説明

ガスバリア性シート及びその製造方法

【課題】ガスバリア性を高めたガスバリア性シート及びその製造方法を提供する。
【解決手段】基材2と、その基材2上に設けられたガスバリア膜3とを少なくとも有し、ガスバリア膜3の基材2側の界面Sに強磁性元素が存在するように構成したガスバリア性シート1により、上記課題を解決した。この強磁性元素を、界面Sに散布状若しくは島状又は薄膜状に存在させることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスバリア性を高めたガスバリア性シート及びその製造方法に関する。
【背景技術】
【0002】
酸素や水蒸気等に対するバリア性を備えたガスバリア性シートとして、基材上に酸化ケイ素や酸化アルミニウム等の無機酸化物膜をガスバリア膜として設けたものが提案されている。こうしたガスバリア性シートは透明性に優れ、食品や医薬品等の包装材料として、また電子部品や表示素子の保護材料として、また太陽電池バックカバーシート材料として、その需要が大いに期待されている。
【0003】
無機酸化物からなるガスバリア膜の成膜方法では、真空蒸着法やスパッタリング法のほか、イオンプレーティング法が採用されている。イオンプレーティング法で成膜されたガスバリア膜は、基材への密着性と緻密さの点で、真空蒸着法で成膜されたガスバリア膜よりも優れ、スパッタリング法で成膜されたガスバリア膜と同程度であるという特徴がある。一方、イオンプレーティング法によるガスバリア膜の成膜は、成膜速度の点で、スパッタリング法よりも大きく、真空蒸着法と同程度であるという特徴がある。
【0004】
こうしたガスバリア膜の成膜方法では、ガスバリア膜の成膜直前に、基材に対する前処理が行われている(特許文献1〜5)。この前処理は、基材表面を改質したり、下地膜を形成したり、クリーニングを行ったりして、基材面の異物や欠陥を無くしたり平滑にして、その後に成膜されるガスバリア膜のガスバリア性と密着性を向上させている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平7−80984号公報(第0016段落)
【特許文献2】特開2000−15737号公報(第0022段落)
【特許文献3】特開2004−160836号公報(第0041段落)
【特許文献4】特開2006−256091号公報(第0027段落)
【特許文献5】特開2008−110522号公報(第0014段落)
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来のガスバリア膜の成膜方法のうち、プラズマ環境下で成膜されるDCスパッタリング法やマグネトロンスパッタリング法、また、イオンプレーティング法やプラズマCVD法等においては、そのプラズマが基材面にダメージを与えるという難点がある。特に樹脂基材に対しては、プラズマに曝される面のポリマーが分解し、欠陥が生じる原因となることが指摘されている。そのため、従来は、ガスバリア性を高めるためには、出力、成膜時間、プラズマ照射時間等の成膜条件を抑えたり、プラズマ耐性のある下地膜を設けた上でガスバリア膜を成膜したりして対処しなければならなかった。
【0007】
本発明は、上記課題を解決するためになされたものであって、その目的は、プラズマ環境下でガスバリア膜を成膜した場合であっても、高いガスバリア性を示すガスバリア性シート及びその製造方法を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するための本発明に係るガスバリア性シートは、基材と、該基材上に設けられたガスバリア膜とを少なくとも有し、前記ガスバリア膜の基材側の界面に強磁性元素が存在することを特徴とする。
【0009】
本発明者はガスバリア膜のガスバリア性を高めるための研究を行っている過程で、成膜直前の基材面に強磁性元素を僅かに存在させた場合に、プラズマ環境下での成膜手段であってもガスバリア性が高まることを偶然にも発見した。この発明によれば、ガスバリア膜の基材側の界面に強磁性元素を存在させることにより、ガスバリア膜のガスバリア性を高めることができる。
【0010】
本発明に係るガスバリア性シートにおいて、前記強磁性元素が、鉄、ニッケル及びコバルトのいずれか1種又は2種以上である。この発明によれば、これらの強磁性元素が存在することでガスバリア性が高まっていることを確認できた。
【0011】
本発明に係るガスバリア性シートにおいて、前記強磁性元素が、前記界面に散布状若しくは島状又は薄膜状に分布している。この発明によれば、強磁性元素を界面に散布状若しくは島状にまばらに分布させ、又は薄膜状に一様に分布させることでガスバリア性が高まるという結果が得られている。
【0012】
本発明に係るガスバリア性シートにおいて、前記ガスバリア膜が、プラズマ環境下で形成された無機酸化物膜、無機窒化物膜、無機炭化物膜、無機酸化炭化物膜、無機窒化炭化物膜、無機酸化窒化物膜、及び無機酸化窒化炭化物膜から選ばれるいずれかであり、前記基材が、基材シート又は平坦化膜若しくは他のガスバリア膜を有する基材シートである。
【0013】
上記課題を解決するための本発明に係るガスバリア性シートの製造方法は、基材面に強磁性元素を存在させる工程と、前記強磁性元素を存在させた基材面上にプラズマ環境下でガスバリア膜を形成する工程とを有することを特徴とする。この発明によれば、基材面に強磁性元素を存在させた後にプラズマ環境下で形成したガスバリア膜は、良好なガスバリア性を示した。なお、本願において「存在させる」とは、後述のように、「散布状若しくは島状又は薄膜状に分布させる」と同義であり、置き換えることができる。
【0014】
本発明に係るガスバリア性シートの製造方法において、(1)前記強磁性元素を存在させる工程を、スパッタリング法で行う、(2)前記強磁性元素を、前記スパッタリング法で用いるカソードから供給する、(3)前記強磁性元素を、前記基材面上に散布状若しくは島状又は薄膜状に分布させる、(4)前記基材を、基材シート又は平坦化膜若しくは他のガスバリア膜を有する基材シートとする。
【発明の効果】
【0015】
本発明に係るガスバリア性シート及びその製造方法によれば、ガスバリア性を高めることができる。
【図面の簡単な説明】
【0016】
【図1】本発明に係るガスバリア性シートの一例を示す模式的な断面図である。
【図2】本発明に係るガスバリア性シートの他の例を示す模式的な断面図である。
【図3】本発明に係るガスバリア性シートを製造する装置の一例を示す模式図である。
【図4】強磁性元素が界面に存在することを測定したXPS深さ方向分析結果である。
【発明を実施するための形態】
【0017】
次に、本発明に係るガスバリア性シート及びその製造方法について詳しく説明する。なお、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0018】
[ガスバリア性シート]
本発明に係るガスバリア性シート1は、基材2と、基材2上に設けられたガスバリア膜3とを少なくとも有している。そして、ガスバリア膜3の基材側の界面Sに強磁性元素が存在することに特徴がある。ここでいう「基材側の界面」とは、ガスバリア膜3を成膜する被成膜面との界面のことであり、例えば図1に示す基材2の基材面であったり、図2に示す平坦化膜5の膜面であったりする。なお、本願では、図1の基材面と図2の平坦化膜の膜面はいずれも「ガスバリア膜3の被成膜面」であるので、それらを総称して「基材面S」と呼んでいる。また、図1及び図2に示す符号4は、強磁性元素が化合物として存在している形態である。
【0019】
従来は、ガスバリア膜3を形成する基材面Sに異物や不純物が存在するとガスバリア性が低下するとの認識が技術常識であったことから、異物や不純物が基材面Sに存在しないように、基材面Sは平坦で清浄であることが必須とされていた。そのため、ガスバリア膜3の成膜直前に前処理を行って基材面Sの清浄化や平坦化が行われていた。しかし、本発明者は、ガスバリア膜3のガスバリア性を高めるための研究を行っている過程で、成膜直前の基材面Sに強磁性元素が僅かに存在していた場合に、ガスバリア膜3のガスバリア性が高まることを偶然にも発見した。本発明のガスバリア性シート1は、ガスバリア膜3の基材側の界面Sに強磁性元素を存在させることにより、ガスバリア膜3のガスバリア性を高めることを可能にしたものである。
【0020】
(基材)
基材2は、ガスバリア膜3を成膜することができる樹脂シート又は樹脂フィルムであれば特に制限はない。基材2の構成材料としては、例えば、環状ポリオレフィン等の非晶質ポリオレフィン(APO)系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレン2,6−ナフタレート(PEN)等のポリエステル系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリアリレート(PAR)樹脂、シクロポリオレフィン(CPO)樹脂、ポリプロピレン(PP)樹脂、ポリアミド(PA)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロ−パーフロロプロピレン−パーフロロビニルエーテル共重合体(EPA)等を挙げることができる。本発明では、プラズマ環境下でのガスバリア膜の成膜時にプラズマダメージを受けるおそれのあった樹脂基材を問題なく適用できる。
【0021】
また、上記の樹脂材料以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物よりなる樹脂組成物、上記アクリレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、メタクリレート等のオリゴマーを多官能アクリレートモノマーに溶解した樹脂組成物等の光硬化性樹脂、及びこれらの混合物等を用いることもできる。さらに、これらの樹脂の1種又は2種以上をラミネート、コーティング等の手段により積層させたものを基材2として用いることもできる。また、樹脂シート又は樹脂フィルム以外でも、ガラスやシリコンウエハを基材として用いることができる。
【0022】
基材2の厚さは、3μm以上500μm以下、好ましくは12μm以上300μm以下程度であることが好ましい。この範囲内の厚さの基材2は、フレキシブルであるとともに、ロール状に巻き取ることもできる点で好ましい。
【0023】
基材2は、長尺材であってもよいし枚葉材であってもよいが、長尺の基材を好ましく用いることができる。長尺の基材2の長手方向の長さは特に限定されないが、例えば10m以上の長尺フィルムが好ましく用いられる。なお、長さの上限は限定されず、例えば10km程度のものであってもよい。
【0024】
基材2には、種々の性能確保のために添加剤が含まれていてもよい。添加剤としては従来公知のものを適宜用いることができ、例えば、ブロッキング防止剤、熱安定剤、酸化防止剤、塩素捕獲剤等を挙げることができる。なお、基材2を、透明性が必要とされるOLED等の発光素子の基板として用いる場合には、基材2は無色透明であることが好ましい。より具体的には、例えば400nm〜700nmの範囲内での基材2の平均光透過度が80%以上の透明性を有するように構成することが好ましい。こうした光透過度は基材2の材質と厚さに影響されるので両者を考慮して構成される。
【0025】
(平坦化膜)
強磁性元素は、図1に示すように基材2上に存在していてもよいが、図2に示すように基材2上に設けた平坦化膜5上に存在していてもよい。平坦化膜5を基材2とガスバリア膜3との間に設けることにより、基材2の表面が有する凹凸や突起をなくして平坦面にすることができるので、ガスバリア膜3の欠陥を低減でき、ガスバリア性を高めることができる。
【0026】
平坦化膜5としては、従来公知のものを適宜用いればよく、その材料としては、例えば、ゾル・ゲル材料、電離放射線硬化型樹脂、熱硬化型樹脂、及びフォトレジスト材料等を挙げることができる。こうした有機材料で形成した平坦化膜5は、応力緩和機能も兼ね備えることから好ましい。より具体的な材料としては、アクリレートを含む高分子化合物が汎用的なものとして挙げられるが、他には、スチレン、フェノール、エポキシ、ニトリル、アクリル、アミン、エチレンイミン、エステル、シリコーン、カルドポリマー、アルキルチタネート化合物、イオン高分子錯体等、光硬化又は熱硬化性のもの、高分子化合物と金属アルコキシドの加水分解生成物の混合物等を含む、高分子化合物が適宜使用される。
【0027】
特にガスバリア機能を保持させつつ膜の形成を容易にする観点からは、電離放射線硬化型樹脂を用いることが好ましい。より具体的には、アクリレート基やエポキシ基をもつ反応性のプレポリマー、オリゴマー、及び/又は単量体を適宜混合した電離放射線硬化型樹脂;、その電離放射線硬化型樹脂に必要に応じてウレタン系、ポリエステル系、アクリル系、ブチラール系、ビニル系等の熱可塑性樹脂を混合して液状とした液状組成物のような、分子中に重合性不飽和結合を有し、紫外線(UV)や電子線(EB)を照射することにより、架橋重合反応を起こして3次元の高分子構造に変化する樹脂;を好ましく用いることができる。
【0028】
平坦化膜5は、こうした樹脂を、例えば、ロールコート法、ミヤバーコート法、及びグラビアコート法等の従来公知の塗布方法で塗布・乾燥・硬化させることにより形成することができる。また、平坦化膜5の形成材料として、ガスバリア膜3との良好な密着性を確保する観点からは、ガスバリア膜3と同じ材料系の塗膜を形成できるゾル・ゲル法を用いたゾル・ゲル材料を用いることも好ましい。ゾル・ゲル法とは、有機官能基と加水分解基を有するシランカップリング剤と、このシランカップリング剤が有する有機官能基と反応する有機官能基を有する架橋性化合物とを少なくとも原料として構成された塗料組成物の塗工方法、及び塗膜のことをいう。有機官能基と加水分解基を有するシランカップリング剤としては、従来公知のものを適宜用いることができる。また、平坦化膜5の材料として、耐熱性の観点からは、従来公知のカルドポリマーを用いることも好ましい。なお、平坦化膜5の厚さは、通常0.05μm以上、好ましくは0.1μm以上、また、通常10μm以下、好ましくは5μm以下である。
【0029】
(強磁性元素)
基材2(平坦化膜5が形成されている場合には平坦化膜5)とガスバリア膜3との界面S(基材面S)には、図1及び図2に示すように、強磁性元素が存在している。強磁性元素としては、鉄、ニッケル及びコバルトのいずれか1種又は2種以上の元素を挙げることができる。強磁性元素は、単一元素(例えばFe、Ni、Co)として存在していてもよいし2種以上の元素(例えば、FeとNi、FeとCo、NiとCo、FeとNiとCo)としてそれぞれ存在していてもよい。これらの元素は酸素に対して不活性ではなく且つ元素分析の結果からも、酸化物(例えばFe等)、金属と酸化物の複合酸化物、又は窒化物等の化合物として存在していると考えられる。本願では、強磁性元素の酸化物、複合酸化物又は窒化物等を総じて「強磁性元素含有化合物4」といい、図1及び図2において符号4で表している。
【0030】
強磁性元素の存在形態は、上記強磁性元素含有化合物4として、基材面(界面)Sに均一に分布していることが望ましい。具体的には、強磁性元素を散布状又は島状に全面に分布させ、又は薄膜状のように一様に分布させることが好ましい。ここで、「散布状」とは、少なくとも強磁性元素として検出できる程度の原子又は化合物の集合体があたかも散布したかのようにまばらに分布している態様の意味であり、「島状」も散布状と同義であり、概念としては散布状よりも大きい集合体として分布している態様の意味である。強磁性元素の散布状又は島状の存在形態は、分布密度として均一であり、特に一箇所に偏在していることはない。
【0031】
強磁性元素が化合物(強磁性元素含有化合物4)として散布状又は島状に分布する態様については、断面観察してもその存在を確認できないほど僅かな厚さであり、例えば0.1nm以上9nm以下である。さらに、平面視では、面積比で0%を超え10%以下程度ということができるほどの分布である。
【0032】
上記した面積比の評価は困難であるが、例えば後述の実施例に記載のように、XRF(蛍光X線分析装置、株式会社リガク社製、型番:RIX3100)を用いて評価した場合に、例えばFeのカウント数が1kcps以下(実施例では、0.22kcps〜0.98kcps)であっても非常に良好なガスバリア性を発現していたことから、蛍光X線分析装置のカウント数で特定することもできる。このXPSで得られたカウント数の測定結果から、基材面Sでの強磁性元素の含有割合を換算したところ、Fe原子(強磁性元素)として、3原子%〜12原子%の範囲であった。この範囲で良好なガスバリア性を発現できることを確認した。
【0033】
また、強磁性元素が化合物(強磁性元素含有化合物4)として薄膜状に一様に分布する態様としては、基材面Sの全面に、強磁性元素含有化合物4からなる所定の厚さの膜として設けられている態様を挙げることができる。その厚さは、膜として認められる最低限の厚さ(例えば10nm)以上であればよい。なお、膜の厚さは15nmまで、最大で20nm以下であればよい。この20nm以下の厚さは、ガスバリア性を発現しないほどに薄い厚さであるということができる。言い換えれば、強磁性元素含有化合物膜としての厚さが20nmを超える場合は、その膜自体のガスバリア性を意味することになるが、20nmを超える強磁性元素含有化合物膜は、膜応力が大きくなってガスバリア性は悪化する。
【0034】
このように、本発明者は、基材面Sに散布状又は島状のFeを偶然にも存在させた結果、ガスバリア性が高まったことを見つけたが、さらに実験を重ねたところ、薄膜状に設けた強磁性元素含有化合物膜でもガスバリア性を高めることが確認された。なお、ガスバリア性シートに透明性が要求される場合には、強磁性元素含有化合物4の膜厚に注意が必要であるものの、透明性を阻害しない範囲であれば適用できる。
【0035】
本発明では、基材面Sに、散布状、島状又は薄膜状に存在する強磁性元素(強磁性元素含有化合物4として存在)を覆うようにガスバリア膜3が成膜され、その結果として得られたガスバリア性シート1のガスバリア性は、後述する実施例で説明するように、強磁性元素が存在しない場合に比して飛躍的に高めることができた。その理由としては、強磁性成分が化合物(例えば酸化物)として存在していると考えられ、その化合物の磁性が、ガスバリア膜3の成膜時のプラズマを基材面Sからハース側(坩堝側)に押し返すように又ははじき返すように作用し、その結果、基材面Sのプラズマダメージを低減しつつガスバリア膜3を形成するためであろうと考えられる。
【0036】
本発明では強磁性元素が散布状、島状又は薄膜状に必ず存在しているが、強磁性元素を存在させる手段によって強磁性元素と同時に基材面Sに存在することになる他の元素や不可避不純物が、強磁性元素と同様に、散布状、島状又は薄膜状に存在していてもよい。具体的には、付着手段によって強磁性元素とともに基材面Sに散布状、島状又は薄膜状に付着(存在)する、Cr、Al、Ti、Cu、Mo、Mn、P、S、Ta等の元素を挙げることができる。これらの元素は、あくまで他の元素又は不可避不純物として存在しており、強磁性元素の存在に基づく磁性作用を阻害しない範囲内で存在していてもよい元素である。なお、本願において「付着させ」とは、後述のように、「散布状、島状又は薄膜状に存在させ」と同義であり、両者を置き換えることができる。
【0037】
強磁性元素は、基材面Sに各種の方法で存在させる。基材面Sに強磁性元素を存在させる方法としては、スパッタリング法、PVD法、CVD法、ALD法等の方法を挙げることができる。こうしたスパッタリング法やCVD法等の方法においては、基材面Sがプラズマにより劣化しないようにパワーを低レベルに設定して行い、強磁性元素を強磁性元素含有化合物4として散布状、島状又は薄膜状に付着させる。
【0038】
好ましい付着手段としては、基材面Sに対向するプラズマ処理用カソード(「スパッタリングカソード」ということもある。)として強磁性元素を含むプレート(電極板)を用い、そのプラズマ処理用カソードから飛び出した強磁性元素を基材面Sに酸化物、複合酸化物又は窒化物等の強磁性元素含有化合物4として付着させる手段を挙げることができる。この付着手段では、プラズマ処理用カソードの種類を種々変更してスパッタリングすれば、種々の強磁性元素含有化合物4を付着させることができ、さらにその後にガスバリア膜3をプラズマ環境下で成膜することにより、容易に種々のガスバリア性シートを得ることができる。こうして得られたガスバリア性シートを評価すれば、どのような強磁性元素含有化合物4をどのような条件で付着させた場合にガスバリア性が高まるのかを容易に評価することができる。
【0039】
また、その他の成膜手段でも同様に強磁性元素含有化合物4を散布状又は島状に付着させ又は薄膜状に形成することができる。例えば、ウェットコート法やスプレーコート法で行うことができる。具体的には、Fe等の強磁性元素を含む有機金属化合物を塗布し、乾燥又は焼成して強磁性元素含有化合物4を得ることができる。こうした手段は、強磁性元素含有化合物4を薄膜状に形成するのに便利である。
【0040】
なお、ここでは、強磁性元素含有化合物4を基材2(平坦化膜5が形成されている場合には平坦化膜5)とガスバリア膜3との界面S(基材面S)に設ける例で説明したが、基材2上に他のガスバリア膜を予め設けた後に、そのガスバリア膜上に強磁性元素含有化合物4を存在させ、その後にガスバリア膜3を形成してガスバリア性を高めるようにしてもよい。この場合における「他のガスバリア膜」としては、後述するガスバリア膜3と同様のプラズマ環境下で形成するガスバリア膜3であってもよいし、その他のガスバリア膜であってもよい。ここでいう「その他のガスバリア膜」とは、プラズマ環境下で形成しないクレイ化合物(粘土化合物)やゾル・ゲル膜等の樹脂膜、蒸着やアトミックレイヤーデポジション(ALD法)、リモートプラズマ法で形成したSiOやAl等の無機膜等を挙げることができる。
【0041】
(ガスバリア膜)
ガスバリア膜3は、図1及び図2に示すように、上述した強磁性元素が存在する基材面Sにプラズマ環境下で成膜された膜である。ガスバリア膜3は、プラズマ環境下で形成される膜であれば特に限定されず、強磁性元素に基づいた磁性作用によってそのガスバリア性が高まるものを挙げることができる。
【0042】
具体的には、無機酸化物(MOx)膜、無機窒化物(MNy)膜、無機炭化物(MCz)膜、無機酸化炭化物(MOxCz)膜、無機窒化炭化物(MNyCz)膜、無機酸化窒化物(MOxNy)膜、及び無機酸化窒化炭化物(MOxNyCz)膜から選ばれるいずれかの膜を挙げることができる。Mとしては、珪素、亜鉛、アルミニウム、マグネシウム、インジウム、カルシウム、ジルコニウム、チタン、ホウ素、ハフニウム、バリウム等の金属元素を挙げることができる。Mは単体でもよいし2種以上の元素であってもよい。各無機化合物は、具体的には、酸化珪素、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化インジウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウム等の酸化物;窒化珪素、窒化アルミニウム、窒化ホウ素、窒化マグネシウム等の窒化物;炭化珪素等の炭化物;硫化物;等を挙げることができる。また、これらの無機化合物から選ばれた2種以上の複合体(酸化窒化物、酸化炭化物、窒化炭化物、酸化窒化炭化物)であってもよい。また、SiOZnのように金属元素を2種以上含む複合体(酸化窒化物、酸化炭化物、窒化炭化物、酸化窒化炭化物)であってもよい。
【0043】
好ましいMとしては、珪素、アルミニウム、チタン等の金属元素を挙げることができる。特にMが珪素の酸化珪素からなるガスバリア膜3は、透明で高いガスバリア性を発揮し、また、窒化珪素からなるガスバリア膜3はさらに高いガスバリア性を発揮する。特に酸化珪素と窒化珪素の複合体(無機酸化窒化物(MOxNy))であることが好ましく、酸化珪素の含有量が多いと透明性が向上し、窒化珪素の含有量が多いとガスバリア性が向上する。また、Mが珪素と亜鉛のSiOZnやMが珪素と錫のSiOSnからなるガスバリア膜3は、透明で高いガスバリア性を発揮する。
【0044】
これらのガスバリア膜3はプラズマ環境下で成膜される。プラズマ環境下での成膜方法としては、DCスパッタリング法、マグネトロンスパッタリング法、高電力パルススパッタリング法等のようにプラズマ環境下で行うスパッタリング法;イオンプレーティング法;プラズマCVD法や大気圧プラズマCVD法等のCVD法;を挙げることができる。これらの成膜方法は、成膜材料の種類、成膜のし易さ、工程効率等を考慮して選択すればよい。
【0045】
ガスバリア膜3を成膜する際のプラズマは、基材2にダメージを与えることがある。特に樹脂製の基材2に対しては、樹脂の脆性破壊、延性破壊、疲労破壊、クレーズ破壊、境界破壊、層間破壊、応力破壊、相分離破壊等のダメージを生じさせる。その原因は、樹脂製の基材面Sがプラズマに直接曝されると、ポリマーの分子構造が切断されることに基づくと考えられている。本発明では、強磁性元素を存在させた基材面Sを被成膜基材としており、結果として得られたガスバリア性シート1のガスバリア性が飛躍的に高まっていたことから、強磁性元素の存在が、基材面Sへのプラズマダメージを抑制しているものと考えた。その理由は、上述と同様、強磁性元素が存在し、その強磁性元素に基づいた磁性が、ガスバリア膜3の成膜時のプラズマを基材面Sからハース側(坩堝側)に押し返すように又ははじき返すように作用しているものと考えた。なお、従来の一般的な考えでは、高いガスバリア性を得るためには、清浄で不純物質等がない基材面S上にガスバリア膜3を成膜することが常識とされているが、本発明ではそれに反し、基材面Sにあえて強磁性元素を存在させてガスバリア性を高めていることに構成上の特徴がある。
【0046】
ガスバリア膜3の厚さは、通常10nm以上、500nm以下である。この範囲とすれば、ガスバリア性、フレキシビリティを確保しつつ、色味の調整もしやすくなり、生産性も確保しやすいという利点がある。
【0047】
(その他の膜)
本発明に係るガスバリア性シート1には、上記した平坦化膜5の他、必要に応じて各種の膜を設けることができる。例えば、透明導電膜、ハードコート膜、保護膜、帯電防止膜、防汚膜、防眩膜、カラーフィルタ等から選ばれるいずれかを挙げることができる。これらのうち、透明導電膜、帯電防止膜、防汚膜、防眩膜、カラーフィルタを、ガスバリア性シート1の構成要素として設けることが好ましい。
【0048】
上記した平坦化膜5と同様の平坦化膜をガスバリア膜3上に形成してもよい。ガスバリア膜3上に平坦化膜を形成すれば、ガスバリア膜3表面が有する凹凸や突起をなくして平坦面にすることができるので、特に有機EL素子や電子ペーパー素子等のディスプレイ用途に適用した場合に、ムラやぎらつき等をなくすことができるという利点がある。ガスバリア膜3上に形成する平坦化膜については、上記した平坦化膜5の構成(材料、成膜方法、厚さ等)と同じであるのでここではその説明は省略する。
【0049】
透明導電膜(図示しない)は、特に本発明に係るガスバリア性シート1を有機EL素子や電子ペーパー素子等の表示素子用途に用いる場合、ガスバリア膜3の上に設ける電極として利用することができる。透明導電膜は、特に限定されないが、その形成材料としては、インジウム−錫系酸化物(ITO)、インジウム−錫−亜鉛系酸化物(ITZO)、ZnO系、CdO系、及びSnO系等を挙げることができ、特にITO膜が好ましい。これらは、抵抗加熱蒸着法、誘導加熱蒸着法、EB蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、及びプラズマCVD法等の真空成膜法によって形成することができる。また、透明導電膜を、金属アルコキシド等の加水分解物や、透明導電粒子と金属アルコキシド等の加水分解物を塗布して形成される無機酸化物を主成分とするコーティング膜としてもよい。
【0050】
透明導電膜の厚さは、通常10nm以上、好ましくは60nm以上、より好ましくは100nm以上、また、通常1000nm以下、好ましくは450nm以下、より好ましくは200nm以下とする。
【0051】
なお、上記の平坦化膜、透明導電膜以外の機能膜であるハードコート膜、保護膜、帯電防止膜、防汚膜、防眩膜、カラーフィルタ等についての説明は省略するが、それらの膜については、従来公知の技術を適用できる。また、バックカバーシートの場合においては、耐加水分解膜やシーラント膜を設けてもよい。この説明も省略するが、それらの膜についても従来公知の技術を適用できる。
【0052】
[ガスバリア性シートの製造方法]
本発明に係るガスバリア性シート1の製造方法は、基材面Sに強磁性元素を存在させる工程と、強磁性元素を存在させた基材面S上にプラズマ環境下でガスバリア膜3を形成する工程とを有する。この製造方法を構成する工程は、上記した「ガスバリア性シート」の説明欄でそれぞれ詳しく説明しているのでここでは簡単に説明する。
【0053】
最初に、基材2を準備する。基材2は上記した各種の基材を任意に選択して用いることができる。本発明では、ガスバリア膜3の成膜時にプラズマダメージを受けやすい樹脂基材であっても問題なく用いることができる。また、従来のようにプラズマダメージの影響を抑えるための各種の手段、例えばプラズマ耐性のある下地膜の形成を省略することができる。
【0054】
次に、基材2上に必要に応じて平坦化膜5やその他のガスバリア膜を成膜する。これらの膜の形成工程は任意であり、その上には本発明必須のガスバリア膜3を設けることになる。
【0055】
次に、基材2上(平坦化膜5等が設けられている場合にはその上)に、強磁性元素を存在(散布状、島状又は薄膜状に存在)させる。強磁性元素を存在させる手段は既述したとおり、各種の手段を採用できるが、スパッタリング法、CVD法、PVD法、ALD法等で付着させる手段を挙げることができる。スパッタリング法の場合には、プラズマ処理用カソードの組成を調整することにより、そのプラズマ処理用カソードに含まれる元素を強磁性元素(強磁性元素含有化合物4)として基材面Sに付着させることができる。
【0056】
次に、強磁性元素を存在させた基材面S上にガスバリア膜3を成膜する。ガスバリア膜3の成膜手段も既述したとおりであるが、本願ではプラズマ環境下での成膜手段に対して効果を発現することができる。
【0057】
なお、強磁性元素を存在させた基材面Sにガスバリア膜3を成膜する工程を有すれば、その工程の前後に、そのガスバリア膜3以外の他のガスバリア膜を積層する工程、平坦化膜を設ける工程、透明導電膜(有機EL素子や電子ペーパー素子の電極となるもの)の形成工程等、各種の工程を必要に応じて有していても構わない。
【0058】
こうした本発明に係るガスバリア性シートの製造方法によれば、技術常識では避けるべきとされている基材面S上への異種物質(本願では強磁性元素含有化合物4)の付着を行った結果、プラズマ環境下での成膜手段を適用した場合であっても、ガスバリア性が飛躍的に向上した。
【0059】
[ガスバリア性シートの製造装置]
次に、ガスバリア膜を成膜する装置について簡単に説明する。図3は、本発明に係るガスバリア性シートを構成するガスバリア膜3の成膜に適用できるイオンプレーティング装置の一例を示す構成図である。この装置は、後述の実施例で使用するホローカソード型イオンプレーティング装置の構成図である。図3に示すホローカソード型イオンプレーティング装置101は、真空チャンバー102と、このチャンバー102内に配設された供給ロール103a、巻き取りロール103b、コーティングドラム104と、バルブを介して真空チャンバー102に接続された真空排気ポンプ105と、仕切り板109,109と、その仕切り板109,109で真空チャンバー102と仕切られた成膜チャンバー106と、この成膜チャンバー106内の下部に配設された坩堝107と、アノード磁石108と、成膜チャンバー106の所定位置(図示例では成膜チャンバーの右側壁)に配設された圧力勾配型プラズマガン110、収束用コイル111、シート化磁石112、圧力勾配型プラズマガン110へのアルゴンガスの供給量を調整するためのバルブ113と、成膜チャンバー106にバルブを介して接続された真空排気ポンプ114と、酸素ガス等の供給量を調整するためのバルブ116とを備えている。なお、図示のように、供給ロール103aと巻き取りロール103bはリバース機構が装備されており、両方向の巻き出し、巻き取りが可能となっている。
【0060】
このようなイオンプレーティング装置101を用いたガスバリア膜3の成膜は以下のように行われる。先ず、真空チャンバー102、成膜チャンバー106内を、真空排気ポンプ105,114により所定の真空度まで減圧し、次いで、必要に応じて成膜チャンバー106内に酸素ガス等を所定流量導入し、真空排気ポンプ114と成膜チャンバー106との間にあるバルブの開閉度を制御することにより、チャンバー106内を所定圧力に保ち、基材フィルムを走行させ、アルゴンガスを所定流量導入した圧力勾配型プラズマガン110にプラズマ生成のための電力を投入し、アノード磁石108上の坩堝107にプラズマ流を収束させて照射することにより蒸発源材料を蒸発させ、高密度プラズマにより蒸発分子をイオン化させて、強磁性元素を存在させた基材面Sに所定の種類のガスバリア膜3を成膜して、本発明に係るガスバリア性シート1を得る。
【0061】
なお、好ましいイオンプレーティング装置は、ハースに照射された電流が、プラズマガンに安定的に帰還できるように、帰還電極を備えたものである。こうした装置としては、特開平11−269636号公報に記載されるように、プラズマガンのプラズマビームの照射出口部に、プラズマビームの周囲を取り囲み、電気的に浮遊状態として突出させた絶縁管と、この絶縁管の外周側を取り巻くとともに、出口部よりも高い電位状態とした電子帰還電極と、を設けたイオンプレーティング装置を用いればよい。
【0062】
ここでは、ガスバリア膜3の成膜装置として、ホローカソード型イオンプレーティング装置を例示したが、プラズマ環境下でガスバリア膜3を成膜することができる他の装置であってもよいことは言うまでもない。また、図3の例は、長尺の基材シート上にガスバリア膜3を連続成膜できるロール・ツー・ロール法を可能にする装置であるが、一般的なバッチ式の装置であっても構わない。
【0063】
ガスバリア膜3は、上記したイオンプレーティング装置のほか、DCスパッタリング装置、マグネトロンスパッタリング装置、プラズマCVD装置等のような、プラズマ環境下での成膜装置であってもよい。
【0064】
強磁性元素を存在させる手段は、ガスバリア膜の成膜装置内に設けてもよいし装置外に設けてもよい。しかし、供給ロール103aと巻き取りロール103bとが真空チャンバー102内に配置された図3に示す態様の装置では、強磁性元素を強磁性元素含有化合物4として付着する例えばスパッタリング装置は、基材シートを成膜チャンバー106内に投入する直前の真空チャンバー102内に配置されていることが好ましい。そうすることで、強磁性元素含有化合物4の付着と、ガスバリア膜3の成膜を連続して効率的に行うことができる。
【0065】
図3の例では、成膜チャンバー106との間を仕切る仕切り板109の内側(真空チャンバー102内)にスパッタリング装置(プラズマ処理装置120)が設けられている。そのプラズマ処理装置120は、装置筐体122内にプラズマ処理用カソード121が配置された構造として例示する。
【実施例】
【0066】
以下に実施例と比較例を挙げて本発明をさらに具体的に説明する。
【0067】
[実施例1]
基材2としてポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、厚さ100μm、商品名:A4300)を用い、その基材2上に、ザ・インクテック株式会社製のOELV30(商品名)をコーティングして厚さ5μmの平坦化膜5を形成した。最初に、平坦化膜5を形成した基材2をバッチ式の真空チャンバー内に設置し、真空チャンバー内のるつぼに蒸着材料(株式会社高純度化学研究所製の蒸着材料:酸化珪素粒)を収納した。さらに、DCマグネトロンのプラズマ処理用のカソード(スパッタリングカソード)にSUS304を設置した。
【0068】
次に、真空引きを行って真空度を9×10−4まで到達させた後、アルゴンガスを120sccm流し、プラズマ処理用のカソードに0.6kW(635V、0.9A)を4.5秒間印加し、強磁性元素を基材面S上に存在させた。この段階でXRF(蛍光X線分析装置、株式会社リガク社製、型番:RIX3100)にて元素分析したところ、鉄元素とCr元素が検出された。鉄元素のカウント数は0.64kcpsであった。XRFの結果より、基材上には強磁性元素が散布状又は島状に存在し、その存在態様は散布状又は島状に存在する強磁性元素含有化合物4(具体的には強磁性元素含有酸化物)であると考えられる。
【0069】
その後、プラズマガンにアルゴンガスを12sccmと放電電力を投入して、99Aの放電電流と141Vの放電電圧を発生させ、昇華ガスをプラズマ化した。収束コイルに所定の磁場を発生させることにより、プラズマ化した昇華ガスからなるプラズマ化昇華ガス流を所定方向に曲げ、これによってプラズマ化した昇華ガスを真空チャンバー内の蒸着材料に向けて照射した。プラズマ化した昇華ガスによって、蒸着材料は昇華するとともにイオン化した。イオン化した蒸着材料が、強磁性元素を存在(強磁性元素含有化合物4を付着)させた後の基材面Sに堆積することにより、厚さ75nmのガスバリア膜3を成膜した。なお、イオンプレーティングの実施時間は6秒間であった。sccmとはstandard cubic per minuteの略であり、以下の実施例、比較例においても同様である。こうして実施例1に係るガスバリア性シート1を作製した。
【0070】
得られたガスバリア性シートについて、ガスバリア膜3の水蒸気透過率を測定したところ0.03g/m/dayであった。水蒸気透過率の測定は、水蒸気透過率測定装置(MOCON社製 TERMATRAN−W3/31)を用い、温度38℃、湿度100%RHで行った。なお、全光線透過率を併せて測定したところ92%であった。全光線透過率は、スガ試験機株式会社製の装置(SMカラーコンピューターSM−C)を使用し、JIS K7105に準拠して測定した。
【0071】
図4は、強磁性元素が界面に存在することを測定したXPS深さ方向分析結果である。横軸は深さ方向のエッチング時間であり、縦軸は原子%である。ガスバリア膜3から基材面Sに向かって深さ方向の元素分析を行った結果、ガスバリア膜3領域ではSi、O及びCは一定であったが、基材面S(界面)ではFeとCrが検出された。その後の基材2内では主にCとOが検出された。基材面S(界面)で検出されたFeは最大7.9原子%であり、Crは最大3.0原子%であった。ここで検出されたFeとCrはプラズマ処理用カソード(SUS304は18%Cr−8%Niのオーステナイト系ステンレスの代表的な鋼種である。)に含まれるFeとCrであると考えられる。今回のデータには載せていないが、Niも僅かに含まれる。なお、Crは強磁性元素ではない。
【0072】
基材面S上の強磁性元素が化合物(強磁性元素含有化合物4)として散布状又は島状に分布する分布密度は、平面視の面積で10%以下であることを確認し、XPSでの分析結果からはFe等の強磁性元素が3〜12原子%程度の範囲で含まれていればよいことも確認した。Fe等の界面の存在する強磁性元素等は酸化物になっているものと考えられる。
【0073】
[実施例2〜4]
実施例1において、スパッタリングターゲットして、Feのみを含む鉄鋼板を用いたもの(実施例2)、FeとNiを含む耐食合金鋼板を用いたもの(実施例3)、FeとCoを含むマルテンサイト鋼板を用いたもの(実施例4)、を実施例1と同じ条件でスパッタリングし、基材面Sに強磁性元素を存在させた。その他は実施例1と同様にして、実施例2〜4のガスバリア性シートを作製した。
【0074】
作製したガスバリア性シートのガスバリア膜3の水蒸気透過率についても同様にした結果、0.001〜0.05g/m/dayの範囲の値が得られた。また、実施例1と同様にXPSで元素分析した結果でも、実施例1と同様、強磁性元素が3〜12原子%の範囲で含まれていればよいことも確認した。なお、強磁性元素(Fe等)の分布密度は、強磁性元素のスパッタリング条件(印加電力、放電電流、放電電圧、時間)を変化させて制御し、平面視の面積を10%以下の範囲内に任意に変化させた。
【0075】
[実施例5]
基材2としてポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、厚さ100μm、商品名:A4100)を用い、その基材2は実施例1と同様の平坦化膜5は設けずにバッチ式の真空チャンバー内に設置し、真空チャンバー内のるつぼに蒸着材料(株式会社高純度化学研究所製の蒸着材料:酸化珪素粒+亜鉛粒、Si:Znの重量%=100:30)を収納した。さらに、DCマグネトロンスパッタリング用のプラズマ処理用カソードとして、実施例1と同様のSUS304を設置した。
【0076】
次に、真空引きを行って真空度を9×10−4まで到達させた後、アルゴンガスを120sccm流し、プラズマ処理用のカソードに0.4kW(573V、0.7A)を9秒間印加し、強磁性元素を基材面S上に存在させた。強磁性元素を存在させた基材面S上へのガスバリア膜3の成膜は、実施例1と同様にして行った。なお、イオンプレーティングの実施時間は12秒間であり、ガスバリア膜3の厚さを120nmとした。こうして実施例5に係るガスバリア性シート1を作製した。
【0077】
得られたガスバリア性シートのガスバリア膜3の水蒸気透過率を実施例1と同様に測定したところ0.001g/m/dayであった。また、XRF(蛍光X線分析)にて元素分析したところ、鉄元素とCr元素が検出された。鉄元素のカウント数は0.90kcpsであった。
【0078】
[実施例6]
実施例5において、プラズマ処理用カソードに0.8kW(676V、1.1A)を4.5秒間印加し、強磁性元素を基材面S上に存在させた。また、イオンプレーティングの実施時間は6秒間であり、ガスバリア膜3の厚さを112nmとした。これ以外は実施例5と同様にして実施例6に係るガスバリア性シート1を作製した。
【0079】
得られたガスバリア性シートのガスバリア膜3の水蒸気透過率を実施例1と同様に測定したところ0.03g/m/dayであった。また、XRF(蛍光X線分析)にて元素分析したところ、鉄元素とCr元素が検出された。鉄元素のカウント数は0.98kcpsであった。
【0080】
[実施例7]
基材2として実施例1と同様のポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、厚さ100μm、商品名:A4100)を用い、その基材2上には実施例1と同様の平坦化膜5を厚さ5μm設けた。その後バッチ式の真空チャンバー内に設置し、真空チャンバー内のるつぼに蒸着材料(株式会社高純度化学研究所製の蒸着材料:酸化珪素粒+亜鉛粒、Si:Znの重量%比=100:30)を収納した。さらに、DCマグネトロンスパッタリング用のプラズマ処理用カソードとして、実施例1と同様のSUS304を設置した。
【0081】
次に、真空引きを行って真空度を9×10−4まで到達させた後、プラズマ処理用カソードに0.2kW(482V、0.4A)を4.5秒間印加し、強磁性元素を基材面S上に存在させた。強磁性元素を存在させた基材面S上へのガスバリア膜3の成膜は、実施例1と同様にして行った。なお、イオンプレーティングの実施時間は6秒間であり、ガスバリア膜3の厚さを72nmとした。こうして実施例7に係るガスバリア性シート1を作製した。
【0082】
得られたガスバリア性シートのガスバリア膜3の水蒸気透過率を実施例1と同様に測定したところ0.004g/m/dayであった。また、XRF(蛍光X線分析)にて元素分析したところ、鉄元素とCr元素が検出された。鉄元素のカウント数は0.43kcpsであった。
【0083】
[実施例8]
実施例5において、プラズマ処理用カソードに0.1kW(500V、0.2A)を4.5秒間印加し、強磁性元素を基材面S上に存在させた。また、イオンプレーティングの実施時間は6秒間であり、ガスバリア膜3の厚さを108nmとした。これ以外は実施例5と同様にして実施例8に係るガスバリア性シート1を作製した。
【0084】
得られたガスバリア性シートのガスバリア膜3の水蒸気透過率を実施例1と同様に測定したところ0.05g/m/dayであった。また、XRF(蛍光X線分析)にて元素分析したところ、鉄元素とCr元素が検出された。鉄元素のカウント数は0.22kcpsであった。
【0085】
[実施例9]
実施例1において、真空引きを行って真空度を9×10−4まで到達させた後、アルゴンガスを120sccm流し、プラズマ処理用のカソードに0.6kW(635V、0.9A)を連続して印加し、強磁性元素を含む強磁性元素含有化合物4の薄膜(厚さ10nm)を基材面S上に形成した。その後のガスバリア膜3の成膜は、実施例1と同様にして行った。こうして実施例9に係るガスバリア性シートを作製した。なお、実施例1と同様にXPSで得られたカウント数は、9.08kcpsであった。
【0086】
[比較例1]
実施例1において、プラズマ処理用のカソードとしてモリブデン(Mo)板を用いることにより強磁性元素を基材面S上に存在させないで、それ以外は実施例1と同様にして比較例1に係るガスバリア性シートを作製した。なお、イオンプレーティング条件は、プラズマガンにアルゴンガスを12sccmと放電電力を投入して、70Aの放電電流と143Vで行い、イオンプレーティングの実施時間は6秒間であり、ガスバリア膜の厚さを85nmとした。得られたガスバリア性シートについて、ガスバリア膜3の水蒸気透過率を測定したところ0.85g/m/dayであった。
【符号の説明】
【0087】
1 ガスバリア性シート
2 基材
3 ガスバリア膜
4 強磁性元素含有化合物
5 平坦化膜
S 基材側の界面(基材面)
【0088】
101 ホローカソード型イオンプレーティング装置
102 真空チャンバー
103a 供給ロール
103b 巻き取りロール
104 コーティングドラム
105 真空排気ポンプ
106 成膜チャンバー
107 坩堝
108 アノード磁石
109 仕切り板
110 圧力勾配型プラズマガン
111 収束用コイル
112 シート化磁石
113 バルブ
114 真空排気ポンプ
116 バルブ
120 プラズマ処理装置(スパッタリング装置)
121 プラズマ処理用カソード
122 装置筐体

【特許請求の範囲】
【請求項1】
基材と、該基材上に設けられたガスバリア膜とを少なくとも有し、前記ガスバリア膜の基材側の界面に強磁性元素が存在することを特徴とするガスバリア性シート。
【請求項2】
前記強磁性元素が、鉄、ニッケル及びコバルトのいずれか1種又は2種以上である、請求項1に記載のガスバリア性シート。
【請求項3】
前記強磁性元素が、前記界面に散布状若しくは島状又は薄膜状に分布している、請求項1又は2に記載のガスバリア性シート。
【請求項4】
前記ガスバリア膜が、プラズマ環境下で形成された無機酸化物膜、無機窒化物膜、無機炭化物膜、無機酸化炭化物膜、無機窒化炭化物膜、無機酸化窒化物膜、及び無機酸化窒化炭化物膜から選ばれるいずれかである、請求項1〜3のいずれか1項に記載のガスバリア性シート。
【請求項5】
前記基材が、基材シート又は平坦化膜若しくは他のガスバリア膜を有する基材シートである、請求項1〜4のいずれか1項に記載のガスバリア性シート。
【請求項6】
基材面に強磁性元素を存在させる工程と、
前記強磁性元素を存在させた基材面上にプラズマ環境下でガスバリア膜を形成する工程と、を有することを特徴とするガスバリア性シートの製造方法。
【請求項7】
前記強磁性元素を存在させる工程を、スパッタリング法で行う、請求項6に記載のガスバリア性シートの製造方法。
【請求項8】
前記強磁性元素を、前記スパッタリング法で用いるカソードから供給する、請求項7に記載のガスバリア性シートの製造方法。
【請求項9】
前記強磁性元素を、前記基材面上に散布状若しくは島状又は薄膜状に分布させる、請求項6〜8のいずれか1項に記載のガスバリア性シートの製造方法。
【請求項10】
前記基材を、基材シート又は平坦化膜若しくは他のガスバリア膜を有する基材シートとする、請求項6〜9のいずれか1項に記載のガスバリア性シート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−240538(P2011−240538A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2010−112953(P2010−112953)
【出願日】平成22年5月17日(2010.5.17)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】