説明

Fターム[5H730FD01]の内容

DC−DCコンバータ (106,849) | 信号検出 (10,889) | 出力電圧の (5,426)

Fターム[5H730FD01]の下位に属するFターム

Fターム[5H730FD01]に分類される特許

201 - 220 / 5,031


【課題】等価直列抵抗の小さな出力キャパシタを使用した場合でも安定動作するコンパレータ制御方式のDC−DCコンバータ回路を提供する。
【解決手段】DC−DCコンバータ回路は、PMOSトランジスタと、NMOSトランジスタと、各トランジスタのドレインとDC−DCコンバータ回路の出力端子との間に接続されたインダクタと、基準電圧と、DC−DCコンバータ回路の出力端子における出力電圧に比例した帰還電圧とを比較する比較器と、各トランジスタを制御するドライバ制御回路と、インダクタを流れる電流を検出して電流の大きさに対応する電圧に変換する電流−電圧変換回路と、電流−電圧変換回路によって変換された電圧からインダクタを流れる電流の交流成分と相似な電圧を抽出して生成する重畳電圧生成回路とを備える。DC−DCコンバータ回路は、重畳電圧生成回路によって抽出された電圧を、比較器によって比較される帰還電圧に重畳させる。 (もっと読む)


【課題】広範囲な入力電圧に対し効率低下を抑えつつ高力率を達成可能な電源回路を提供する。
【解決手段】実施形態によれば、電源回路は、第1のフライバックコンバータと、第2のフライバックコンバータと、制御回路100とを含む。第1のフライバックコンバータは、第1のキャパシタC1に接続され、第1のスイッチトランジスタQ1及び第1のトランスT1を含む。第2のフライバックコンバータは、第1のフライバックコンバータと並列に第1のキャパシタC1に接続され、第2のスイッチトランジスタQ2及び第2のトランスT2を含む。制御回路100は、第1のトランスT1のリセットを検出した後に第1のスイッチトランジスタQ1をオンして、第1のスイッチトランジスタQ1がオフし、かつ、第2のトランスT2のリセットを検出した後に第2のスイッチトランジスタQ2をオンにする。 (もっと読む)


【課題】低負荷状態での効率を改善したDC−DCコンバータを提供すること。
【解決手段】DC−DCコンバータ1のDC−DCコントローラ10は、PFMコンパレータ11とPWMコンパレータ12を備える。低負荷状態となり負荷電流が小さくなるとPFMコンパレータ11により20Hz以下の周波数でスイッチング素子を動作させ、負荷が増加して20Hz以上の周波数でスイッチング素子を動作させる状況になると、20kHz以上の周波数で主としてPWMコンパレータ12によりスイッチング素子を動作させる。 (もっと読む)


【課題】電圧変換時の損失を低減し、効率の低下を抑えることができる力率改善回路を提供する。
【解決手段】整流手段Rcで整流された直流の整流電圧Vpfcと、与えられた目標電圧Voとを比較し、整流電圧Vpfcが目標電圧Voよりも低いとき、第2スイッチング素子Tr2をオフにし、第1スイッチング素子Tr1をスイッチングする制御信号を出力し、整流電圧Vpfcが目標電圧Voよりも高いとき、第1スイッチング素子Tr1をオンに、第2スイッチング素子Tr2をスイッチングする制御信号を出力する制御手段Contを備えた力率改善回路。 (もっと読む)


【課題】リアクトルの温度を、リアクトルを構成するコアとコイルとの熱干渉を踏まえて精度よく推定する。
【解決手段】制御装置100は、蓄電装置から入力される電圧を変換して出力するコンバータに含まれるリアクトルの温度を推定する。制御装置は、第1推定部110と、第2推定部120と、第3推定部130とを含む。第1推定部は、蓄電装置を流れる電流Ibなどをパラメータとして、コイル自身の発熱および放熱によるコイル温度変化量ΔTi1とコア自身の発熱および放熱によるコア温度変化量ΔTr1とを別々に推定する。第2推定部は、第1推定部の推定結果を用いて、コイルとコアとの間の互いの熱干渉によるコア温度変化量ΔTr2とおよびコイル温度変化量ΔTi2とを別々に推定する。第3推定部は、第1推定部および第2推定部の推定結果を用いてコイル温度Tiおよびコア温度Trとを別々に推定する。 (もっと読む)


【課題】電圧変換時の損失を低減することで、効率の低下を抑えることができる力率改善回路を提供する。
【解決手段】前記制御手段は、整流波が0Vから電圧が上昇する部分の一部である第1領域と、第1領域の後に始まり整流波が最大値を過ぎ電圧が下降する部分に終了する第2領域と、前記第2領域の後に始まり電圧が0Vになるまでの第3領域とに分け、第1領域及び第3領域では、第1スイッチング素子Tr1をオンにし、第2スイッチング素子Tr2をスイッチングする制御信号を出力し、第2領域では、第2スイッチング素子Tr2をオフに、第1スイッチング素子Tr1をスイッチングする制御信号を出力することを特徴とする力率改善回路。 (もっと読む)


【課題】電圧コンバータが備えるダイオードの温度を推定することのできる電気自動車を提供する。
【解決手段】電気自動車100は、電圧コンバータ23と、パワーコントローラ25を備える。電圧コンバータ23は、リアクトルL1とトランジスタTr1、Tr2とダイオードD1、D2を有する。電気自動車100はさらに、ダイオードD1、D2を冷却する冷媒の温度を計測する温度センサQwtと、リアクトルL1を流れる電流を計測する電流センサAdと、電圧コンバータ23の出力電圧VHを計測する電圧センサVdHを備える。パワーコントローラ25(温度推定器)は、温度センサが計測した冷媒温度に、電流センサと電圧センサのセンサデータ及びトランジスタのデューティ比に基づいた温度補正を加算した値をダイオードの推定温度とする。 (もっと読む)


【課題】負荷電流に応じて昇圧能力を調整することにより、過剰な昇圧回路出力リップルを抑制する。
【解決手段】昇圧回路1は、昇圧部出力CPOの電圧を変動させて昇圧回路出力VPPを生成し、昇圧回路出力VPPの負荷電流の大きさに応じて制御電圧CON1を生成する制御部2と、制御電圧CON1に応じて電源VDDP1の電圧を変動させることにより昇圧部電源VDDPを生成する電源降圧部3と、昇圧回路出力VPPの電圧と目標電圧との差分に応じて昇圧部電源VDDPの電圧を変動させることにより昇圧部出力CPOを生成する昇圧部4とを備える。 (もっと読む)


【課題】短時間で目標電圧に近い高い電圧を出力する。
【解決手段】高圧電源装置301は、駆動周波数に対応して出力電圧が変化する圧電トランス304と、出力電圧と目標電圧とが一致するように、駆動周波数を帰還制御する出力電圧変換手段307および第一電圧比較手段308と、出力電圧と目標電圧との差分値が小さいとき、駆動周波数の変化量を小さくし、一方、差分値が大きいとき、駆動周波数の変化量を大きく設定する高圧制御部206とを備える。 (もっと読む)


【課題】位相余裕を確保することができる電源の制御回路を提供する。
【解決手段】制御回路3は、出力電圧Voの交流成分を利得調整する利得調整回路10と、利得調整回路10の出力信号Saを出力電圧Voの分圧電圧Vnに付加して帰還電圧VFBを生成する付加回路30と、基準電圧VR0を所定の割合で変化させて参照電圧VR1を生成する参照電圧生成回路50とを有する。また、制御回路3は、帰還電圧VFBと参照電圧VR1との比較結果に応じたタイミングで、メイン側のトランジスタT1をオンさせるための信号S1を出力する比較器40を有する。 (もっと読む)


【課題】制御における応答性の向上と、スイッチング素子のエネルギー損失および発熱の抑制とを両立させたチョッパ装置を提供する。
【解決手段】複数のチョッパ部10A,10Bのうち少なくとも一つを、その他のチョッパ部10Aと比較して高いキャリア周波数に設定した高キャリア周波数チョッパ部10Bとし、この高キャリア周波数チョッパ部10Bの制御周期をその他のチョッパ部10Aと比較して短く設定する。前記その他のチョッパ部10Aより、電流指令値Iref*の定常成分である電流を出力し、前記高キャリア周波数チョッパ部10Bにより、チョッパ装置の電流指令値Iref*と前記その他のチョッパ装置10Bの電流との偏差電流I2ref*を出力する。 (もっと読む)


【課題】過電流保護動作時の発熱を抑える。
【解決手段】過電流保護回路15は、降圧型スイッチング電源装置1の出力電流Ioutが第1過電流保護値I1を上回ってから出力トランジスタ11を強制オフするまでの間に出力電流Ioutを第1過電流保護値I1よりも低い第2過電流保護値I2まで引き下げる過電流保護動作部153を有する。 (もっと読む)


【課題】 簡単な構成で、効率を向上できるとともに、スイッチング電圧を下げることが可能なストロボ用昇圧トランスを提供する。
【解決手段】 ストロボ用昇圧トランス8は、低圧側の一次巻線Pと高圧側の二次巻線Sを備える。一次巻線Pを電気的に並列な第1の一次巻線部P1と第2の一次巻線部P2とで形成する。二次巻線Sを電気的に直列な第1の二次巻線部S1と第2の二次巻線部S2とで形成する。第1の一次巻線部P1と、第2の一次巻線部P2との間に第1の二次巻線部S1を配設するとともに、第1の二次巻線部S1と第2の二次巻線部S2との間に第2の一次巻線部P2を配設して、これら各巻線部P1,P2,S1.S2が四層をなして交互に重ね巻きされていることを特徴としている。 (もっと読む)


【課題】DC-DC変換器において、素子の保護と、変換効率の向上を両立させる。
【解決手段】本発明の一態様は、入力電圧をこれとは異なる出力電圧に変換して負荷に供給するDC-DC変換器に関する。入力端子は、入力電圧を受ける。出力端子は、出力電圧を出力する。複数のパワー段は、それぞれハイサイドスイッチと、ローサイドスイッチと、インダクタとを含む。制御部は、第1モードと第2モードを実行する。前記第1モードは、前記負荷の負荷電流に対する各前記パワー段のそれぞれの出力電流の割合が設定値になるように、各前記パワー段のハイサイドおよびローサイドスイッチを制御する。前記第2モードは、各前記パワー段間でハイサイドおよびローサイドスイッチのデューティ比がそれぞれ同一となるように、前記各パワー段の前記ハイサイドよびローサイドスイッチを制御する。 (もっと読む)


【課題】通常運転において必要な仕様のままで、起動時等の所定の場合に、通常運転時に流すことができる定格電流以上の電流を供給できる直流電源装置を提供する。
【解決手段】本発明の直流電源装置101において、監視部81は、直流電源ユニット(RF−U)1〜Nおよび充電兼予備ユニット(CH−U)の垂下特性を制御する際に、直流電源ユニットおよび充電兼予備ユニットの運転状態が、全てのユニットが正常に運転している通常運転中の状態か、停電から復電後の運転を開始した状態か、および、故障から復旧した直流電源ユニットが運転を開始した状態か、のうちいずれの状態であるかを判定し、この判定した運転状態に応じて直流電源ユニット(RF−U)1〜Nおよび充電兼予備ユニット(CH−U)における垂下特性を制御する。 (もっと読む)


【課題】仮想同期発電機のコンセプトを用いることで、分散型電源からの電力変動及び配電系統の周波数変動に基づいて配電系統へ供給する電力を適切に制御する
【解決手段】分散型電源と配電系統との間に設けられ、蓄電装置と、分散型電源の出力電力に対して蓄電装置の充放電を行う電力変換装置と、電力変換装置の充放電の制御を行う充放電制御装置とを備えた蓄電システムにおいて、分散型電源の電力を検出する分散型電源電力検出部と、蓄電装置の充電容量を算出する蓄電装置充電容量算出部と、蓄電装置充電容量算出部の出力に基づいて、蓄電システムを含めた分散型電源の出力指令値を算出する出力指令値算出部と、出力指令値算出部と分散型電源電力検出部との出力結果に基づいて、電力変換装置に対して蓄電装置の充電または放電指令値を出力する蓄電装置充放電指令部とを備える。 (もっと読む)


【課題】トランスの一次側電流の転流時間に影響されることなく、入力電圧を正確に算出できるDC−DCコンバータを提供する。
【解決手段】DC−DCコンバータ1は、一次巻線および二次巻線を有するトランス14と、トランス14の一次巻線に接続され、入力電圧をスイッチングするスイッチング回路13と、スイッチング回路13を駆動するドライブ回路20と、スイッチング回路13のスイッチング動作に応じてトランス14の二次巻線に生じた交流電圧を整流する整流回路15と、入力電圧の値を求めるとともに、当該電圧値に基づいて所定の処理を実行する制御部19とを備える。制御部19は、整流回路15の入力側または出力側に現れるパルス信号を検出し、当該パルス信号のデューティを算出し、算出したデューティに基づいて入力電圧の値を求める。 (もっと読む)


【課題】第1の負荷に供給されている直流出力電圧に応じた定電圧制御のための信号を1次側に送信するだけで、第1の負荷に供給される直流出力を定電圧制御することができると共に、第2の負荷に供給される直流出力を定電流制御することができるDC−DCコンバータを提供する。
【解決手段】2次巻線S2から平滑コンデンサを介して負荷Xに直流出力を供給すると共に、3次巻線S3から平滑コンデンサC3を介してLEDアレイ3に直流出力を供給するDC−DCコンバータにおいて、3次巻線S3に直列に接続されたNMOSQ2をオンオフ制御することで、LEDアレイ3に供給される直流出力を定電流制御させ、NMOSQ2がオフ時には2次巻線S1から平滑コンデンサC2に、NMOSQ2がオン時には3次巻線S3から平滑コンデンサC3にそれぞれ電力が供給される。 (もっと読む)


【課題】無負荷・軽負荷状態には定格電圧よりも低い待機電圧へ自動的に出力電圧を切り替えるスイッチング電源装置を提供する。
【解決手段】交流電圧を整流平滑し、所定の直流電圧に変換するスイッチング電源装置であって、スイッチング電源装置に備えられるトランスと、トランスには1次巻線と2次巻線とが備えられ、2次巻線にはダイオードと第1コンデンサとスイッチ素子からなる整流平滑回路と、第1コンデンサとスイッチ素子と並列接続された第2コンデンサと、前記整流平滑回路の電圧を所定の直流電圧に制御するための制御信号を送出するエラーアンプを備え、2次巻線に発生するパルス電圧のデューティーを検出するデューティー検出回路を備え、デューティー検出回路は予め定められたデューティー未満になった場合に、制御信号を変化させて、定格電圧よりも低い待機電圧にすることを特徴とするスイッチング電源装置。 (もっと読む)


【課題】コストを抑えつつ、シンプルな方法により高い精度で出力電流を求めることができるスイッチング電源装置を得る。
【解決手段】入力側に設けられたスイッチング部(スイッチング回路10)を含む電源回路と、電源回路の入力電流Iinの直流成分と、スイッチング部におけるデューティ比とに基づいて、電源回路の出力電流を求める演算部69とを備える。このスイッチング装置では、電源回路に入力電圧が供給され、スイッチング部がスイッチングすることにより出力電圧が生成され、その出力電圧が電源回路の負荷回路に供給される。その際、電源回路の出力電流は、出力に直接電流検出器を挿入することなく、電源回路の入力電流の直流成分と、スイッチング部におけるデューティ比に基づいて求められる。 (もっと読む)


201 - 220 / 5,031