説明

Fターム[5J039JJ20]の内容

パルスの操作 (9,993) | 2以上のパルス(列)の比較 (786) | 比較結果の出力(アナログ) (180) | デジタル出力 (138)

Fターム[5J039JJ20]に分類される特許

21 - 40 / 138


【課題】解像度が小さく測定精度が高い時間測定を行うことができるTDC回路を提供する。
【解決手段】TDC回路1は、共通の構成を有する32個の単位セル11〜1131がリング状に接続されたリング部10等を備える。単位セル11は、第1インバータ回路111,第2インバータ回路112,スイッチSW,スイッチSWおよびスイッチSWを含む。第1インバータ回路111のPMOSトランジスタのゲート幅は、第2インバータ回路112のPMOSトランジスタのゲート幅のα倍である。第2インバータ回路111のNMOSトランジスタのゲート幅は、第1インバータ回路112のNMOSトランジスタのゲート幅のα倍である。αおよびαの双方が1より大きいか又は双方が1より小さい。 (もっと読む)


【課題】N相から2N相に切り替わったときに位相関係が不適切にならないようにする。
【解決手段】多相クロック生成回路は,基準クロックに同期して0°,90°の位相の中間クロックを生成する第1の分周器と,0°の中間クロックに同期して0°,90°の位相の第1群の出力クロックを生成する第2の分周器と,90°の中間クロックに同期して45°,135°の位相の第2群の出力クロックを生成する第3の分周器と,第1の分周器と第3の分周器との間に設けられ,切替信号に応じて,90°の中間クロックまたは固定値のいずれかを第3の分周器に供給するセレクタとを有する。さらに,切替信号が2N相モードのときに,第1群の出力クロックと第2群の出力クロックの位相関係にエラーがあるか否かを検出するエラー検出回路と,エラー検出回路がエラーを検出したときに基準クロックと非同期のタイミングで2N相モードの切替信号をセレクタに出力する再リセット回路とを有する。 (もっと読む)


【課題】基準クロックの周波数を低くして消費電力を抑制することのできる位相同期回路を提供する。
【解決手段】第1の位相比較器と第2の位相比較器とに、それぞれ帰還クロックの少なくとも1周期分異なる位相差をつけた分周クロックを入力して基準クロックとの位相比較を行い、受信信号と帰還クロックとの位相比較の結果で第1と第2の位相比較器の出力の重みづけを行い、重みづけされた出力により帰還クロックの位相調節を行う。 (もっと読む)


【課題】TDC(Time−to−DigitalConverter)の回路規模を拡張することなく、デスキュー用途に用いることが可能であるADPLLの構成の提供。
【解決手段】DCO19と、FREFを分周するMDIV11と、DCOの出力FOを分周するPDIV20と、PDIVの出力FOUTを分周するNDIV12と、MDIVの出力信号FRとDCOの出力FOの位相差を測定するTDC13と、NDIVの出力FDとFOの位相差を測定するTDC14と、FRでFOをサンプルするFF15と、FRとFDのうち位相が先行するパルスと次のパルスのエッジの期間、FOをカウントするCONT17と、TDC13、14、FF15の出力を入力し、カウンタの出力を受け、FRとFDの位相差を演算するPERR16と、PERRの出力を入力し、フィルタ処理した信号をDCOに供給するDFIL18を備える。 (もっと読む)


【課題】必要な特性を満たしつつ、回路構成を簡素化し、省面積化を可能とするデジタルPLLの提供。
【解決手段】リファレンスクロック信号FRと分周クロック信号FDの位相差を検出するTDC101、FDとFRの進み遅れを出力するFF103、位相誤差演算器102、位相誤差(PERR)を平滑化するデジタルフィルタ104、出力クロック信号FOを出力するDCO105、FOを分周したFDを出力するN分周器106、N分周器106内のカウンタ値をFRに応答してサンプルするレジスタ107を備え、TDC101は、位相差検出測定範囲がFOの1周期以内とされ、FRとFDの位相差をFOの1周期に換算した小数で出力し、位相誤差演算器102は、FDとFRの位相差が、FOの周期の整数倍以上のときは、レジスタ107出力と符号情報signから、FOの1周期内のときは、TDCの出力と符号情報signからPERRを演算出力する。 (もっと読む)


【課題】デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減することで遅延誤差TDLYを短縮する。
【解決手段】デッドタイム補償部30は、PWMゲート指令Gate_UとPWM出力Vce_Uとの位相差に応じて求めるデッドタイム補償分Vcmp_UでPWM電圧指令Vcmd_Uの電圧値を増減し、この補償後のPWM電圧指令Vcmd_U’をPWM波形発生部20でPWMゲート指令に変換することで、デッドタイム補償前のPWMゲート指令とデッドタイム補償後の相電圧出力との誤差(位相差)を低減する。 (もっと読む)


【課題】検出可能範囲の拡大と分解能の向上とを両立可能なTDC回路を提供する。
【解決手段】2n個の遅延量の異なる反転遅延素子を直列接続して形成されたループをそれぞれ含む第1の遅延回路および第2の遅延回路に、第1パルス信号駆動回路および第2のパルス信号駆動回路により、第1の遅延回路および第2の遅延回路にそれぞれ検出対象エッジとリセットエッジを有するパルス信号伝搬させる構成を持つバーニアディレイに、第1の遅延回路の反転遅延素子のいずれかと第2の遅延回路の反転遅延素子のいずれかに対して、伝搬されるリセットエッジの入力に対応する論理反転を選択的に遮断する操作をそれぞれ行う遮断回路と、第1の遅延回路および第2の遅延回路に含まれる遮断対象の反転遅延素子に対して、伝搬された検出対象エッジの入力に応じて反転した論理をリセットする操作をそれぞれ行うリセット回路とを備える。 (もっと読む)


【課題】位相差情報をデジタル値で出力するデジタルPLLにおいて、消費電力を抑えたデジタルPLLを提供することにある。
【解決手段】デジタルPLL100は、発振器10、整数位相算出部20、小数位相算出部30、位相差算出部40、位相差変化量モニタ部50、および発振器制御部60を有する。PLLにおいては発振器の出力周波数が、分周比により設定された所望の周波数に近づく、即ちロック状態に近づくにつれ位相差の変化量は減少していくことから、位相差変化量モニタ部50にて位相差の変化量をモニタし、変化量が整数位相算出部20の1LSB未満である「1」未満になった時点で整数位相算出部20におけるカウンタ動作を停止する。 (もっと読む)


【課題】消費電力を低減し、かつ回路面積も小さい位相調整回路を提供すること
【解決手段】位相調整回路100は、複数の遅延素子回路121〜124をリング状に結合したVCO120を有するPLL発振回路100を備える。また位相調整回路100は遅延素子回路を所望の遅延量に応じた数(125〜127)だけ有し、入力信号に前記所望の遅延量を与える位相遅延回路200、210を備える。PLL発振回路100は基準クロックの入力に応じた基準信号に、基準信号の所定周期分の遅延を与えた発振信号をVCO120において生成する。PLL発振回路100は、基準信号と、発振信号に応じた信号と、が略同位相となるように算出された遅延量に応じた遅延制御信号を遅延素子回路121〜124、及び遅延素子回路125〜127の各々に対して入力する。 (もっと読む)


【課題】デジタル制御発振器の出力と参照信号とが非同期であっても、安定したPLL動作を確立できる局部発振器を提供することを目的とする。
【解決手段】デジタル制御発振器の発振信号と前記参照信号との位相差を発振器分数位相として出力し、また、前記発振信号の位相が、前記参照信号の位相に対して、前記発振信号の半周期よりも位相が遅れている場合に「−1」、遅れていない場合に「+1」の補整情報を出力する時間デジタル変換器と、|前記補整情報−予測位相情報|>|前記補整情報+前記第1位相情報−前記予測位相情報|の場合に、前記第1位相情報に前記補整情報を加算したものを第2位相情報として出力し、|補整情報−発振器予測位相|>|補整情報+第1位相情報−発振器予測位相|でない場合に、前記第1位相情報を第2位相情報として出力する補正部と、を備えている。 (もっと読む)


【課題】クロック異常を検出する精度を向上させる技術を提供する。
【解決手段】被検査クロックを遅延させる第1の遅延回路の出力と第2の遅延回路の出力よりLow期間を決める。定められたLow期間に信号変化をカウントする。被検査クロックとカウント値により異常検出する。第1の遅延回路の出力と第2の遅延回路の出力よりHigh期間を決める。定められたHigh期間に信号変化をカウントする。被検査クロックとカウント値により異常検出する。Low期間の異常とHigh期間の異常を統合する。 (もっと読む)


【課題】入力データに混入したノイズの幅がクロック周期程度にまで大きくなり、ノイズ位置が入力データの中間位置に発生した場合にも、入力データからノイズを除去できる。
【解決手段】1ビットを4クロック幅で構成する入力データからノイズフィルタで雑音を除去し、この雑音を除去した入力データと同期したクロックを生成するDPLL回路において、ノイズフィルタは、入力データに対して、4段縦続接続のシフトレジスタを設け、このシフトレジスタのレジスタ11,12,13のクロック同期した出力の一致・不一致状態に応じて最終段のレジスタ16の入力を切り替える入力ロジック17を設ける。
さらに、ノイズフィルタでは除去しきれない入力データの歪みを歪み除去回路で除去する。 (もっと読む)


【課題】基準クロックに位相同期したクロックを出力するクロック位相同期回路に関し、長期間安定化及び入力擾乱影響を緩和する。
【解決手段】リファレンス入力a位相に同期した電圧制御発振器1の出力信号dを得る為のクロック位相同期回路であって、リファレンス入力aの周波数と電圧制御発振器1の出力信号dの周波数とを一致させて位相比較器3により所定のタイミング毎に位相比較した位相差検出信号bを入力し、それを所定期間順次記憶するメモリ等の記憶手段と、所定期間毎の位相差検出信号の差を位相変動量として求め、位相変動量が許容範囲内の場合は、その位相変動量に対応した電圧制御発振器1の制御電圧に変換し、許容範囲内でない場合は、前回の位相変動量に対応した制御電圧又は自走状態となる制御電圧として、電圧制御発振器1に制御電圧cを入力する演算処理手段とを備えている。 (もっと読む)


【課題】入力信号の周波数が変化するようなモータの駆動制御において、ステップ入力などのように入力信号の位相が急激に変化した場合でも、オーバーシュートやスリップによる振動などの過渡的な振動の発生を抑制することができる多重PLL回路の構成を得る。
【解決手段】第2PLL21の第2位相比較回路24によって検出される位相差が所定範囲外である場合には、ループ加算器26を介さずに、第1PLL11を用いて第2PLL21のモータ部22を制御する一方、上記位相差が所定範囲内である場合には、上記ループ加算器26を介して上記第1PLL11と上記第2PLL21とを接続して多重PLL回路を構成するように、信号経路切換部33によって、該第1及び第2PLL11,12の信号経路を切り換える。 (もっと読む)


【課題】高速の半導体装置で要求されるクロック整列トレーニング動作を提供すること。
【解決手段】システムクロック及びデータクロックを入力されるクロック入力部(200)と、データクロックの周波数を分周して所定の位相差を有する複数の多重位相データ分周クロックを生成し、分周制御信号に応答して多重位相データ分周クロックの位相の反転可否を決定するクロック分周部(220)と、多重位相データ分周クロックのうち所定の第1選択クロックの位相を基準としてシステムクロックの位相を検出し、その結果に対応して分周制御信号のレベルを決定する第1位相検出部(240)と、多重位相データ分周クロックのうち所定の第2選択クロックの位相を基準としてシステムクロックの位相を検出し、その結果に対応してトレーニング情報信号を生成する第2位相検出部(260)と、トレーニング情報信号を外部に伝送するための信号伝送部(270)とを具備する。 (もっと読む)


【課題】位相検知の誤判定を防止した高精度の位相検知回路を提供する。
【解決手段】電源線VSS1とセンスノードLSAT、LSAB間に、nMOSトランジスタの組(M1、M2、M3)、(M4、M5、M6)を備え、各トランジスタのゲートに内部クロックRCLK、RCLKのインバータINV1による反転信号、外部ロックCK、/CKをそれぞれ入力し、電源線VDD1とセンスノードLSAT、LSAB間に、pMOSトランジスタの組(MP1、MP2、MP3)、(MP4、MP5、MP6)を備え、各トランジスタのゲートにFCLKのインバータINV2による反転信号、内部クロックRCLK、外部ロックCK、/CKをそれぞれ入力し、センスノードLSAT、LSABは差動アンプAMPで増幅されラッチ回路L1でラッチされる。pMOSトランジスタ(MP11、MP12、MP13)はLSAT、LSABをプリチャージ・イコライズする。 (もっと読む)


【課題】プロセスモニタに必要な回路面積を増加させることなく、高精度なプロセスキャリブレーションを短時間で行う。
【解決手段】ディジタル制御発振器38が任意の発振バンドを選択した後、制御部25はTDC41の信号がプロセスモニタ制御部40に入力されるようにスイッチ44を切り換える。TDC41は、信号VREFの立ち上がりエッジと最も近い信号VPREの立ち上がりエッジの期間をディジタル値に、信号VREFの立ち上がりエッジと2番目に近い信号VPREの立ち上がりエッジの期間をディジタル値に変換し、その差を算出する。プロセスモニタ制御部40は、ルックアップテーブルを参照し、算出した値と予め設定されている期待値とを比較し、プロセス値を決定する。そのプロセス値は、プロセス信号として調整制御部26にそれぞれ出力され、プロセスキャリブレーションが行われる。 (もっと読む)


位相ロックループが複数のデジタル入力を有する多相発振器を利用する。時間に関して互いにオフセットされた複数のDQフリップフロップが、複数の制御信号を生成して、発振器から制御位相情報をデジタル形式で取り出す。発振器における任意の2つのデジタル入力間に接続されたDQフリップフロップが、進行波の方向を判定する。その方向と位相情報とにより、ルックアップテーブルがアドレス指定され、発振器の現時点のフラクショナル位相が判定される。発振器周波数を低減するために、N分周回路が用いられる。発振器に関する全位相表示信号が、現時点のフラクショナル位相を用いて判定される。この全位相を基準位相と比較して、発振器に対する修正を行うための制御信号を生成する。フィードフォワード経路において、分周器が、発振器からの高周波信号をより低い所望の周波数に分割し、それにより位相分解能を向上させる。 (もっと読む)


【解決手段】一つのインバータ遅延より小さいインバータ遅延の高分解能を含む時間デジタル変換器(TDC)が記載されている。デザイン例において、TDCは、第1及び第2の遅延パス、遅延ユニット、及び位相演算ユニットを含んでいる。第1の遅延パスは、第1の入力信号及び第1の参照信号を受信し、第1の出力を供給する。第2の遅延パスは、第2の入力信号及び第2の参照信号を受信し、第2の出力を供給する。遅延ユニットは、例えば半分のインバータ遅延によって、第1の入力信号に対して第2の入力信号を遅延する、または第1の参照信号に対して第2の参照信号を遅延する。位相演算ユニットは、第1及び第2の出力を受信し、入力信号及び参照信号間の位相差を供給する。構成は、前記第1及び第2の遅延パスについての正確なタイミングを得るために実行され得る。 (もっと読む)


【課題】高速動作するBang-Bang型位相比較回路の出力パルスに歪や欠損がある場合であっても、チャージポンプやA/D変換器を用いることなく、進相、遅相のいずれであるかを正確に表すデジタル信号を得る。
【解決手段】Bang-Bang型の位相比較回路10と、該位相比較回路の進相出力パルスおよび遅相出力パルスを入力して遅相/進相の識別を行う位相比較結果識別回路20とを備える。位相比較結果識別回路20は、位相比較回路10の進相出力パルスによってリセットされた後にクロック信号のカウントを行い所定のカウント値に達すると遅相を示す信号を出力する第1カウンタ回路21と、位相比較回路10の遅相出力パルスによってリセットされた後に前記クロック信号のカウントを行い所定のカウント値に達すると進相を示す信号を出力する第2カウンタ回路22と、前記遅相を示す信号と前記進相を示す信号を入力して進相/遅相の識別信号を出力する識別回路23とを具備する。 (もっと読む)


21 - 40 / 138