説明

光学フィルム及びその製造方法

【課題】光学等方性、機械的強度及び高温下における寸法安定性に優れる光学フィルム、及びその製造方法を提供する。
【解決手段】メタクリル酸単量体及びメタクリル酸エステル類から選ばれる第一の単量体から形成される第一の構造単位50〜95質量%、特定のN−置換マレイミド化合物から選ばれる第二の単量体から形成される第二の構造単位0.1〜20質量%及び第二の単量体とは異なる、特定のN−置換マレイミド化合物から選ばれる第三の単量体から形成される第三の構造単位0.1〜49.9質量%を有するアクリル系熱可塑性樹脂を主成分として含み、120℃で30分間加熱した時の熱収縮率の絶対値が、MD方向及びTD方向のいずれも1.5%以下であり、耐折回数が、MD方向及びTD方向のいずれも5回以上であり、面内方向の位相差の絶対値が20nm以下であり、厚さ方向の位相差の絶対値が20nm以下である光学フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学フィルム及びその製造方法に関する。
【背景技術】
【0002】
液晶ディスプレイをはじめとする、ディスプレイデバイスに用いられる光学フィルムは、年々その使用量が拡大しており、同時に高機能化が求められている。従来から、液晶表示装置の液晶パネル表面のガラス基板の両側には偏光板が配置されており、この偏光板には、通常、ヨウ素化合物が添加されたポリビニルアルコール(PVA)フィルムを延伸したものが使用されている。また、保護機能の信頼性を高めるために、PVAフィルムの両面には、トリアセチルセルロースよりなる保護フィルムを貼り付ける等の方法が適用されている。
【0003】
しかしながら、トリアセチルセルロースは、湿度及び温度により性能が変化するため、偏光板の機能を低下させる恐れがある。また、トリアセチルセルロースよりなる保護フィルムは、フィルム面内の複屈折(Nx−Ny)は比較的小さいが、厚さ方向の複屈折((Nx+Ny)/2−Nz)の絶対値が比較的大きい。そのため、斜め方向からの入射光に対して位相差を生じてしまい、液晶表示の視野角特性に影響を及ぼすという問題点を有している。
【0004】
上述したトリアセチルセルロースよりなる保護フィルムの問題点に鑑みて、光学特性に優れた樹脂材料であるポリメチルメタクリレート等のアクリル系樹脂による保護フィルムが提案されている。しかしながら、アクリル系樹脂は脆くて割れやすく、厚さが1mm以上のシートは比較的成形しやすいが、厚さが0.2mm以下程度の薄いフィルムは脆く、実用上十分な強度を有する偏光子保護フィルムに成形することは困難である。
【0005】
このような問題に鑑み、従来から偏光板(偏光子)保護フィルムに関する各種技術提案がなされている。例えば、下記特許文献1、2には、アクリル系樹脂に、それぞれスチレン系エラストマー、軟質アクリル系樹脂等を添加することにより、光学的特性及び強度面の改良を図る技術が開示されている。下記特許文献3には、アクリル系樹脂フィルムの透明性を維持して折り曲げ強度等の機械的強度を改良する方法として、その樹脂のガラス転移温度Tg以上でTg+40℃以下の温度で延伸する冷間延伸法が開示されている。下記特許文献4には、アクリル系樹脂を特定の延伸倍率で二軸延伸することにより機械的強度と80℃における熱収縮性とを両立する技術が開示されている。さらに、下記特許文献5には、アクリル系樹脂フィルムをインフレーション法で製造することにより、光学等方性を維持しながら機械的強度を改良する技術が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−284881号公報
【特許文献2】特開2006−284882号公報
【特許文献3】特開平2−43023号公報
【特許文献4】特開2008−216586号公報
【特許文献5】特開2010−100801号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、光学フィルムには、フィルム面内及び厚み方向の光学等方性及び機械的強度の特性に加え、高温環境下における寸法安定性に優れることが望まれている。例えば、光学フィルムを部材に用いる製品の製造工程等で100℃以上となる高温まで加温された際に、コーティングや張り合わせによって積層された他の機能層との熱収縮率の違いから生じるカールを防ぐことが要求されている。
【0008】
本発明は、光学等方性、機械的強度及び高温環境下における寸法安定性に優れる光学フィルム、及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の3種類の単量体由来の繰り返し単位を含有するアクリル系熱可塑性樹脂を溶融熱成形することで、光学等方性、機械的強度及び高温環境下における寸法安定性に優れる光学フィルムが得られるということを見出し、この知見に基づいて本発明を成すにいたった。
【0010】
すなわち、本発明は、以下に関する。
[1]アクリル系熱可塑性樹脂を含有する光学フィルムであり、アクリル系熱可塑性樹脂が、その総量基準で、下記式(1)で表される第一の構造単位50〜95質量%と、下記式(2)で表される第二の構造単位0.1〜20質量%と、下記式(3)で表される第三の構造単位0.1〜49.9質量%と、を有し、
【化1】


[式中、Rは、水素原子、炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基を示す。
A群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基及び炭素数1〜12のアルキル基。]
【化2】


[式中、Rは、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記B群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。
B群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基。]
【化3】


[式中、Rは、水素原子、炭素数3〜12のシクロアルキル基、炭素数1〜12のアルキル基、又は、下記C群より選ばれる少なくとも一種の置換基を有する炭素数1〜12のアルキル基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。
C群:ハロゲン原子、ヒドロキシル基、ニトロ基及び炭素数1〜12のアルコキシ基。]
JIS K−7133に従って測定される120℃で30分間加熱した時の熱収縮率の絶対値が、MD方向及びTD方向のいずれも1.5%以下であり、JIS P−8115に従って測定される耐折回数がMD方向及びTD方向のいずれも5回以上であり、下記式(a)で表される面内方向の位相差(Re)の絶対値が20nm以下、かつ、下記式(b)で表される厚さ方向の位相差(Rth)の絶対値が20nm以下である、光学フィルム。
Re=(Nx−Ny)×d (a)
Rth=〔(Nx+Ny)/2−Nz〕×d (b)
[式中、NxはX軸方向の屈折率を、NyはY軸方向の屈折率を、NzはZ軸方向の屈折率をそれぞれ示し、dは厚さを示す。]
[2]第三の構造単位の含有量に対する第二の構造単位の含有量のモル比が、0より大きく15以下である、[1]に記載の光学フィルム。
[3]Rが、メチル基又はベンジル基であり、Rが、フェニル基又はB群より選ばれる少なくとも一種の置換基を有するフェニル基であり、Rが、シクロヘキシル基である、[1]又は[2]のに記載の光学フィルム。
[4]前記アクリル系熱可塑性樹脂のガラス転移温度Tgが125℃以上である、[1]〜[3]のいずれかに記載の光学フィルム。
[5][1]〜[4]のいずれかに記載の光学フィルムの製造方法であって、アクリル系熱可塑性樹脂を含む原料樹脂からシートを形成する工程と、該シートを、MD方向及びTD方向に、それぞれの延伸倍率が30〜400%となる範囲で二軸延伸する工程と、を有する光学フィルムの製造方法。
[6][1]〜[4]のいずれかに記載の光学フィルムよりなる偏光板保護フィルム。
[7][1]〜[4]のいずれかに記載の光学フィルムよりなる透明プラスチック基板。
【発明の効果】
【0011】
本発明によって、光学等方性、機械的強度及び高温環境下における寸法安定性に優れる光学フィルム及びその製造方法を提供することができる。
【発明を実施するための形態】
【0012】
本発明の好適な実施形態について以下に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
【0013】
[アクリル系熱可塑性樹脂]
本実施形態の光学フィルムは、アクリル系熱可塑性樹脂を含有する。アクリル系熱可塑性樹脂は、第一の構造単位、第二の構造単位及び第三の構造単位を有する。以下、各構造単位について説明する。
【0014】
(第一の構造単位)
第一の構造単位は、下記式(1)で表される構造単位である。
【0015】
【化4】


式中、Rは、水素原子、炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基を示す。ここで、A群は、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基及び炭素数1〜12のアルキル基からなる群である。
【0016】
なお、本明細書中、アルキル基は直鎖状であっても分岐状であってもよい。また、アリールアルキル基中のアルキル基及びアルコキシ基中のアルキル基は、直鎖状であっても分岐状であってもよい。
【0017】
における炭素数1〜12のアルキル基としては、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。また、Rにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ノニル基、デカニル基、ラウリル基等が挙げられ、これらのうち、アクリル系熱可塑性樹脂の透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
【0018】
また、Rにおける炭素数5〜12のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデシル基、ビシクロオクチル基、トリシクロドデシル基、イソボルニル基、アダマンチル基、テトラシクロドデシル基等が挙げられ、これらのうち、シクロペンチル基、シクロヘキシル基、シクロオクチル基、トリシクロデシル基、ビシクロオクチル基、トリシクロドデシル基、イソボルニル基が好適である。
【0019】
また、Rにおける炭素数7〜14のアリールアルキル基としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基、6−フェニルヘキシル基、8−フェニルオクチル基が挙げられ、これらのうち、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基が好適である。
【0020】
また、Rにおける炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、フェニル基が好適である。
【0021】
また、Rは置換基を有する炭素数6〜14のアリール基であってもよく、ここで置換基は、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基及び炭素数1〜12のアルキル基からなる群(A群)より選ばれる基である。
【0022】
において、置換基を有する炭素数6〜14のアリール基としては、置換基を有するフェニル基が好ましい。また、置換基を有する炭素数6〜14のアリール基としては、2,4,6−トリブロモフェニル基、2−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、4−ブロモフェニル基、2−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、4−メトキシフェニル基、2−ニトロフェニル基、4−ニトロフェニル基、2,4,6−トリメチルフェニル基等が挙げられ、これらのうち難燃性が付与される点において、2,4,6−トリブロモフェニル基が好適である。
【0023】
第一の構造単位の含有量は、アクリル系熱可塑性樹脂の総量基準で50〜95質量%であり、好ましくは60〜92質量%、より好ましくは70〜90質量%である。第一の構造単位の含有量が、50質量%以上であれば高い全光線透過率及び耐環境性が発現する。
【0024】
アクリル系熱可塑性樹脂は、第一の構造単位を一種のみ含有していてもよく、第一の構造単位を二種以上含有していてもよい。
【0025】
例えば、アクリル系熱可塑性樹脂は、Rがアルキル基である構造単位と、Rがアリールアルキル基又はアリール基である構造単位と、を有するものとすることができる。このとき後者の構造単位の含有量は、アクリル系熱可塑性樹脂の総量基準で0.1〜10質量%であることが好ましく、0.1〜8質量%であることがより好ましく、0.1〜6質量%であることがさらに好ましい。この範囲にあるアクリル系熱可塑性樹脂によれば、大きな耐熱性低下を伴わずに、複屈折等の光学特性の改良効果が得られる。
【0026】
第一の構造単位は、例えば、メタクリル酸単量体及びメタクリル酸エステル類から選ばれる第一の単量体から形成される。第一の単量体は、下記式(1−a)で表すことができる。
【0027】
【化5】


式中、Rは式(1)におけるRと同義である。
【0028】
メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル;メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロオクチル、メタクリル酸トリシクロデシル、メタクリル酸微シクロオクチル、メタクリル酸トリシクロドデシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸1−フェニルエチル、メタクリル酸2−フェノキシエチル、メタクリル酸3−フェニルプロピル、メタクリル酸2,4,6−トリブロモフェニル等が挙げられる。これらの第一の単量体は、単独で用いる場合も2種以上を併用する場合もある。メタクリル酸エステルのうち、得られるアクリル系熱可塑性樹脂の透明性や耐候性が優れる点でメタクリル酸メチル及びメタクリル酸ベンジルが好ましい。
【0029】
(第二の構造単位)
第二の構造単位は、下記式(2)で表される構造単位である。
【0030】
【化6】


式中、Rは、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記B群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。B群は、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基からなる群である。
【0031】
における炭素数7〜14のアリールアルキル基としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基、6−フェニルヘキシル基、8−フェニルオクチル基が挙げられ、これらのうち、耐熱性及び低複屈折性などの光学的特性が一層向上する点において、ベンジル基が好適である。
【0032】
また、Rにおける炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、耐熱性及び低複屈折性等の光学的特性が一層向上する点において、フェニル基が好適である。
【0033】
また、Rは置換基を有する炭素数6〜14のアリール基であってもよく、ここで置換基は、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基からなる群(B群)より選ばれる基である。
【0034】
置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0035】
置換基としての炭素数1〜12のアルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜8のアルコキシ基がより好ましい。また、置換基としての炭素数1〜12のアルコキシ基としては、メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、2−エチルヘキシルオキシ基、1−デシルオキシ基、1−ドデシルオキシ基等が挙げられる。
【0036】
置換基としての炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基としては、Rにおける炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基として例示された基が同様に例示される。
【0037】
において、置換基を有する炭素数6〜14のアリール基としては、置換基を有するフェニル基、置換基を有するナフチル基が好ましい。また、置換基を有する炭素数6〜14のアリール基としては、2,4,6−トリブロモフェニル基、2−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、4−ブロモフェニル基、2−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、4−メトキシフェニル基、2−ニトロフェニル基、4−ニトロフェニル基、2,4,6−トリメチルフェニル基等が挙げられ、これらのうち、難燃性が付与される点において、2,4,6−トリブロモフェニル基が好適である。
【0038】
及びRにおける炭素数1〜12のアルキル基としては、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。また、R及びRにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ノニル基、デカニル基、ラウリル基等が挙げられ、これらのうち、アクリル系熱可塑性樹脂の透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
【0039】
及びRにおける炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、耐熱性及び低複屈折性等の光学的特性が一層向上する点において、フェニル基が好適である。
【0040】
及びRは、水素原子、炭素数1〜4のアルキル基又はフェニル基であることが好ましく、水素原子であることがより好ましい。
【0041】
第二の構造単位の含有量としては、アクリル系熱可塑性樹脂の総量基準で0.1〜49.9質量%であり、好ましくは0.1〜35質量%、より好ましくは0.1質量%〜20質量%である。第二の構造単位の含有量がこの範囲であればアクリル系熱可塑性樹脂の透明性を維持し、黄変を伴わず、また耐環境性を損なうことなく耐熱性が向上する。
【0042】
アクリル系熱可塑性樹脂は、第二の構造単位を一種のみ含有していてもよく、第二の構造単位を二種以上含有していてもよい。
【0043】
第二の構造単位は、例えば、下記式(2−a)で表されるN−置換マレイミド化合物から選ばれる第二の単量体から形成される。
【0044】
【化7】

【0045】
式中、R、R及びRは、それぞれ式(2)におけるR、R及びRと同義である。
【0046】
第二の単量体としては、N−フェニルマレイミド、N−ベンジルマレイミド、N−(2−クロロフェニル)マレイミド、N−(4−クロロフェニル)マレイミド、N−(4−ブロモフェニル)マレイミド、N−(2−メチルフェニル)マレイミド、N−(2−エチルフェニル)マレイミド、N−(2−メトキシフェニル)マレイミド、N−(2−ニトロフェニル)マレイミド、N−(2、4、6−トリメチルフェニル)マレイミド、N−(4−ベンジルフェニル)マレイミド、N−(2、4、6−トリブロモフェニル)マレイミド、N−ナフチルマレイミド、N−アントラセニルマレイミド、3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1,3−ジフェニル−1H−ピロール−2,5−ジオン、1,3,4−トリフェニル−1H−ピロール−2,5−ジオン等が挙げられる。これらの第二の単量体のうち、アクリル系熱可塑性樹脂の耐熱性、及び複屈折等の光学的特性が優れることから、N−フェニルマレイミド及びN−ベンジルマレイミドが好ましい。これらの第二の単量体は、単独で用いる場合も2種以上を併用する場合もある。
【0047】
(第三の構造単位)
第三の構造単位は、下記式(3)で表される構造単位である。
【0048】
【化8】


式中、Rは、水素原子、炭素数3〜12のシクロアルキル基、炭素数1〜12のアルキル基、又は、下記C群より選ばれる少なくとも一種の置換基を有する炭素数1〜12のアルキル基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。C群は、ハロゲン原子、ヒドロキシル基、ニトロ基及び炭素数1〜12のアルコキシ基からなる群である。
【0049】
における炭素数3〜12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデシル基、ビシクロオクチル基、トリシクロドデシル基、イソボルニル基、アダマンチル基、テトラシクロドデシル基等が挙げられ、これらのうち、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好適であり、アクリル系熱可塑性樹脂の耐候性及び透明性などの光学特性が一層向上するとともに、アクリル系熱可塑性樹脂に低吸水性を付与できる点からは、シクロヘキシル基がより好適である。
【0050】
また、Rにおける炭素数1〜12のアルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましい。また、Rにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−ドデシル基、n−オクタデシル基、2−エチルヘキシル基、1−デシル基、1−ドデシル基等が挙げられ、これらのうち、アクリル系熱可塑性樹脂の耐候性及び透明性等の光学特性が一層向上することから、メチル基、エチル基、イソプロピル基が好適である。
【0051】
また、Rは置換基を有する炭素数1〜12のアルキル基であってもよく、ここで置換基は、ハロゲン原子、ヒドロキシル基、ニトロ基及び炭素数1〜12のアルコキシ基からなる群(C群)より選ばれる基である。
【0052】
置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0053】
置換基としての炭素数1〜12のアルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜8のアルコキシ基がより好ましい。また、置換基としての炭素数1〜12のアルコキシ基としては、メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、2−エチルヘキシルオキシ基、1−デシルオキシ基、1−ドデシルオキシ基等が挙げられる。
【0054】
において、置換基を有する炭素数1〜12のアルキル基としては、ジクロロメチル基、トリクロロメチル基、トリフルオロエチル基、ヒドロキシエチル基等が挙げられ、これらのうち、トリフルオロエチル基が好適である。
【0055】
及びRにおける炭素数1〜12のアルキル基としては、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。また、R及びRにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ノニル基、デカニル基、ラウリル基等が挙げられ、これらのうち、アクリル系熱可塑性樹脂の透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
【0056】
及びRにおける炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、耐熱性及び低複屈折性などの光学的特性が一層向上する点において、フェニル基が好適である。
【0057】
及びRは、水素原子、炭素数1〜4のアルキル基又はフェニル基であることが好ましく、水素原子であることがより好ましい。
【0058】
第三の構造単位の含有量としては、アクリル系熱可塑性樹脂の総量基準で0.1〜49.9質量%であり、好ましくは0.1質量〜35質量%、より好ましくは0.1〜30質量%である。第三の構造単位の含有量がこの範囲であれば、透明性を維持し、低吸湿性が発揮される。
【0059】
アクリル系熱可塑性樹脂は、第三の構造単位を一種のみ含有していてもよく、第三の構造単位を二種以上含有していてもよい。
【0060】
第三の構造単位は、例えば、下記式(3−a)で表されるN−置換マレイミド化合物から選ばれる第三の単量体から形成される。
【0061】
【化9】

【0062】
式中、R、R及びRは、それぞれ式(3)におけるR、R及びRと同義である。
【0063】
第三の単量体としては、例えば、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−イソプロピルマレイミド、N−n−ブチルマレイミド、N−イソブチルマレイミド、N−s−ブチルマレイミド、N−t−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−ヘプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−シクロプロピルマレイミド、N−シクロブチルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、N−シクロヘプチルマレイミド、N−シクロオクチルマレイミド、1−シクロヘキシル−3−メチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジメチル−1−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3−フェニル−1H−ピロール−2,5−ジオン、1−シクロヘキシル−3,4−ジフェニル−1H−ピロール−2,5−ジオン等が挙げられる。これらの第三の単量体は、単独で用いる場合も2種以上を併用して用いる場合もある。アクリル系熱可塑性樹脂の耐候性が優れる点から、N−メチルマレイミド、N−エチルマレイミド、N−イソプロピルマレイミド、N−シクロヘキシルマレイミドが好ましく、近年光学材料に求められている低吸湿性に優れることからN−シクロヘキシルマレイミドが特に好ましい。
【0064】
アクリル系熱可塑性樹脂において、第二の構造単位及び第三の構造単位の総含有量は、アクリル系熱可塑性樹脂の総量基準で5〜50質量%であることが好ましい。より好ましくは5〜40質量%、更に好ましくは10〜35質量%、更に一層好ましくは10〜30質量%、特に好ましくは15〜30質量%である。この範囲内にあるとき、アクリル系熱可塑性樹脂はより十分な耐熱性改良効果が得られ、また、耐候性、低吸水性、光学特性についてより好ましい改良効果が得られる。なお、第二の構造単位の含有量及び第三の構造単位の含有量が50質量%を超えると、重合反応時に単量体成分の反応性が低下して、未反応で残存する単量体量が多くなり、アクリル系熱可塑性樹脂の物性が低下してしまう場合がある。
【0065】
アクリル系熱可塑性樹脂において、第二の構造単位の含有量Cと第三の構造単位の含有量Cのモル比C/Cは望ましくは0より大きく15以下である。後述する光学特性(低い複屈折、低い光弾性係数)の観点から、モル比C/Cは、より好ましくは10以下である。モル比C/Cがこの範囲にあるとき、本実施形態のアクリル系熱可塑性樹脂はより一層良好な光学特性を発現する。
【0066】
アクリル系熱可塑性樹脂において、第一の構造単位、第二の構造単位及び第三の構造単位の合計の含有量は、アクリル系熱可塑性樹脂の総量基準で、80質量%以上であってもよい。これにより、アクリル系熱可塑性樹脂は一層良好な光学特性を発現する。
【0067】
(第四の構造単位)
アクリル系熱可塑性樹脂は、上記以外の構造単位をさらに含有していてもよい。例えば、アクリル系熱可塑性樹脂は、発明の目的を損なわない範囲で、上記第一、第二及び第三の単量体と共重合可能なその他の単量体に由来する構造単位を、さらに有していてもよい。以下、アクリル系熱可塑性樹脂中の第一、第二及び第三の構造単位以外の構造単位を、第四の構造単位と称する。
【0068】
共重合可能なその他の単量体としては、芳香族ビニル;不飽和ニトリル;シクロヘキシル基、ベンジル基又は炭素数1〜18のアルキル基を有するアクリル酸エステル;オレフィン;ジエン;ビニルエーテル;ビニルエステル;フッ化ビニル;プロピオン酸アリル等の飽和脂肪酸モノカルボン酸のアリルエステル又はメタリルエステル;多価(メタ)アクリレート;多価アリレート;グリシジル化合物;不飽和カルボン酸類等を挙げることができる。その他の単量体は、これらの群より選ばれる1種又は2種以上の組み合わせであり得る。
【0069】
上記芳香族ビニルとしては、スチレン、α−メチルスチレン、ジビニルベンゼン等が挙げられる。上記不飽和ニトリルとしては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等が挙げられる。また、上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸−t−ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸オクチル、アクリル酸2−エチルヘキシル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸シクロヘキシル、アクリル酸ベンジル等が挙げられる。
【0070】
また、上記オレフィンとしては、エチレン、プロピレン、イソブチレン、ジイソブチレン等が挙げられる。また、上記ジエンとしては、ブタジエン、イソプレン等が挙げられる。また、上記ビニルエーテルとしては、メチルビニルエーテル、ブチルビニルエーテル等が挙げられる。また、上記ビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル等が挙げられる。また、上記フッ化ビニルとしては、フッ化ビニリデン等が挙げられる。
【0071】
上記多価(メタ)アクリレートとしては、エチレングリコール(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物のジ(メタ)アクリレート、ハロゲン化ビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物のジ(メタ)アクリレート、イソシアヌレートのエチレンオキサイド又はプロピレンオキサイド付加物のジ、又はトリ(メタ)アクリレート等が挙げられる。
【0072】
多価アリレート単量体としては、ジアリルフタレート、トリアリルイソシアヌレート等が挙げられる。グリシジル化合物単量体としては、グリシジル(メタ)アクリレート、及びアリルグリシジルエーテル等が挙げられる。不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、及びこれらの半エステル化物又は無水物が挙げられる。
【0073】
アクリル系熱可塑性樹脂中の第四の構造単位の含有量は、アクリル系熱可塑性樹脂の総量基準で、0.1〜20質量%であることが好ましく、0.1〜15質量%であることがより好ましく、0.1〜10質量%であることがさらに好ましい。含有量が上記範囲であると、アクリル系熱可塑性樹脂の吸湿性が一層改善される。耐候性の観点からは、10質量%未満であることが好ましく、7質量%未満であることがより好ましい。
【0074】
アクリル系熱可塑性樹脂は、第四の構造単位を一種のみ有していてもよく、二種以上を有していてもよい。
【0075】
第四の構造単位の一例として、下記式(4)で表される構造単位が挙げられる。
【0076】
【化10】

【0077】
式中、Rは水素原子又は炭素数1〜12のアルキル基を示し、Rはハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を示し、aは1〜3の整数を示す。
【0078】
における炭素数1〜12のアルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましい。また、Rにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、1−デシル基、1−ドデシル基等が挙げられ、これらのうちメチル基が好適である。
【0079】
におけるハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0080】
また、Rにおける炭素数1〜12のアルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましい。また、Rにおける炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、1−デシル基、1−ドデシル基等が挙げられ、これらのうち、アクリル系熱可塑性樹脂の透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
【0081】
また、Rにおける炭素数1〜12のアルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜8のアルコキシ基がより好ましい。また、置換基としての炭素数1〜12のアルコキシ基としては、メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、2−エチルヘキシルオキシ基、1−デシルオキシ基、1−ドデシルオキシ基等が挙げられ、これらのうち、メトキシ基が好適である。
【0082】
式(4)で表される構造単位は、例えば、下記式(4−a)で表される単量体から形成することができる。
【0083】
【化11】


式中、R、R及びaはそれぞれ式(4)におけるR、R及びaと同義である。
【0084】
第四の単量体としては、例えば、スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、2−メチル−4−クロロスチレン、2,4,6−トリメチルスチレン、α―メチルスチレン、cis−β−メチルスチレン、trans−β−メチルスチレン、4−メチル−α−メチルスチレン、4−フルオロ−α−メチルスチレン、4−クロロ−α−メチルスチレン、4−ブロモ−α−メチルスチレン、4−t−ブチルスチレン、2−フルオロスチレン、3−フルオロスチレン、4−フルオロスチレン、2,4−ジフルオロスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、2,6−ジクロロスチレン、2−ブロモスチレン、3−ブロモスチレン、4−ブロモスチレン、2,4−ジブロモスチレン、α−ブロモスチレン、β−ブロモスチレン、2−ヒドロキシスチレン、4−ヒドロキシスチレン等が挙げられる。アクリル系熱可塑性樹脂を構成する第一の単量体、第二の単量体及び第三の単量体との共重合性に優れ、その光学特性の調整が少量の使用で可能な点からスチレン、α−メチルスチレンが特に好ましい。これらの第四の単量体は、単独で用いる場合も2種以上を併用する場合もある。
【0085】
本実施形態に係るアクリル系熱可塑性樹脂は、1種の共重合体から構成されていてもよいし、第一の構造単位、第二の構造単位及び第三の構造単位のうち1種以上の構造単位を有する2種以上の共重合体のブレンド物であってもよい。例えば、アクリル系熱可塑性樹脂は、第一の構造単位、第二の構造単位、及び第三の構造単位を有する1種の共重合体から構成される樹脂であり得る。あるいは、アクリル系熱可塑性樹脂は、第一の構造単位と、第二の構造単位、及び/又は第三の構造単位とを有する2種類以上の共重合体から構成されるブレンド物であってもよいし、第一の構造単位を有する重合体と、第二の構造単位を有する重合体と、第三の構造単位を有する重合体とから構成されるブレンド物であってもよい。透明性や均一性の観点から、アクリル系熱可塑性樹脂は、第一の構造単位、第二の構造単位、及び第三の構造単位を有する共重合体であるか、第一の構造単位と、第二の構造単位、及び/又は第三の構造単位とを有する2種類以上の共重合体から構成されるブレンド物であることが好ましく、第一の構造単位、第二の構造単位、及び第三の構造単位を有する共重合体であることが特に好ましい。
【0086】
アクリル系熱可塑性樹脂中のハロゲン原子の含有量は、アクリル系熱可塑性樹脂の総量基準で0.47質量%未満であることが好ましく、0.45質量%以下であることがより好ましい。アクリル系熱可塑性樹脂がハロゲン原子を0.47質量%未満とすることで、溶融成形等に際して高温でアクリル系熱可塑性樹脂を取り扱った場合でも、ハロゲン系ガスが発生し難く、ハロゲン系ガスに起因する装置の腐食や作業環境の悪化が防止される。また、アクリル系熱可塑性樹脂(又はその成形体等)を廃棄する際にも、環境負荷が比較的大きいハロゲン系ガスが発生し難いという利点がある。
【0087】
アクリル系熱可塑性樹脂のGPC測定法によるポリメチルメタクリレート換算の重量平均分子量(Mw)は、3000〜1000000であることが好ましい。Mwが3000以上であれば成形によって必要な強度を有する光学フィルムを得ることが出来る。また、Mwが1000000以下であれば各種溶融成形時に必要十分な熱流動性を得ることができる。Mwは、より好ましくは30000〜800000であり、更に好ましくは60000〜600000である。特に好ましくは100000〜400000である。
【0088】
アクリル系熱可塑性樹脂のGPC測定法によるポリメチルメタクリレート換算の分子量分布(Mw/Mn)は、1〜10であることが好ましい。アクリル系熱可塑性樹脂は、リビングラジカル重合法で重合することも可能であり、必要に応じて分子量分布を調整可能である。成形加工に適した樹脂粘度に調整する観点からは、分子量分布(Mw/Mn)は1.1〜7.0であることがより好ましく、1.2〜5.0であることがさらに好ましく、1.5〜4.0とすることもできる。
【0089】
<アクリル系熱可塑性樹脂の物理的特性>
(光弾性係数)
アクリル系熱可塑性樹脂を成形して得られるフィルム又はシート状の成形体の光弾性係数の絶対値は、3.0×10−12Pa−1以下であることが好ましく、2.0×10−12Pa−1以下であることがより好ましく、1.0×10−12Pa−1以下であることがさらに好ましい。
【0090】
光弾性係数に関しては種々の文献に記載があり(例えば、化学総説,No.39,1998、(学会出版センター発行)参照)、下記式により定義されるものである。光弾性係数Cの値がゼロに近いほど、外力による複屈折変化が小さいことが判る。
=|Δn|/σ
|Δn|=nx−ny
式中、Cは光弾性係数、σは伸張応力、|Δn|は複屈折の絶対値、nxは伸張方向の屈折率、nyは伸張方向と垂直な屈折率を、それぞれ示す。
【0091】
アクリル系熱可塑性樹脂の光弾性係数は、既存樹脂(例えば、PMMA、PC、トリアセチルセルロース樹脂、環状オレフィン樹脂等)に比較して十分に小さい。従って、外力に起因した(光弾性)複屈折を生じないために複屈折変化を受けにくい。また、成形時の残存応力に起因する(光弾性)複屈折を生じにくいために成形体内での複屈折分布が小さい。
【0092】
(複屈折変化率|K|)
アクリル系熱可塑性樹脂を成形して得られるフィルムを一軸延伸したときに発現する複屈折(Δn(S))と延伸倍率(S)との最小二乗法近似直線関係式(A)の傾きから求められる複屈折変化率Kの絶対値が、下記式(B)を満たすことが好ましい。
Δn(S)=K×S+C (A)
|K|≦0.30×10−5 (B)
式中、Cは定数であり無延伸時の複屈折値を示す。複屈折とは、フィルムとして測定した値を100μm厚に換算して求めた値である。
【0093】
複屈折変化率|K|は、|K|≦0.15×10−5であることがより好ましく、|K|≦0.10×10−5であることがさらに好ましい。複屈折変化率|K|が小さいほど、延伸加工による複屈折が生じにくくなる。
【0094】
ここで、Kの値は、アクリル系熱可塑性樹脂のDSC測定によるガラス転移温度(Tg)を測定し、(Tg+20)℃の延伸温度で、かつ、500mm/分の延伸速度で一軸延伸を行ったときの値である。一般に、延伸速度を遅くすると複屈折の増加量は小さくなることが知られている。Kの値は、例えば、延伸倍率(S)を100%、200%又は300%として延伸して得られた一軸延伸フィルムが発現している複屈折(Δn(S))の値を測定し、これらの値を延伸倍率に対してプロットし最小二乗法近似することにより算出することができる。延伸倍率(S)とは、延伸前のチャック間距離をL、延伸後のチャック間距離をLとすると、以下の式で表される値である。
【0095】
【数1】

【0096】
アクリル系熱可塑性樹脂のフィルム又はシートは、機械的強度を高めることを目的として延伸加工される場合がある。前述の関係式において、複屈折変化率|K|の値は、延伸倍率(S)に対する複屈折(Δn(S))の変化の大きさを表し、|K|が大きい程延伸に対する複屈折の変化量が大きく、|K|が小さい程延伸に対する複屈折の変化量が小さいことを意味している。
【0097】
アクリル系熱可塑性樹脂は、複屈折変化率|K|の値が、既存樹脂(例えば、PMMA、PC、トリアセチルセルロース樹脂、環状オレフィン樹脂等)に比較して十分に小さい。従って、既存樹脂が延伸加工時の延伸配向で複屈折が増大するのに対し、延伸加工しても複屈折が増大しにくいという特徴を有する。
【0098】
(ガラス転移温度)
アクリル系熱可塑性樹脂は、ガラス転移温度(Tg)が125℃以上であることが好ましい。アクリル系熱可塑性樹脂のTgが125℃以上あれば、近年のレンズ成形体、液晶ディスプレイ用フィルム成形体光学フィルムとして必要十分な耐熱性をより容易に得ることができる。使用環境温度下での寸法安定性の観点から、アクリル系熱可塑性樹脂のTgは、より好ましくは130℃以上、さらに好ましくは135℃以上である。一方、アクリル系熱可塑性樹脂のTgの上限は、好ましくは180℃以下である。
【0099】
アクリル系熱可塑性樹脂は、光弾性係数(C)が十分に小さく(近似的にはゼロ)、また、光学フィルムに成形したときに、延伸加工の有り無しに関わらず、光学フィルムとして面内方向、厚み方向の位相差の絶対値が小さい(近似的にはゼロ)ことで特徴付けられる。これにより、従来公知の樹脂では達成できない光学的に完全な等方性を実現することができる。さらに、本実施形態のアクリル系熱可塑性樹脂は、高い耐熱性をも同時に達成することができる。
【0100】
[アクリル系熱可塑性樹脂組成物]
本実施形態に係るアクリル系熱可塑性樹脂は、本発明の目的を損なわない範囲で、添加剤やアクリル系熱可塑性樹脂以外の樹脂と混合して、アクリル系熱可塑性樹脂組成物として用いることもできる。すなわち、アクリル系熱可塑性樹脂組成物は、アクリル系熱可塑性樹脂と同様の耐熱性及び光学特性を有することが望ましい。
【0101】
添加剤の種類は、樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。添加剤としては、例えば、無機充填剤;酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム及びエチレンビスステアロアミド等の滑剤又は離型剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン及びミネラルオイル等の軟化剤又は可塑剤;ヒンダードフェノール系酸化防止剤、リン系熱安定剤等の酸化防止剤;ヒンダードアミン系光安定剤;ベンゾトリアゾール系紫外線吸収剤;難燃剤;帯電防止剤;有機繊維、ガラス繊維、炭素繊維及び金属ウィスカ等の補強剤;着色剤;並びにこれらの混合物が挙げられる。添加剤の含有割合は、アクリル系熱可塑性樹脂組成物の総量基準で、好ましくは0〜5質量%、より好ましくは0〜2質量%、さらに好ましくは0〜1質量%である。
【0102】
アクリル系熱可塑性樹脂以外の樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、スチレン/アクリロニトリル共重合体、スチレン/無水マレイン酸共重合体、スチレン/メタクリル酸共重合体等のスチレン系樹脂、トリアセチルセルロース等のセルロース樹脂、ポリメタクリル酸エステル系樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル系樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアセタール樹脂、環状オレフィン系樹脂、及び、ノルボルネン系樹脂等の熱可塑性樹脂;並びに、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂を挙げられる。これらの樹脂は、1種を単独で又は2種以上を併用することができる。
【0103】
本実施形態のアクリル系熱可塑性樹脂、又は、アクリル系熱可塑性樹脂組成物を成形してなる光学フィルムは、主として複屈折を必要としない用途、例えば、偏光板保護フィルム等に好適である。
【0104】
[光学フィルムの作製方法]
実施形態の光学フィルムは、上述のアクリル系熱可塑性樹脂を含む原料樹脂からシートを形成する工程と、該シートを、MD方向及びTD方向にそれぞれの延伸倍率が30〜400%となる範囲で二軸延伸する工程と、を有する光学フィルムの製造方法により作製することができる。ここで、MD方向とは、フィルムを作製する際の機械的流れ方向を意味し、フィルム長手方向ともいう。また、TD方向とは、機械的流れ方向に直交する方向を意味し、フィルム幅方向ともいう。
【0105】
本実施形態の光学フィルムは、例えば、テンター法逐次二軸延伸、テンター法同時二軸延伸、インフレーション法延伸により製造することができる。
【0106】
テンター法逐次二軸延伸による光学フィルムの作製方法は、単軸又は二軸押出機に、上述したアクリル系熱可塑性樹脂を主成分とする原料樹脂を供給して溶融混練し、Tダイより押し出したシートをキャストロール上に導き固化する。次いで、押し出したシートをロール式縦延伸機に導入し、機械的流れ方向(MD方向)に延伸した後、縦延伸シートをテンター式横延伸機に導入し、機械的流れ方向に直交する方向(TD方向)に延伸する。テンター法逐次二軸延伸は、容易に延伸倍率をコントロール可能であり、MD方向及びTD方向の配向バランスの取れたフィルムが得られる等の利点を有している。
【0107】
アクリル系熱可塑性樹脂を延伸する際の延伸温度は、Tg+5℃〜Tg+50℃であることが好ましく、より好ましくはTg+10℃〜Tg+45℃、さらに好ましくはTg+15℃〜Tg+40℃である。
【0108】
MD方向及びTD方向の延伸倍率は、共に30%〜400%の範囲内であり、好ましくは50%〜350%の範囲内であり、より好ましくは100%〜300%の範囲内である。MD方向及びTD方向の延伸倍率が共に30%未満の場合、耐折強度が不足する傾向にあり、400%を超える場合、フィルム作製過程で破断や断裂が頻発し、連続的に安定してフィルムが作製できない傾向にある。
【0109】
本実施形態の光学フィルムの製造方法において、目的とするフィルムと非接着性の樹脂を用いて多層ダイで共押出して、その後に非接着性の樹脂層を取り除き、目的とするフィルムを得る方法を用いることができる。この製造方法は、下記(a)〜(c)の観点で好ましい。
(a)非接着性の樹脂層による断熱効果と、膜強度向上の効果とで製膜安定性を向上できる点。
(b)製膜時に空気中のチリ、浮遊物、ゴミ、添加剤等の気化物、その他の異物がフィルムに付着するのを防ぐ効果がある点。
(c)製膜後の取り扱い時のフィルム表面の傷つき防止、及び、ゴミ等の異物の付着防止の効果がある点。
【0110】
アクリル系熱可塑性樹脂の片側のみに非接着性の樹脂を用いて共押し出しする方法も、上記(a)〜(c)の効果は得られるが、アクリル系熱可塑性樹脂の両側を非接着性の樹脂で挟み込んで共押し出しする方法の方がより効果的である。
【0111】
多層ダイで共押し出しする非接着性の樹脂は、その溶解度パラメータの値が、フィルムを構成する樹脂と近いと、相容性が良く、ブレンドした場合に混ざり易い傾向にあり、製膜時に共押し出しすると接触する樹脂層同士が接着し易い傾向にある。よって、非接着性の樹脂を選択する場合には、極性の異なる溶解度パラメータの値の差の大きな樹脂を選択することが好ましい。
【0112】
また、共押し出し時には接触する2種の樹脂同士の温度、粘度が大きく異なると、接触する樹脂の界面で層間の乱れを起して、透明性の良好なフィルムが得られなくなる傾向がある。よって、フィルムの主成分であるアクリル系熱可塑性樹脂に対して非接着性の樹脂を選択する際には、ダイ内でのアクリル系熱可塑性樹脂の温度に近い温度で、アクリル系熱可塑性樹脂の粘度と近い粘度を有する樹脂を選択することが好ましい。
【0113】
非接着性の樹脂としては、上述した条件を満たせば、多種多様な熱可塑性樹脂が使用可能であるが、好ましくはポリオレフィン系樹脂、スチレン系樹脂、ナイロン系樹脂又はフッ素含有樹脂が挙げられ、より好ましくはポリオレフィン系樹脂が挙げられ、特に好ましくはポリプロピレン系樹脂が挙げられる。
【0114】
[光学フィルムの特性]
(フィルムの厚み)
本実施形態の光学フィルムの厚みは、5μm〜200μmの範囲内であることが好ましい。厚みが5μm以上であれば、実用上十分な強度が確保でき、取り扱い時に容易に破断しにくい。また、光学フィルムの厚みが200μm以下であれば、上述した位相差(Re、Rth)及び耐折強度において、良好なバランスとなる。
【0115】
偏光子保護フィルムとして用いる場合の光学フィルムの厚みは5μm〜100μmが好ましく、10μm〜80μmがより好ましく、10μm〜60μmがさらに好ましい。透明プラスチック基板として用いる場合の光学フィルムの厚みは20μm〜180μmが好ましく、20μm〜160μmがより好ましく、30μm〜160μmがさらに好ましい。
【0116】
(面内方向の位相差)
本実施形態の光学フィルムは、下記式(a)で表される面内方向の位相差(Re)の絶対値が20nm以下である。
Re=(Nx−Ny)×d (a)
式(a)中、NxはフィルムのX軸方向の屈折率を、NyはフィルムのX軸方向の屈折率を示す。X軸とは、フィルムの面内において最大の屈折率を示す軸方向であり、Y軸とはフィルムの面内においてX軸に対して垂直な軸方向である。dはフィルムの厚さを示す。
【0117】
Reの絶対値は、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。Reの絶対値が20nmより大きくなると、フィルム面に垂直に入射する光に対する位相差が大きくなり、良好な光学特性が得られ難くなる傾向がある。
【0118】
一般に、Reの絶対値は、複屈折の大小を表す指標である。アクリル系熱可塑性樹脂の複屈折は、既存樹脂(例えば、PMMA、PC、トリアセチルセルロース樹脂、環状オレフィン樹脂等)を用いた場合の複屈折に対して十分に小さく、光学材料として低複屈折やゼロ複屈折を要求される用途に好適である。
【0119】
(厚さ方向の位相差)
本実施形態の光学フィルムは、下記式(b)で表される厚さ方向の位相差(Rth)の絶対値が20nm以下である。
Rth=〔(Nx+Ny)/2−Nz〕×d (b)
式(b)中、NxはX軸方向の屈折率を、NyはY軸方向の屈折率を、NzはZ軸方向の屈折率をそれぞれ示す。X軸とは、フィルムの面内において最大の屈折率を示す軸方向であり、Y軸とはフィルムの面内においてX軸に対して垂直な軸方向であり、Z軸は、X軸、Y軸に垂直な厚さ方向である。dはフィルムの厚さを示す。
【0120】
Rthの絶対値は、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。Rthが20nmより大きくなると、フィルムの斜め方向からの入射光に対して位相差が大きくなり、液晶表示の視野角特性に悪影響を及ぼす傾向にある。
【0121】
アクリル系熱可塑性樹脂は、既存樹脂(例えば、PMMA、PC、トリアセチルセルロース樹脂、環状オレフィン樹脂など)を用いた場合と比較して、光学フィルムとしたときRthの絶対値が非常に小さいという特徴を有する。
【0122】
(耐折強度)
フィルムの耐折強度は、フィルムを所定の条件で折り曲げする耐折試験により評価することができる。本実施形態の光学フィルムは、JIS P−8115に従って測定した耐折回数が、フィルムのMD方向及びTD方向のいずれも5回以上である。耐折強度は、MD方向及びTD方向がいずれも10回以上であることがより好ましく、30回以上であることがさらに好ましい。MD方向及びTD方向のいずれかの耐折強度が5回未満であると、取り扱い性に劣る傾向がある。
【0123】
耐折強度を高めるためには、MD方向及びTD方向の延伸倍率を最適化することが挙げられる。
【0124】
(熱収縮率)
本実施形態の光学フィルムは、JIS K−7133に従って測定される120℃で30分間加熱した時の熱収縮率の絶対値が、MD方向及びTD方向のいずれも1.5%以下である。フィルムの熱収縮率は、1.0%以下であることがより好ましく、0.5%以下であることがさらに好ましい。フィルムの熱収縮率の絶対値が1.5%を超えると、アクリル系熱可塑性樹脂フィルム上に後工程でハードコート等の種々の機能層を付与した後や、アクリル系熱可塑性樹脂フィルムと他のフィルムを貼り合せた後、120℃まで加温された際に各層の熱収縮率の違いによりカールする可能性がある。
【0125】
[フィルムの使用態様]
本実施形態の光学フィルムは、上述したアクリル系熱可塑性樹脂やアクリル系熱可塑性樹脂組成物を含む単層のフィルム構成としてもよいが、その他、所定の基材や機能層に上記アクリル系熱可塑性樹脂を含む層を積層した多層構成として用いてもよい。例えば、ガラス、ポリオレフィン樹脂及びガスバリア性に優れる樹脂(エチレンビニルアルコール共重合体樹脂、塩化ビニリデン系樹脂、ポリカーボネート樹脂、ポリエステル樹脂等)の基材に、アクリル系熱可塑性樹脂を含むフィルムを、接着剤を介して積層することができる。また、アクリル系熱可塑性樹脂を含む原料樹脂とを、上記基材を形成する樹脂とを多層共押出成形を行うことにより積層構成として実用に供することができる。
【0126】
[用途]
本実施形態の光学フィルムは、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)等のディスプレイデバイス用のフィルムとして利用できる。さらに、偏光子保護フィルムのように、フィルム単独で使用する場合の他、視野角拡大フィルム、導電性フィルム等、所定の機能膜を積層されて用いられるフィルムの支持体となるフィルムとしても利用できる。
【0127】
光学フィルム用途では、具体的には液晶ディスプレイに用いられる偏光フィルムの保護用の偏光子保護フィルム、偏光板に貼って用いられる視野角拡大フィルムの支持体であって、所定の液晶等をコーティングして用いられるフィルムや、眩しさを抑制し見やすいディスプレイ画面を実現するために偏光板の最表面に貼って用いられるアンチグレア(防眩)フィルムの支持体であり所定のアンチグレア層をコーティングして用いられるフィルム、反射防止フィルムの支持体であって所定の低反射層等をコーティングして用いられるフィルム、導電性フィルムの支持体であってITO等の導電層を蒸着して用いられるフィルム等としても利用できる。
【0128】
偏光子保護フィルムとして利用する場合には、所定の偏光子と接する面に、接着性を向上させる易接着処理を施してもよい。易接着処理としては、例えば、コロナ処理、プラズマ処理、低圧UV処理、ケン化処理等の各種表面処理や、アンカー層を形成する所定の処理が挙げられる。易接着処理として、特にコロナ処理、アンカー層の形成処理が好ましい。また、本実施の形態における光学フィルムは、例えば所定の偏光子の両面に貼ってもよく、一面のみに貼り、他の一面には、他の保護フィルム、例えばセルロース系樹脂フィルムを貼り合わせて、透湿度、耐久性、強度等の各種物性を適宜制御できる。
【実施例】
【0129】
以下、実施例及び比較例を挙げて本発明の内容を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
【0130】
[アクリル系熱可塑性樹脂の調製]
(調製例1:メタクリル酸メチル/N−フェニルマレイミド/N−シクロヘキシルマレイミド共重合体)
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、開始剤溶液導入ノズル及び重合溶液排出ノズルを備えたSUS製重合反応器(容量0.5L)を用いた。SUS製重合反応器の圧力は、微加圧、反応温度はオイルバスで130℃に制御した。
【0131】
メタクリル酸メチル(MMA)576g、N−フェニルマレイミド(N−PheMI)61g、N−シクロヘキシルマレイミド(N−CyMI)83g及びメチルイソブチルケトン480gを混合した後、窒素ガスで置換して原料溶液を調製した。また、パーヘキサC(日油(株)製;濃度75wt%)8.63gをメチルイソブチルケトン91.37gに溶解した後、窒素ガスで置換して開始剤溶液を調製した。
【0132】
原料溶液はポンプを用いて8.25mL/minで原料溶液導入ノズルから導入した。また、開始剤溶液はポンプを用いて0.08mL/minで開始剤溶液導入ノズルから導入した。30分後、重合溶液排出ノズルから抜き出しポンプを用いて500mL/hrの一定流量でポリマー溶液を排出した。
【0133】
ポリマー溶液は、排出から1.5時間分は初流タンクに分別回収した。排出開始から、1.5時間後から2.5時間のポリマー溶液を本回収した。得られたポリマー溶液と、抽出溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して目的とするアクリル系熱可塑性樹脂を得た。
【0134】
(調製例2:メタクリル酸メチル/N−フェニルマレイミド/N−シクロヘキシルマレイミド/スチレン共重合体)
攪拌装置、温度センサー、冷却管、窒素ガス導入ノズル、原料溶液導入ノズル、及び開始剤溶液導入ノズルを備えたガラス製重合反応器(容量1.0L)を用いた。ガラス製重合反応器の圧力は、微加圧、反応温度はオイルバスで100℃に制御した。
【0135】
メタクリル酸メチル(MMA)140g、N−フェニルマレイミド(N−PheMI)14g、N−シクロヘキシルマレイミド(N−CyMI)34g、スチレン(St)12g及びメチルイソブチルケトン200gを混合した後、窒素ガスで置換して原料溶液を調製した。また、パーヘキサC(日油(株)製;濃度75wt%)0.32gをメチルイソブチルケトン1.00gに溶解した後、窒素ガスで置換して開始剤溶液を調製した。
【0136】
原料溶液は圧送でガラス反応器内に原料溶液導入ノズルから導入した。また、開始剤溶液はシリンジで開始剤溶液導入ノズルから導入し重合反応を開始した。反応開始3時間後を反応終了点とし、ポリマー溶液を回収した。得られたポリマー溶液と、貧溶媒であるメタノールを同時にホモジナイザーに供給し、乳化分散抽出した。分離沈降したポリマーを回収し、真空下、130℃で2時間乾燥して目的とするアクリル系熱可塑性樹脂を得た。
【0137】
(調製例3:メタクリル酸メチル重合体)
調整例1において、メタクリル酸メチル960g、メチルイソブチルケトン240gのみを用いた以外は、調製例1と同様の操作を行ってアクリル系熱可塑性樹脂を得た。
【0138】
(調製例4:メタクリル酸メチル/スチレン/無水マレイン酸共重合体)
公知の方法(例えば、特公昭63−1964号公報に記載の方法)で、単量体としてメタクリル酸メチル、スチレン及び無水マレイン酸を用いて、目的とするアクリル系熱可塑性樹脂を得た。
【0139】
(アクリル系熱可塑性樹脂の組成解析)
重合により得られたアクリル系熱可塑性樹脂をCDClに溶解し、ブルーカー株式会社製、商品名「DPX−400」を用い、H−NMR、13C−NMR(測定温度:40℃)測定を実施し、第一の構造単位、第二の構造単位、第三の構造単位及び第四の構造単位の量をそれぞれ同定し、その比率から組成を確認した。
【0140】
(アクリル系熱可塑性樹脂の重量平均分子量測定)
重合により得られたアクリル系熱可塑性樹脂の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフ(東ソー(株)製、商品名「HLC−8220」)を用いて、展開溶媒テトラヒドロフラン、設定温度40℃で、市販の標準PMMA換算により求めた。
【0141】
[実施例1〜4]
アクリル系熱可塑性樹脂として、下記表1に示すメタクリル酸メチル/N−フェニルマレイミド/N−シクロヘキシルマレイミド共重合体又はメタクリル酸メチル/N−フェニルマレイミド/N−シクロヘキシルマレイミド/スチレン共重合体を用いて光学フィルムを作製した。
【0142】
具体的には、単軸押出機に、予め乾燥処理を施した上記アクリル系熱可塑性樹脂を供給して溶融混練し、Tダイからシート状溶融樹脂を押し出した。次いで、溶融押し出しによって得られたシートをキャストロール上に導き固化後、ロール式縦延伸機に導入し、機械的流れ方向(MD方向)に延伸した。得られた縦延伸シートをテンター式横延伸機に導入し、機械的流れ方向に直交する方向(TD方向)に延伸した後、フィルムの両端をスリットし、厚み40μmのフィルムを巻き取った。
【0143】
MD方向、TD方向それぞれの延伸温度、延伸倍率が下記表1に示す値となるように、ロール式縦延伸機のロール温度、ロール速度比、テンター式横延伸機内の温度、テンターレール幅を制御した。
【0144】
[比較例1〜4]
アクリル系熱可塑性樹脂として、メタクリル酸メチル/N−フェニルマレイミド/N−シクロヘキシルマレイミド共重合体、メタクリル酸メチル重合体又はメタクリル酸メチル/スチレン/無水マレイン酸共重合体を用いた以外は実施例と同様にして、光学フィルムを作製した。
【0145】
ただし、MD方向、TD方向それぞれの延伸温度、延伸倍率が下記表1に示す値となるように、ロール式縦延伸機のロール温度、ロール速度比、テンター式横延伸機内の温度、テンターレール幅を制御した。
【0146】
(ガラス転移温度)
JIS−K7121に準拠して、アクリル系熱可塑性樹脂のガラス転移温度Tgを測定した。先ず、標準状態(23℃、65%RH)で状態調節(23℃で1週間放置)した試料から試験片として4点(4箇所)、それぞれ約10mgを切り出した。次に、パーキンエルマー(Perkin−Elmer)社製の示差走査熱量計(熱流速型DSC):DSC−7型(商品名)を用いて、窒素ガス流量25mL/分、10℃/分で室温(23℃)から200℃まで昇温し(1次昇温)、200℃で5分間保持して完全に融解させた後、10℃/分で40℃まで降温させて、40℃で5分間保持し、更に上記昇温条件で2回目の昇温(2次昇温)する間に描かれるDSC曲線のうち、2次昇温時の階段状変化部分曲線と各ベースライン延長線から縦軸方向に等距離にある直線との交点(中間点ガラス転移温度)をTg(単位℃)として測定した。1試料当り4点の算術平均(小数点以下四捨五入)を算出し、これを測定値とした。
【0147】
なお、光学フィルムに用いる樹脂のガラス転移温度が高いほど、成形される光学フィルムの耐熱性は高くなる。したがって、アクリル系熱可塑性樹脂のガラス転移温度を測定することにより、このアクリル系熱可塑性樹脂を用いた光学フィルムの耐熱性を間接的に評価することができる。
【0148】
(光弾性係数の測定)
Polymer Engineering and Science 1999,39,2349−2357頁に詳細な記載のある複屈折測定装置を用いた。23℃、湿度60%に調整した恒温恒湿室内で24時間以上養生を行ったアクリル系熱可塑性樹脂からなるフィルム(厚み約150μm、幅6mm)を用い、同様に恒温恒湿室に設置したフィルムの引張り装置(井元製作所製)にチャック間50mmになるようにフィルムを配置した。次いで、後述する複屈折測定装置(大塚電子製、商品名「RETS−100」)のレーザー光経路がフィルムの中心部になるようにし、歪速度50%/分(チャック間:50mm、チャック移動速度:5mm/分)で伸張応力をかけながら複屈折を測定した。複屈折の絶対値(|Δn|)と伸張応力(σ)の関係から、最小二乗近似によりその直線の傾きを求め光弾性係数(C)を計算した。計算には伸張応力が2.5MPa≦σR≦10MPaの間のデータを用いた。
=|Δn|/σ
|Δn|=|nx−ny|
(C:光弾性係数、σ:伸張応力、|Δn|:複屈折の絶対値、nx:伸張方向の屈折率、ny:伸張方向の垂直な屈折率)
【0149】
(複屈折変化率|K|の算出)
アクリル系熱可塑性樹脂組成物を成形して得られるフィルム(厚み約300μm、幅40mm)をインストロン社製10t引張り試験機を用いて、延伸温度(Tg+20)℃、延伸速度(500mm/分)で一軸フリー延伸して延伸光学等方性支持板を成形した。延伸倍率は、100%、200%、及び300%で延伸した。次いで、得られた延伸フィルムの複屈折を前述の方法で測定し、一軸延伸したときに発現する複屈折(Δn(S))を求めた。求めた延伸光学等方性支持板の発現している複屈折(Δn(S))の値を、その延伸倍率(S)に対してプロットして得られる最小二乗法近似直線関係式(A)の傾きから求められる複屈折変化率Kの値を求めた。Kの絶対値が小さいほど複屈折(Δn(S))、その変化が小さいことを意味する。
Δn(S)=K×S+C (Cは定数:無延伸時の複屈折値) (A)
但し、ここで複屈折とは、測定した値を100μm厚に換算して求めた値である。
【0150】
また、延伸倍率(S)とは、延伸前のチャック間距離をL、延伸後のチャック間距離をLとすると、以下の式で表される値である。
【0151】
【数2】

【0152】
(フィルムの厚さ)
フィルムの厚さは、JIS−K−7130に従い、マイクロメータを用いて測定した。
【0153】
<光学等方性の評価>
王子計測機器(株)製の自動複屈折計である商品名「KOBRA−21ADH」を使用して、面内の位相差(Re)、厚さ方向の位相差(Rth)を測定した。
【0154】
光学等方性は、Re及びRthの絶対値を用いて、下記のように評価した。
A:Re及びRthいずれの絶対値も5nm以下。
B:Re及びRthいずれかの絶対値が5nmより高く20nm以下。
C:Re及びRthいずれかの絶対値が20nmより高い。
【0155】
<耐折強度の評価>
フィルムの耐折強度は、JIS P−8115に準拠して、15mm幅のフィルム試験片に9.8Nの荷重を掛けて、フィルムのMD方向及びTD方向ついて折り曲げ試験を行い耐折回数を測定した。
【0156】
フィルムの耐折強度は下記のように評価した。
A:MD及びTD方向の耐折強度の回数が30回以上。
B:MD及びTD方向のいずれかの耐折強度の回数が1回以上30回未満。
C:MD及びTD方向のいずれかの耐折強度の回数が0回。
【0157】
<寸法安定性の評価>
JIS K−7133に準拠して、120℃で30分間加熱した時のMD方向およびTD方向の熱収縮率を測定した。
【0158】
寸法安定性は、フィルムの熱収縮率の絶対値を用いて下記のように評価した。
A:MD及びTD方向の熱収縮率の絶対値が0.5%以下。
B:MD及びTD方向の熱収縮率の絶対値が0.5%より高く1.5%以下。
C:MD及びTD方向の熱収縮率の絶対値が1.5%より高い。
【0159】
<フィルムの総合評価の評価>
フィルムの総合評価は、光学等方性、耐折強度、寸法安定性を総合し、以下のように評価した。
A:光学等方性、耐折強度、寸法安定性評価結果の全てがAのフィルム。
B:光学等方性、耐折強度、寸法安定性評価結果のいずれかにBが含まれるフィルム。
C:光学等方性、耐折強度、寸法安定性評価結果のいずれかにCが含まれるフィルム。
【0160】
実施例及び比較例で作製した光学フィルムの厚み、光学的物性(Re及びRth)、耐折回数(回)、熱収縮率の結果並びに総合評価を、下記表1に示す。
【0161】
【表1】

【0162】
表1に示すように、実施例1〜4で作製した光学フィルムは、いずれも、実用上、充分な光学等方性、耐折強度を有し、寸法安定性も良好であった。
【産業上の利用可能性】
【0163】
本発明の光学フィルムは、液晶表示装置(LCD)等の内部で使用される光学用途に用いられるフィルム、具体的には、偏光子保護フィルム、視野角拡大フィルム用支持体、アンチグレア(防眩)フィルム用支持体、反射防止フィルム用支持体、透明導電性フィルム用支持体として、利用することができる。

【特許請求の範囲】
【請求項1】
アクリル系熱可塑性樹脂を含有する光学フィルムであり、
前記アクリル系熱可塑性樹脂が、その総量基準で、下記式(1)で表される第一の構造単位50〜95質量%と、下記式(2)で表される第二の構造単位0.1〜20質量%と、下記式(3)で表される第三の構造単位0.1〜49.9質量%と、を有し、
【化1】


[式中、Rは、水素原子、炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基を示す。
A群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基及び炭素数1〜12のアルキル基。]
【化2】


[式中、Rは、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、又は、下記B群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。
B群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基。]
【化3】


[式中、Rは、水素原子、炭素数3〜12のシクロアルキル基、炭素数1〜12のアルキル基、又は、下記C群より選ばれる少なくとも一種の置換基を有する炭素数1〜12のアルキル基、を示し、R及びRはそれぞれ独立に、水素原子、炭素数1〜12のアルキル基又は炭素数6〜14のアリール基を示す。
C群:ハロゲン原子、ヒドロキシル基、ニトロ基及び炭素数1〜12のアルコキシ基。]
JIS K−7133に従って測定される120℃で30分間加熱した時の熱収縮率の絶対値が、MD方向及びTD方向のいずれも1.5%以下であり、
JIS P−8115に従って測定される耐折回数が、MD方向及びTD方向のいずれも5回以上であり、
下記式(a)で表される面内方向の位相差(Re)の絶対値が20nm以下、かつ、下記式(b)で表される厚さ方向の位相差(Rth)の絶対値が20nm以下である、光学フィルム。
Re=(Nx−Ny)×d (a)
Rth=〔(Nx+Ny)/2−Nz〕×d (b)
[式中、NxはX軸方向の屈折率を、NyはY軸方向の屈折率を、NzはZ軸方向の屈折率をそれぞれ示し、dは厚さを示す。]
【請求項2】
前記第三の構造単位の含有量に対する前記第二の構造単位の含有量のモル比が、0より大きく15以下である、請求項1に記載の光学フィルム。
【請求項3】
前記Rが、メチル基又はベンジル基であり、
前記Rが、フェニル基又は前記B群より選ばれる少なくとも一種の置換基を有するフェニル基であり、
前記Rが、シクロヘキシル基である、請求項1又は2に記載の光学フィルム。
【請求項4】
前記アクリル系熱可塑性樹脂のガラス転移温度Tgが125℃以上である、請求項1〜3のいずれか一項に記載の光学フィルム。
【請求項5】
請求項1〜4のいずれか一項に記載の光学フィルムの製造方法であって、
前記アクリル系熱可塑性樹脂を含む原料樹脂からシートを形成する工程と、
前記シートを、MD方向及びTD方向にそれぞれの延伸倍率が30〜400%となる範囲で二軸延伸する工程と、
を有する光学フィルムの製造方法。
【請求項6】
請求項1〜4のいずれか一項に記載の光学フィルムよりなる、偏光板保護フィルム。
【請求項7】
請求項1〜4のいずれか一項に記載の光学フィルムよりなる、透明プラスチック基板。

【公開番号】特開2013−109285(P2013−109285A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−256170(P2011−256170)
【出願日】平成23年11月24日(2011.11.24)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】