指令値VH*を補正することにより、上記最適電流位相(id,iq)optでの矩形波制御を積極的に活用することとした。次に、図6を参照して、制御部26における電流位相のフィードバック制御によるシステム電圧指令値の補正制御について説明する。
【0056】
図6は、制御部26における矩形波制御および電流位相フィードバック制御に関わる制御構成を示すブロック図である。図6に示す制御構成は、制御部によって実行される所定プログラムに従った制御演算処理によって実現されるが、その一部または全部がハードウェア要素によって実現されてもよい。
【0057】
制御部26は、3相2相変換部50、トルク推定部52、減算部53、トルクフィードバック部54、システム電圧指令生成部56、電流位相フィードバック部(システム電圧補正部)58、および、システム電圧フィードバック部60を含む。
【0058】
3相2相変換部50は、交流モータM1に流れる3相モータ電流iu,iv,iwを、ロータ回転角θを用いた座標変換によって、d軸q軸の2相電流id,iqに変換して出力する機能を有する。具体的には、電流センサ24によって検出されるV相電流ivおよびW相電流iwからU相電流iu(=−(iv+iw))を算出し、これらiu,iv,iwに基づき、回転角センサ40によって検出される回転角θに応じて、d軸電流idおよびq軸電流iqを生成して出力する。
【0059】
トルク推定部52は、予め計測したトルクと電流の関係をマップとして持っており、3相2相変換部50から入力されるd軸電流idおよびq軸電流iqに基づき上記マップを参照することによって実際トルクTqを導出する。
【0060】
減算部53は、外部ECUから入力されたトルク指令Tq*と、上記のように導出された実際トルクTqとの比較によりトルク偏差ΔTqを生成して、トルクフィードバック部54へ入力する。
【0061】
トルクフィードバック部54は、トルク偏差ΔTqについて所定の比例ゲインGpおよび積分ゲインGiによるPI演算を行なって制御偏差を求め、求められた制御偏差に応じて矩形波電圧の位相Φvを設定する。具体的には、正トルク発生(Tq>0)時には、トルク不足時には電圧位相を進める一方で、トルク過剰時には電圧位相を遅らせるとともに、負トルク発生(Tq<0)時には、トルク不足時には電圧位相を遅らせる一方で、トルク過剰時には電圧位相を進める。なお、本実施形態ではトルク偏差ΔTqを解消するために比例積分制御を実行するものとして説明するが、これに限定されるものではなく、比例積分微分制御(PID制御)を行ってもよい。
【0062】
さらに、トルクフィードバック部54は、上記電圧位相Φvに従って2相電圧指令値Vd*,Vq*を求め、これらの2相電圧指令値Vd*,Vq*を、上記回転角θを用いた座標変換(2相→3相)によって3相電圧指令値(矩形波パルス)Vu*,Vv*,Vw*に変換し、そして、これらの3相電圧指令値Vu*,Vv*,Vw*に従ってスイッチング制御信号S2〜S8を発生する。その結果、インバータ22がスイッチング制御信号S3〜S8に従ったスイッチング動作を行なうことにより、電圧位相Φvに従った矩形波パルスが交流モータM1の各相電圧Vu,Vv,Vwとして印加される。
【0063】
システム電圧指令生成部56は、外部ECUから入力されるトルク指令値Tq*、および、上記回転角θから算出されたモータ回転数Nに基づき、予め設定されたテーブルまたはマップ等を参照して、システム電圧指令値VH*を生成して出力する。
【0064】
システム電圧フィードバック部60は、入力されるシステム電圧指令値VH*にまでバッテリ電圧Vbを昇圧するようスイッチング制御信号S1,S2を生成してコンバータ20へ出力する。この制御信号を受けてスイッチング素子E1,E2がオン・オフ制御されることによって、電圧指令値VH*に応じたシステム電圧VHがコンバータ20から平滑コンデンサ18を介してインバータ22へ供給される。
【0065】
コンバータ20の出力電圧であるシステム電圧VHは、電圧センサ14によって検出されて、システム電圧フィードバック部60へ入力される。これにより、閉じた制御ループが構成され、システム電圧VHのフィードバック制御が行われる。具体的には、システム電圧指令値VH*と、電圧センサ14によって検出されるシステム電圧VHとの偏差が解消されるように操作量(具体的には、コンバータのスイッチング素子E1,E2のデューティ比)が例えばPI演算されてフィードバック制御される。
【0066】
電流位相フィードバック部58は、上記3相2相変換部50によって生成されたモータ実電流である電流位相(id,iq)を受け取り、それに応じてシステム電圧補正値Cvhを出力する機能を有する。具体的には、図7に示すように、電流位相フィードバック部58は、VH偏差生成部62とPI制御部64とを含む。
【0067】
VH偏差生成部62は、交流モータM1に流れるモータ電流の電流位相(id,iq)を、トルクを変えることなく、上記最適電流位相(id,iq)optに変更するのに必要なシステム電圧偏差ΔVHを生成するものであり、そのために参照されるマップが制御部26に予め記憶されている。図7では、実際の電流位相を符号42で示す最適電流位相へ変更するために必要とされるシステム電圧偏差ΔVHが+60ボルトである例が示されている。
【0068】
なお、このシステム電圧偏差ΔVHは、最適電流進角ラインよりも遅角側に実際の電流位相(id,iq)があって、それを最適電流位相(id,iq)optに変更するときには、負の値(すなわちシステム電圧VHの降圧する方)に設定される。
【0069】
PI制御部64は、VH偏差生成部62によって生成されたシステム電圧偏差ΔVHを解消するための比例積分制御を実行する。具体的には、PI制御部64は、所定の比例ゲインおよび積分ゲインによるPI演算を行って制御偏差、具体的にはシステム電圧補正値Cvhを求め、そして、このシステム電圧補正値Cvhを、システム電圧指令生成部56によって生成されたシステム電圧指令値VH*に対して、加算部59にて加算して補正後システム電圧指令値(VH*+Cvh)を生成する。このようなシステム電圧指令値VH*の補正が電流位相フィードバック部58を含む閉じた制御ループにて繰り返し実行されることによって、交流モータM1の電流位相(id,iq)が最適電流位相(id,iq)optで矩形波制御される状態に正確かつ迅速に移行できる。
【0070】
なお、交流モータM1の制御方式が切り替わった後、所定時間は、システム電圧VHの補正値Cvhを変更しないようにしてもよい。また、コンバータ20による昇圧動作開始後、所定時間は、システム電圧VHの補正を行わないこととしてもよい。これらは、制御モードの切替わりのハンチングを防止するのに有効である。
【0071】
図8に、上記のようにシステム電圧VHが補正される様子を回転数トルクマップ上にて示す。例えば、図8の上図に示すように、コンバータ20が非昇圧作動時においてバッテリ電圧Vbがそのままシステム電圧VHとしてインバータ22に供給されている状態において、交流モータM1の現在の過変調制御領域A2中の動作点X1が過変調矩形波切替ライン70を大きく超えて矩形波制御領域A3の動作点X2へ移行しようとするときを考える。この変更後の動作点X2は、コンバータ20による昇圧を行わなくても矩形波制御により駆動可能な動作点である。なお、ここで変更前の動作点X1が過変調制御領域A2内の動作点であるものとして例示するが、動作点X1が正弦波PWM領域A1にある場合も同様である。
【0072】
このような場合、本実施形態のモータ制御システム10では、コンバータ20による昇圧動作を開始してシステム電圧VHを上記のように補正することで高く設定し、図8中の下図に示すように、過変調矩形波切替ライン70を高回転側(すなわち図中の右側)へシフトさせる。これにより、動作点X2は、過変調矩形波切替ライン70近傍で且つ矩形波制御領域A3中の動作点となる。
【0073】
これとは逆に、コンバータ20が昇圧動作中であって、交流モータM1の動作点が矩形波制御領域A3から過変矩形波調切替ライン70を超えて過変調領域A2または正弦波PWM領域A1へ移行しようとするときには、上記のようなシステム電圧VHの補正によってシステム電圧VHが低く設定される。すなわち、コンバータ20による昇圧電圧が低くなる。これにより、過変調矩形波切替ライン70が低回転側(すなわち図中の左側)へシフトして、やはり、過変調矩形波切替ライン70近傍で且つ矩形波制御領域A3中の動作点となる。なお、この場合、補正後のシステム電圧指令値(VH*+Cvh)がバッテリ電圧Vbより低くなるとき、コンバータ20は昇圧動作を停止し、バッテリ電圧Vbをシステム電圧VHとする過変調制御または正弦波PWM制御が実行されることになる。
【0074】
上述したように本実施形態のモータ制御システム10によれば、コンバータ20による昇圧電圧をできるだけ低く抑えながら最適電流位相(id,iq)optで交流モータM1を矩形波制御により動作させることができる。これにより、コンバータ20、インバータ22および交流モータM1を含むシステム全体の損失を効果的に低減できる。
【0075】
次に、図9を参照して、上記電流位相フィードバック部58の変形例について説明する。この変形例におけるコンバータ20の昇降圧制御は、上述したシステム電圧VHの補正と組み合わせて適用可能であるが、単独で用いてシステム電圧VHの補正を行ってもよい。単独で用いた場合でも、コンバータ20による昇圧電圧をできるだけ低く抑えながらモータ電流を最適電流位相(id,iq)optか又はその近傍に維持しつつ交流モータM1を矩形波制御により動作させることが可能である。
【0076】
電流位相フィードバック部58は、昇降圧指令部72と、昇降圧レート設定部74と、積分制御部76とを含む。
【0077】
昇降圧指令部72は、d軸q軸平面上において最適電流進角ラインの進角側に昇圧閾値ラインが規定されるとともにその遅角側に降圧閾値ラインが規定されたマップ73をROM等に記憶している。そして、入力されるモータ電流の電流位相(id,iq)が昇圧閾値ラインを進角側に下回ったとき最適電流進角ラインへ戻すようにコンバータ20に対して昇圧動作を指令し、一方、電流位相(id,iq)が降圧閾値ラインを遅角側に上回ったときにコンバータ20に対して降圧動作を指令する。
【0078】
ここで、マップ73において、最適電流進角ラインと降圧閾値ラインとの間のマージンm2は、最適電流進角ラインと昇圧閾値ラインとの間のマージンm1よりも小さく設定されるのが好ましい。システム電圧VHがかなり高い昇圧電圧になっている状態において降圧制御が遅れた場合にはインバータ22等に過電流が生じることがあるため、上記のようにマージンm2を設定することより過電流を有効に抑制することができる。
【0079】
昇降圧レート設定部74は、昇降圧指令部72から昇圧指令を受け取ると所定の昇圧レート+aに設定し、他方、昇降圧指令部72から降圧指令を受け取ると所定の降圧レート−bに設定する。そして、積分制御部76は、昇降圧レート設定部74により設定された昇圧レート+aまたは降圧レート−bでの積分制御を行って、システム電圧指令値VH*に対する補正値Cvhを生成する。
【0080】
この場合、昇圧レートの値aと降圧レートの値bは、同じであってもよいし、あるいは、異ならせてもよい。異ならせる場合には、上記マージンm1,m2設定の場合と同様の理由から、昇圧レートaを降圧レートbよりも小さく設定するのが好ましい。
【0081】
このようなヒステリシス制御によってコンバータ20の昇降圧動作を制御することで、交流モータM1における制御モード切替わりのハンチングを抑制することができる。
【0082】
次に、図10および図11を参照して、別の実施態様であるモータ制御システム80について説明する。ここでは、上記モータ制御システム10と相違する点について主として説明することとして、同じ構成要素に同じ参照符号を付して重複する説明を援用により省略する。
【0083】
図10は、電流位相フィードバック部に代わる電圧位相フィードバック部を含む制御部を示す、図6と同様のブロック図である。図11は、図10における電圧位相フィードバック部の一例を示すブロック図である。本実施形態のモータ制御システム80では、制御部26は、電流ベクトルの電流位相のフィードバック制御を行う電流位相フィードバック部58に代えて、電圧位相フィードバック部(システム電圧補正部)82を備えている。これ以外の構成は、上記モータ制御システム10と同様である。
【0084】
図10に示すように、電圧位相フィードバック部82は、矩形波制御ブロックのトルクフィードバック部54から指令電圧位相Φvの入力を受けて、これに基づきシステム電圧補正値Cvhを生成して加算部59に出力する機能を有する。電圧位相フィードバック部82には、後述するシステム電圧補正値Cvhの加算によって補正されたシステム電圧指令値VH*(正確には「VH*+Cvh」)が入力されるようになっている。
【0085】
より詳細には、電圧位相フィードバック部82は、図11に示すように、目標電圧位相生成部84と、減算部86と、PI制御部88とを含む。
【0086】
目標電圧位相生成部84には、補正後のシステム電圧指令値VH*と目標電圧位相Φv_targとの関係を規定するマップ85がROM等に予め記憶されており、入力されたシステム電圧指令値VH*に基づいてマップ85から目標電圧位相Φv_targを導出する。ここで「目標電圧位相Φv_targ」とは、交流モータM1に流れるモータ電流の電流位相(id,iq)を、トルクを変えることなく、上記最適電流位相(id,iq)optに変更するのに必要な矩形波パルスの電圧位相である。
【0087】
目標電圧位相生成部84から出力された目標電圧位相Φv_targは、減算部86において指令電圧位相Φvと比較または減算されて電圧位相偏差ΔΦvが生成される。そして、この電圧位相偏差ΔΦvがPI制御部88に入力される。
【0088】
PI制御部88では、上記電圧位相偏差ΔΦvを解消するための比例積分制御を実行する。具体的には、PI制御部88は、所定の比例ゲインおよび積分ゲインによるPI演算を行って制御偏差、具体的にはシステム電圧補正値Cvhを求め、そして、このシステム電圧補正値Cvhを、システム電圧指令生成部56によって生成されたシステム電圧指令値VH*に対して、加算部59にて加算して補正後システム電圧指令値(VH*+Cvh)を生成する。
【0089】
このようなシステム電圧指令値VH*の補正が電圧位相フィードバック部82を含む閉じた制御ループにて繰り返し実行されることによって、交流モータM1の電流位相(id,iq)が最適電流位相(id,iq)optで矩形波制御される状態に正確かつ迅速に移行できる。
【0090】
本実施形態のモータ制御システム80によっても同様に、矩形波パルスの電圧位相フィードバック制御を行うことにより、コンバータ20による昇圧電圧をできるだけ低く抑えながら最適電流位相(id,iq)optで交流モータM1を矩形波制御により動作させることができる。これにより、コンバータ20、インバータ22および交流モータM1を含むシステム全体の損失を効果的に低減できる。
【0091】
なお、本発明に係るモータ制御システムは、上述した各実施形態および変形例の構成に限定されるものではなく、特許請求の範囲に記載された事項の範囲内において種々の変更や改良が可能である。
【符号の説明】
【0092】
10,80 モータ制御システム、11 バッテリ、12,14 電圧センサ、16,18 平滑コンデンサ、20 昇降圧コンバータ、22 インバータ、24 電流センサ、26 制御部、28 温度センサ、30,31 電力線、32 アース線、34 U相アーム、36 V相アーム、38 W相アーム、39 中性点、40 回転角センサ、50 3相2相変換部、52 トルク推定部、53,86 減算部、54 トルクフィードバック部、56 システム電圧指令生成部、58 電流位相フィードバック部、59 加算部、60 システム電圧フィードバック部、62 VH偏差生成部、64,88 PI制御部、70 過変調矩形波切替ライン、72 昇降圧指令部、73,85 マップ、74 昇降圧レート設定部、76 積分制御部、82 電圧位相フィードバック部、84 目標電圧位相生成部、a 昇圧レート、A1 正弦波PWM制御領域、A2 過変調制御領域、A3 矩形波制御領域、b 降圧レート、Cvh システム電圧補正値、D1−D8 ダイオード、E1−E8 電力用半導体スイッチング素子、id d軸電流、iq q軸電流、iv V相電流、iw W相電流、Kmd 変調率、L リアクトル、m1,m2 マージン、M1 交流モータ、N モータ回転数、S1−S8 スイッチング制御信号、SE 信号、SMR1,SMR2 システムメインリレー、Tb バッテリ温度、Tq* トルク指令、Tq 実際トルク、Vb バッテリ電圧、Vd d軸電圧指令値、VH システム電圧、VH* システム電圧指令値、X1,X2 動作点、ΔTq トルク偏差、ΔVH システム電圧偏差、ΔΦv 電圧位相偏差、θ ロータ回転角、Φv 電圧位相、Φv_targ 目標電圧位相、ω モータ回転速度。

【特許請求の範囲】
【請求項1】
電源から供給される直流電圧をシステム電圧指令値に従って昇降圧可能なコンバータと、前記コンバータから出力されるシステム電圧としての直流電圧を交流電圧に変換するインバータと、インバータから交流電圧が印加されて駆動される交流モータと、入力されるトルク指令値に応じて前記コンバータおよびインバータを作動制御することにより前記交流モータを正弦波PWM制御、過変調制御および矩形波制御のいずれかの制御方式で駆動制御可能な制御部と、を備えるモータ制御システムであって、
前記制御部は、前記交流モータが矩形波制御中であるとき、前記交流モータに流れるモータ電流のd軸q軸平面上における電流ベクトルの電流位相が最適電流進角ライン上に近づくように前記システム電圧指令値を補正する、
モータ制御システム。
【請求項2】
請求項1に記載のモータ制御システムにおいて、
前記制御部は、前記モータ電流の電流ベクトルの電流位相フィードバック制御により前記システム電圧指令値を補正するシステム電圧補正部を含む、モータ制御システム。
【請求項3】
請求項2に記載のモータ制御システムにおいて、
前記システム電圧補正部は、前記モータ電流に基づいてシステム電圧偏差を生成するシステム電圧偏差生成部と、前記システム電圧偏差を解消すべくシステム電圧補正値を生成する比例積分制御部とからなる、モータ制御システム。
【請求項4】
請求項1〜3のいずれか一項に記載のモータ制御システムにおいて、
前記制御部は、前記d軸q軸平面上において前記最適電流進角ラインの進角側に昇圧閾値ラインが規定されるとともにその遅角側に降圧閾値ラインが規定されたマップを記憶しており、前記電流位相が前記昇圧閾値ラインを進角側に下回ったとき最適電流進角ラインへ戻すように前記コンバータを所定レートで昇圧動作させ、前記電流位相が前記降圧閾値ラインを遅角側に上回ったときに前記コンバータを所定レートで降圧動作させる、モータ制御システム。
【請求項5】
請求項1に記載のモータ制御システムにおいて、
前記制御部は、前記交流モータに印加される交流電圧の電圧位相が目標電圧位相となるよう電圧位相フィードバック制御を行うことにより前記システム電圧指令値を補正するシステム電圧補正部を含む、モータ制御システム。
【請求項6】
請求項5に記載のモータ制御システムにおいて、
前記システム電圧補正部は、補正後のシステム電圧指令値に応じて目標電圧位相を生成する目標電圧位相生成部と、前記目標電圧位相と実際の指令電圧位相との偏差を解消すべくシステム電圧補正値を生成する比例積分制御部とからなる、モータ制御システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−46453(P2013−46453A)
【公開日】平成25年3月4日(2013.3.4)
【国際特許分類】
【出願番号】特願2011−181396(P2011−181396)
【出願日】平成23年8月23日(2011.8.23)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】