説明

シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法

【課題】 保存安定性に優れており、レジスト膜との密着性に優れるシリコン含有膜を形成することができると共に、裾引き等のないボトム形状に優れるレジストパターンを安定して形成できるシリコン含有膜形成用組成物を提供することである。
【解決手段】 (A1)ポリシロキサン、(B)特定構造を有する化合物、および(C)有機溶媒を含有することを特徴とするシリコン含有膜形成用組成物を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法に関する。更に詳しくは、本発明は、多層レジストプロセスにおいて、基板にレジストパターンを形成する際に、その下地となる下層膜を形成するためのシリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法に関する。
【背景技術】
【0002】
半導体用素子等を製造する際のパターン形成においては、リソグラフィー技術、レジスト現像プロセス及びエッチング技術を適用するパターン転写法により、有機材料又は無機材料よりなる基板の微細加工が行われている。
しかしながら、回路基板における半導体素子等の高集積化が進むにつれて、露光工程において光マスクのパターンを正確にレジスト膜に転写することが困難となり、例えば、基板に対する微細加工プロセスにおいて、レジスト膜中に形成される光の定在波の影響により、形成されるパターンの寸法に誤差(狂い)が生じることがある。このような定在波の影響を軽減するために、レジスト膜と基板表面との間に反射防止膜が形成されている。
【0003】
また、シリコン酸化膜や無機層間絶縁膜等が形成された基板を加工する際、レジストパターンがマスクとして用いられるが、パターンの微細化が進むにつれレジスト膜及び反射防止膜を薄くする必要がある。このようにレジスト膜の薄膜化が進むと、レジスト膜のマスク性能が低下するため、基板にダメージを与えずに所望の微細加工を施すことが困難になる傾向にある。
【0004】
そこで、加工対象である基板の酸化膜や層間絶縁膜上に加工用下層膜(シリコン含有膜)を形成し、これにレジストパターンを転写し、この加工用下層膜をマスクとして用いて、酸化膜や層間絶縁膜をドライエッチングするプロセスが行われている。このような加工用下層膜は、膜厚によって反射率が変化するため、使用される膜厚に応じて反射率が最小になるように、組成等を調整することが必要となる。また、前記加工用下層膜には、裾引き等のない矩形形状のレジストパターンが形成できること、レジストとの密着性に優れること、レジスト膜/レジスト下層膜におけるエッチング選択性に優れること、溶液としての保存安定性に優れること等が要求されている。
【0005】
一般的に、シリコン含有膜形成用組成物中に含まれるポリシロキサンの合成に用いられる触媒としては、酸触媒または塩基触媒が用いられ、中でも工程数が少なくて済む酸触媒が好ましく用いられる。酸触媒としては、塩酸、シュウ酸、マレイン酸等が一般的である(特許文献1〜4等参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000−356854号公報
【特許文献2】特開2002−40668号公報
【特許文献3】特開2009−30006号公報
【特許文献4】特開2007−226170号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、シュウ酸やマレイン酸を用いると、シリコン含有膜を形成する際の硬化が遅くなって、レジストパターンのボトム形状が悪化したりパターン倒れが起こったりするという問題があり、塩酸を用いると、保存安定性が悪化するという問題がある。
【0008】
本発明の課題は、保存安定性に優れており、レジスト膜との密着性に優れるシリコン含有膜を形成することができると共に、裾引き等のないボトム形状に優れるレジストパターンを安定して形成できるシリコン含有膜形成用組成物を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明は、以下の通りである。
[1](A1)ポリシロキサン(以下、「ポリシロキサン(A1)」ともいう)、
(B)下記一般式(1)で表される化合物(以下、「化合物(B)」ともいう)、および
(C)有機溶媒(以下、「溶媒(C)」ともいう)を含有することを特徴とするシリコン含有膜形成用組成物(以下、「組成物I」ともいう)。
【0010】
【化1】

【0011】
〔一般式(1)において、Rは、フッ素置換された炭素数1〜6のアルキル基を示し、Rは水素原子または置換されていてもよい炭素数1〜6のアルキル基を示す。〕
【0012】
[2](A2)前記一般式(1)で表される化合物(但し、Rは水素原子であり、該化合物を「化合物(1)」ともいう)の存在下でシラン化合物を加水分解縮合させることにより得られたポリシロキサン(以下、「ポリシロキサン(A1)」ともいう)、および
溶媒(C)を含有することを特徴とするシリコン含有膜形成用組成物(以下、「組成物II」ともいう)。
[3]前記ポリシロキサンのゲルパーミエーションカラムクロマトグラフィーによるポリスチレン換算の重量平均分子量が、500〜15000である[1]または[2]に記載のシリコン含有膜形成用組成物。
[4]前記ポリシロキサンが、テトラアルコキシシラン(以下、「化合物(a1)」ともいう)および下記一般式(2)で表される化合物(以下、「化合物(a2)」ともいう)から選ばれる少なくとも一種を含むシラン化合物を加水分解縮合させて得られる構造を有する、[1]乃至[3]に記載のシリコン含有膜形成用組成物。
【0013】
【化2】

【0014】
〔一般式(2)において、Rはフッ素原子、アルキルカルボニルオキシ基または置換されていてもよい1価の炭化水素基を示し、Xは、塩素原子、臭素原子またはOR(但し、Rは1価の有機基を示す。)を示す。〕
【0015】
[5](1)[1]乃至[4]のいずれかに記載のシリコン含有膜形成用組成物を被加工基板上に塗布してシリコン含有膜を形成する工程と、
(2)得られた前記シリコン含有膜上に、レジスト組成物を塗布してレジスト被膜を形成する工程と、
(3)得られた前記レジスト被膜に、フォトマスクを透過させることにより選択的に放射線を照射して前記レジスト被膜を露光する工程と、
(4)露光した前記レジスト被膜を現像して、レジストパターンを形成する工程と、
(5)前記レジストパターンをマスクとして、前記シリコン含有膜及び前記被加工基板をドライエッチングしてパターンを形成する工程と、を備えることを特徴とするパターン形成方法。
【発明の効果】
【0016】
本発明のシリコン含有膜形成用組成物は、保存安定性に優れており、レジスト膜との密着性に優れるシリコン含有膜を形成することができる。更には、裾引き等のない矩形形状のレジストパターンを安定して形成することができる。そのため、多層レジストプロセスのなかでも、90nmよりも微細な領域(ArF、液侵露光でのArF、F、EUV、ナノインプリント)での多層レジストプロセスを用いたパターン形成において、特に好適に用いることができる。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について詳細に説明する。
[1]シリコン含有膜形成用組成物
本発明のシリコン含有膜形成用組成物Iは、ポリシロキサン(A1)、化合物(B)との混合物、および溶媒(C)を含有する。
本発明のシリコン含有膜形成用組成物IIは、化合物(1)の存在下でシラン化合物を加水分解縮合させることにより得られたポリシロキサン(A2)、および溶媒(C)を含有することを特徴とする。
ポリシロキサン(A1)は、通常、ポリシロキサン(A2)と同じ化合物である。従って、本明細書において、ポリシロキサン(A1)とポリシロキサン(A2)を併せて「ポリシロキサン(A)」と記載することもある。
【0018】
(1)ポリシロキサン(A)
本発明のシリコン含有膜形成用組成物における前記ポリシロキサン(A)は、通常、化合物(1)の存在下で加水分解性シラン化合物を加水分解縮合させることにより得られたものである。該加水分解性シラン化合物としては、化合物(a1)および化合物(a2)から選ばれる少なくとも一種を含むことが好ましい。
【0019】
化合物(a1)としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラフェノキシシラン、テトラクロロシラン等が挙げられる。
これらのうち、テトラメトキシシラン及びテトラエトキシシランが好ましい。
尚、化合物(a1)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0020】
化合物(a2)を表す一般式(2)において、Rは、フッ素原子、アルキルカルボニルオキシ基または置換されていてもよい1価の炭化水素基である。
このRにおけるアルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基、ビニルカルボニルオキシ基、アリルカルボニルオキシ基等が挙げられる。
における置換されていてもよい1価の炭化水素基としては、置換されていてもよい炭素数1〜20の炭化水素基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基等の直鎖状若しくは分岐鎖状の炭化水素基;フェニル基、ナフチル基、ビフェニル基、メチルフェニル基、エチルフェニル基等の芳香環を有する炭化水素基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、トリシクロデシル基、テトラシクロドデシル基、アダマンチル基等の脂環式炭化水素基等が挙げられる。尚、これらの炭化水素基における1又は2以上の水素原子は置換されていてもよく、置換基としては、ハロゲン原子、アルコキシ基、エポキシ基、グリシドキシ基、トリメチルシリル基、トリス(トリメチルシリル)シリル基等が挙げられる。
【0021】
一般式(2)におけるXは、塩素原子、臭素原子、又はOR(但し、Rは1価の有機基を示す。)である。
前記XがORである場合におけるRの1価の有機基としては、アルキル基、アルケニル基、アリール基、アリル基、グリシジル基等が挙げられる。これらのなかでも、アルキル基及びアリール基が好ましい。
前記アルキル基は、好ましくは、炭素数1〜5の直鎖状及び若しくは分岐状のアルキル基であり、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基等が挙げられる。尚、これらのアルキル基における1又は2以上の水素原子は、フッ素原子等に置換されていてもよい。
前記アリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基等が挙げられる。これらのうち、フェニル基が好ましい。
前記アルケニル基としては、ビニル基、プロペニル基、3−ブテニル基、3−ペンテニル基、3−ヘキセニル基等が挙げられる。
【0022】
前記一般式(2)で表される具体的な化合物(a2)としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリイソプロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリフェノキシシラン、エチルトリクロロシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロポキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリ−n−ブトキシシラン、n−プロピルトリ−sec−ブトキシシラン、n−プロピルトリ−tert−ブトキシシラン、n−プロピルトリフェノキシシラン、n−プロピルトリクロロシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリ−n−プロポキシシラン、イソプロピルトリイソプロポキシシラン、イソプロピルトリ−n−ブトキシシラン、イソプロピルトリ−sec−ブトキシシラン、イソプロピルトリ−tert−ブトキシシラン、イソプロピルトリフェノキシシラン、イソプロピルトリクロロシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ブチルトリ−n−プロポキシシラン、n−ブチルトリイソプロポキシシラン、n−ブチルトリ−n−ブトキシシラン、n−ブチルトリ−sec−ブトキシシラン、n−ブチルトリ−tert−ブトキシシラン、n−ブチルトリフェノキシシラン、n−ブチルトリクロロシラン、
【0023】
sec−ブチルトリメトキシシラン、sec−ブチルイソトリエトキシシラン、sec−ブチルトリ−n−プロポキシシラン、sec−ブチルトリイソプロポキシシラン、sec−ブチルトリ−n−ブトキシシラン、sec−ブチルトリ−sec−ブトキシシラン、sec−ブチルトリ−tert−ブトキシシラン、sec−ブチルトリフェノキシシラン、sec−ブチルトリクロロシラン、tert−ブチルトリメトキシシラン、tert−ブチルトリエトキシシラン、tert−ブチルト−n−プロポキシシラン、tert−ブチルトリイソプロポキシシラン、tert−ブチルトリ−n−ブトキシシラン、tert−ブチルトリ−sec−ブトキシシラン、tert−ブチルトリ−tert−ブトキシシラン、tert−ブチルトリフェノキシシラン、tert−ブチルトリクロロシラン等が挙げられる。
【0024】
フェニルトリメトキシシラン、4−メチルフェニルトリメトキシシラン、4−エチルフェニルトリメトキシシラン、4−(n−プロピル)フェニルトリメトキシシラン、4−(iso−プロピル)フェニルトリメトキシシラン、4−(n−ブチル)フェニルトリメトキシシラン、4−(2−メチルプロピル)フェニルトリメトキシシラン、4−(1−メチルプロピル)フェニルトリメトキシシラン、4−(tert−ブチル)フェニルトリメトキシシラン、4−メトキシフェニルトリメトキシシラン、4−フェノキシフェニルトリメトキシシラン、4−ヒドロキシフェニルトリメトキシシラン、4−アミノフェニルトリメトキシシラン、4−ジメチルアミノフェニルトリメトキシシラン、4−アセチルアミノフェニルトリメトキシシラン、3−メチルフェニルトリメトキシシラン、3−エチルフェニルトリメトキシシラン、3−メトキシフェニルトリメトキシシラン、3−フェノキシフェニルトリメトキシシラン、3−ヒドロキシフェニルトリメトキシシラン、3−アミノフェニルトリメトキシシラン、3−ジメチルアミノフェニルトリメトキシシラン、3−アセチルアミノフェニルトリメトキシシラン、2−メチルフェニルトリメトキシシラン、2−エチルフェニルトリメトキシシラン、2−メトキシフェニルトリメトキシシラン、2−フェノキシフェニルトリメトキシシラン、2−ヒドロキシフェニルトリメトキシシラン、2−アミノフェニルトリメトキシシラン、2−ジメチルアミノフェニルトリメトキシシラン、2−アセチルアミノフェニルトリメトキシシラン、2,4,6−トリメチルフェニルトリメトキシシラン、4−メチルベンジルトリメトキシシラン、4−エチルベンジルトリメトキシシラン、4−メトキシベンジルトリメトキシシラン、4−フェノキシベンジルトリメトキシシラン、4−ヒドロキシベンジルトリメトキシシラン、4−アミノベンジルトリメトキシシラン、4−ジメチルアミノベンジルトリメトキシシラン、4−アセチルアミノベンジルトリメトキシシラン等が挙げられる。
【0025】
これらのなかでも、反応性や取り扱い容易性の観点から、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、
フェニルトリメトキシシラン、4−メチルフェニルトリメトキシシラン、4−エチルフェニルトリメトキシシラン、4−(n−プロピル)フェニルトリメトキシシラン、4−(iso−プロピル)フェニルトリメトキシシラン、4−(n−ブチル)フェニルトリメトキシシラン、4−(2−メチルプロピル)フェニルトリメトキシシラン、4−(1−メチルプロピル)フェニルトリメトキシシラン、4−(tert−ブチル)フェニルトリメトキシシラン、4−メトキシフェニルトリメトキシシラン、4−メチルベンジルトリメトキシシラン等が好ましい。
【0026】
化合物(a1)、(a2)以外の加水分解性シラン化合物の具体例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−グリシドキシ−5−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2−グリシドキシ−5−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2−グリシドキシ−6−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2−グリシドキシ−6−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2、3−エポキシ−5−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2、3−エポキシ−5−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2、3−エポキシ−6−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2、3−エポキシ−6−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2、3−エポキシ−5−(2−トリメトキシシリルエチル)ビシクロ[2,2,1]ヘプテン、2、3−エポキシ−5−(2−トリエトキシシリルエチル)ビシクロ[2,2,1]ヘプテン、2、3−エポキシ−6−(2−トリメトキシシリルエチル)ビシクロ[2,2,1]ヘプテン、2、3−エポキシ−6−(2−トリエトキシシリルエチル)ビシクロ[2,2,1]ヘプテン、2、2´−ビスグリシドキシメチル−5−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2、2´−ビスグリシドキシメチル−5−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2、2´−ビスグリシドキシメチル−6−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2、2´−ビスグリシドキシメチル−6−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3、4−エポキシシクロヘキシル)エチルトリエトキシシラン

トリス(トリメチルシリル)シリルエチルトリメトキシシラン、トリス(トリメチルシリル)シリルエチルトリエトキシシラン、2−トリス(トリメチルシリル)−5−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2−トリス(トリメチルシリル)−5−トリエトキシシリルビシクロ[2,2,1]ヘプテン、2−トリス(トリメチルシリル)−6−トリメトキシシリルビシクロ[2,2,1]ヘプテン、2−トリス(トリメチルシリル)−6−トリエトキシシリルビシクロ[2,2,1]ヘプテン、(2−トリメトキシシリル)エチルペンタメチルジシラン、(2−トリエトキシシリル)エチルペンタメチルジシラン、1−(2−トリメトキシシリル)エチルヘプタメチルトリシラン、1−(2−トリメトキシシリル)エチルヘプタメチルトリシラン、1−(2−トリエトキシシリル)エチルヘプタメチルトリシラン、1−(2−トリメトキシシリル)エチルノナメチルテトラシラン、1−(2−トリエトキシシリル)エチルノナメチルテトラシラン、トリメトキシシリルウンデカメチルシクロヘキサシラン、エチルトリメトキシシリルノナメチルシクロペンタシラン、エチルトリエトキシシリルノナメチルシクロペンタシラン、トリメトキシシリルウンデカメチルシクロヘキサシラン、トリエトキシシリルウンデカメチルシクロヘキサシラン、トリストリメチルシリル(2−エチルトリメトキシシリル)ジメチルシリルシラン、
トリストリメチルシリル(2−エチルトリメトキシシリル)ジメチルシリルシラン等が挙げられる。
【0027】
これらのなかでも、反応性や取り扱い容易性の観点から、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3、4−エポキシシクロヘキシル)エチルトリエトキシシラン、トリス(トリメチルシリル)シリルエチルトリメトキシシラン、トリス(トリメチルシリル)シリルエチルトリエトキシシランが好ましい
尚、前記ケイ素含有重合体(A)の調製に際して、化合物(a1)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0028】
前記ケイ素含有重合体(A)の調製に際して、化合物(a1)及び(a2)に加えて、他の加水分解性シラン化合物を併用してもよい。
他の加水分解性シラン化合物としては、例えば、下記一般式(3)で表される化合物(以下、「化合物(a3)」ともいう。)を用いることができる。
【0029】
(X)3−xSi−(R−Si(X)3−y (3)
〔一般式(3)において、Rは1価の有機基を示す。Rが複数存在する場合、複数のRは同一であってもよいし、異なっていてもよい。Rは1価の有機基を示す。Rが複数存在する場合、複数のRは同一であってもよいし、異なっていてもよい。Rは、酸素原子、フェニレン基、又は−(CH−で表される基(但し、nは1〜6の整数である。)を示す。Xはハロゲン原子又はOR(但し、Rは1価の有機基を示す。)を示す。Xが複数存在する場合、複数のXは同一であってもよいし、異なっていてもよい。xは0〜2の数を示す。yは0〜2の数を示す。zは0又は1を示す。〕
【0030】
前記化合物(a3)を表す一般式(3)において、R及びRは、それぞれ、1価の有機基であり、アルキル基、アルケニル基、アリール基、アリル基、グリシジル基等が挙げられる。これらの官能基は、前記化合物(a2)を表す一般式(2)におけるXが示す1価の有機基の例示及びその説明をそのまま適用することができる。
また、一般式(3)において、Xは、塩素原子、臭素原子、又はOR(但し、Rは1価の有機基を示す。)である。このXについては、前記一般式(2)におけるXの例示及びその説明をそのまま適用することができる。
【0031】
前記一般式(3)において、z=0である場合の化合物としては、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサフェノキシジシラン、1,1,1,2,2−ペンタメトキシ−2−メチルジシラン、1,1,1,2,2−ペンタエトキシ−2−メチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−メチルジシラン、1,1,1,2,2−ペンタメトキシ−2−エチルジシラン、1,1,1,2,2−ペンタエトキシ−2−エチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−エチルジシラン、1,1,1,2,2−ペンタメトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタエトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタフェノキシ−2−フェニルジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジエチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラエトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジフェニルジシラン、
【0032】
1,1,2−トリメトキシ−1,2,2−トリメチルジシラン、1,1,2−トリエトキシ−1,2,2−トリメチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリメチルジシラン、1,1,2−トリメトキシ−1,2,2−トリエチルジシラン、1,1,2−トリエトキシ−1,2,2−トリエチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリエチルジシラン、1,1,2−トリメトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリエトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリフェノキシ−1,2,2−トリフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラエチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルジシラン等が挙げられる。
【0033】
これらのなかでも、ヘキサメトキシジシラン、ヘキサエトキシジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン等が好ましい。
【0034】
前記一般式(3)において、z=1である場合の化合物としては、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ−n−プロポキシシリル)メタン、ビス(トリ−iso−プロポキシシリル)メタン、ビス(トリ−n−ブトキシシリル)メタン、ビス(トリ−sec−ブトキシシリル)メタン、ビス(トリ−tert−ブトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1,2−ビス(トリ−n−プロポキシシリル)エタン、1,2−ビス(トリ−iso−プロポキシシリル)エタン、1,2−ビス(トリ−n−ブトキシシリル)エタン、1,2−ビス(トリ−sec−ブトキシシリル)エタン、1,2−ビス(トリ−tert−ブトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジ−n−プロポキシメチルシリル)−1−(トリ−n−プロポキシシリル)メタン、1−(ジ−iso−プロポキシメチルシリル)−1−(トリ−iso−プロポキシシリル)メタン、1−(ジ−n−ブトキシメチルシリル)−1−(トリ−n−ブトキシシリル)メタン、1−(ジ−sec−ブトキシメチルシリル)−1−(トリ−sec−ブトキシシリル)メタン、1−(ジ−tert−ブトキシメチルシリル)−1−(トリ−tert−ブトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、1−(ジ−n−プロポキシメチルシリル)−2−(トリ−n−プロポキシシリル)エタン、1−(ジ−iso−プロポキシメチルシリル)−2−(トリ−iso−プロポキシシリル)エタン、1−(ジ−n−ブトキシメチルシリル)−2−(トリ−n−ブトキシシリル)エタン、1−(ジ−sec−ブトキシメチルシリル)−2−(トリ−sec−ブトキシシリル)エタン、1−(ジ−tert−ブトキシメチルシリル)−2−(トリ−tert−ブトキシシリル)エタン、
【0035】
ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、ビス(ジ−n−プロポキシメチルシリル)メタン、ビス(ジ−iso−プロポキシメチルシリル)メタン、ビス(ジ−n−ブトキシメチルシリル)メタン、ビス(ジ−sec−ブトキシメチルシリル)メタン、ビス(ジ−tert−ブトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(ジ−n−プロポキシメチルシリル)エタン、1,2−ビス(ジ−iso−プロポキシメチルシリル)エタン、1,2−ビス(ジ−n−ブトキシメチルシリル)エタン、1,2−ビス(ジ−sec−ブトキシメチルシリル)エタン、1,2−ビス(ジ−tert−ブトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,2−ビス(トリ−n−プロポキシシリル)ベンゼン、1,2−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,2−ビス(トリ−n−ブトキシシリル)ベンゼン、1,2−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,2−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリ−n−プロポキシシリル)ベンゼン、1,3−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,3−ビス(トリ−n−ブトキシシリル)ベンゼン、1,3−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,3−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリ−n−プロポキシシリル)ベンゼン、1,4−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,4−ビス(トリ−n−ブトキシシリル)ベンゼン、1,4−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,4−ビス(トリ−tert−ブトキシシリル)ベンゼン等が挙げられる。
【0036】
これらのなかでも、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン等が好ましい。
尚、前記ケイ素含有重合体(A)の調製に際して、化合物(a3)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0037】
前記ケイ素含有重合体(A)における、前記化合物(a1)由来の構成単位の含有割合は、ケイ素含有重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、好ましくは50〜100モル%、より好ましくは60〜97モル%、更に好ましくは70〜95モル%である。この含有割合が50〜99モル%である場合には、硬化処理時のプロセスマージン(焦点深度等)と硬化膜の膜物性(低誘電率等)のバランスが良好となる。
また、前記化合物(a2)由来の構成単位の含有割合は、ケイ素含有重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、好ましくは0〜50モル%であり、より好ましくは3〜40モル%、更に好ましくは5〜30モル%である。この含有割合が0〜50モル%である場合には、硬化処理時のプロセスマージンと硬化膜の膜物性のバランスが良好となる。
また、前記ケイ素含有重合体(A)が、化合物(a3)に由来する構成単位を含む場合、その含有割合は、ケイ素含有重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、好ましくは20モル%以下であり、より好ましくは1〜15モル%、更に好ましくは5〜10モル%である。
【0038】
また、前記ケイ素含有重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、500〜15,000であり、好ましくは700〜10000、更に好ましくは1000〜5000である。このMwが500〜15,000である場合、得られる組成物が塗布性良好であるため好ましい。
【0039】
また、前記ケイ素含有重合体(A)における炭素原子の含有率は特に限定されず、本発明の組成物の反応型や、使用目的に応じて適宜選定することができる。例えば、8〜40原子%であることが好ましく、より好ましくは8〜20原子%である。この含有率が8原子%未満の場合、ケイ素重合体(A)を含む液浸露光用感放射線性樹脂組成物を用いてシリカ系膜を形成した場合、比誘電率が十分に低い膜を得ることが困難である。一方、40原子%を超える場合、硬化処理後の膜収縮(パターン収縮)が大きく、所望のパターンが得られ難くなる。
尚、ケイ素含有重合体(A)の炭素原子の含有率(原子%)は、ケイ素含有重合体(A)の合成に用いた成分(加水分解性シラン化合物)の加水分解性基が完全に加水分解されてシラノール基となり、この生成したシラノール基が完全に縮合しシロキサン結合を形成した際の元素組成から求められ、具体的には以下の式から求められる。
炭素原子の含有率(原子%)=(有機シリカゾルの炭素原子数)/(有機シリカゾルの
総原子数)×100
【0040】
前記ケイ素含有重合体(A)は、加水分解性シラン化合物、即ち、前記化合物(a1)〜(a3)を出発原料として、この出発原料を有機溶媒に溶解し、この溶液中に水を断続的にあるいは連続的に添加して、加水分解縮合反応させることにより製造することができる。このとき、触媒を用いてもよい。この触媒は、予め、有機溶媒に溶解又は分散させておいてもよく、添加される水に溶解又は分散させておいてもよい。また、加水分解縮合反応を行うための温度は、通常、0℃〜100℃である。
尚、ケイ素含有重合体(A)を製造する場合、前記化合物(a1)、(a2)及び(a3)の混合物を加水分解縮合反応させてもよいし、各化合物の加水分解物及びその縮合物のうちの少なくとも一方や、選択された化合物の混合物の加水分解物及びその縮合物のうちの少なくとも一方を用いて、加水分解縮合反応又は縮合反応させてもよい。
【0041】
前記加水分解縮合反応を行うための水としては、特に限定されないが、イオン交換水を用いることが好ましい。また、前記水は、用いられる加水分解性シラン化合物のアルコキシル基等(例えば、一般式(1)及び(2)に等おけるX)1モル当たり0.25〜3モル、好ましくは0.3〜2.5モルとなる量で用いられる。上述の範囲の量で水を用いることにより、形成される塗膜の均一性が低下するおそれがなく、且つ、組成物の保存安定性が低下するおそれが少ない。
【0042】
前記有機溶媒は、この種の用途に使用される有機溶媒であれば特に限定されず、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等が挙げられる。
【0043】
前記触媒としては、前記一般式(1)で表される化合物(1)が用いられる。
化合物(1)の具体例としては、トリフルオロ酢酸、ペンタフルオロプロピオン酸等が挙げられ、トリフルオロ酢酸が特に好ましい。
なお、化合物(1)と共に、他の触媒を併用してもよく、該他の触媒としては、例えば、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基等が挙げられる。
【0044】
前記金属キレート化合物としては、チタンキレート化合物、ジルコニウムキレート化合物、アルミニウムキレート化合物等が挙げられる。具体的には、特開2000−356854号公報等に記載されている化合物等を用いることができる。
前記有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等が挙げられる。
前記無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸等が挙げられる。
【0045】
前記有機塩基としては、例えば、ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等が挙げられる。
前記無機塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等が挙げられる。
【0046】
これらの触媒のなかでも、金属キレート化合物、有機酸及び無機酸が好ましい。前記触媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
化合物(1)の使用量は、前記加水分解性シラン化合物100質量部に対して、通常、0.001〜50質量部、好ましくは0.01〜40質量部である。
【0047】
また、加水分解縮合反応を行った後には、メタノール、エタノール等の低級アルコール類等の反応副生成物の除去処理を行うことが好ましい。これにより、基板に対して優れた塗布性を有し、しかも、良好な保存安定性を有する組成物を得ることができる。
反応副生成物の除去処理の方法としては、加水分解物及び/又はその縮合物の反応が進行しない方法であれば、特に限定されず、例えば、反応副生成物の沸点が前記有機溶媒の沸点より低いものである場合には、減圧によって留去することができる。
【0048】
(2)化合物(B)
化合物(B)は、通常、加水分解性シラン化合物を化合物(1)の存在下で加水分解縮合させることにより得られるものであり、化合物(1)由来の成分である。
前記一般式(1)におけるRは、フッ素置換された炭素数1〜6のアルキル基を示し、例えば、モノフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基等が挙げられる。これらのうち、炭素数1〜4のパーフルオロアルキル基が好ましく、特に好ましくはトリフルオロメチル基である。
また、前記一般式におけるRは水素原子または置換されていてもよい炭素数1〜6のアルキル基を示し、該アルキル基としては、例えば、メチル基、エチル基、n−プロピル基等が挙げられ、これらのアルキル基の置換基としては、ハロゲン原子、アルコキシル基等が挙げられ、特に好ましいものとしてアルコキシル基が挙げられる。
化合物(B)の具体例としては、トリフルオロ酢酸、ペンタフルオロプロピオン酸およびこれらのアルキルエステル等が挙げられ、トリフルオロ酢酸およびトリフルオロ酢酸メチルエステル等のトリフルオロ酢酸アルキルエステルが特に好ましい。
【0049】
(3)溶媒(C)
本発明のシリコン含有膜形成用組成物における前記溶媒(C)としては、例えば、n−ペンタン、iso−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、iso−ヘプタン、2,2,4−トリメチルペンタン、n−オクタン、iso−オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n−プロピルベンセン、iso−プロピルベンセン、ジエチルベンゼン、iso−ブチルベンゼン、トリエチルベンゼン、ジ−iso−プロピルベンセン、n−アミルナフタレン、トリメチルベンゼン等の芳香族炭化水素系溶媒;メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、tert−ブタノール、n−ペンタノール、iso−ペンタノール、2−メチルブタノール、sec−ペンタノール、tert−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、3−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチルヘプタノール−4、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等のモノアルコール系溶媒;エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等の多価アルコール系溶媒;
【0050】
アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等のケトン系溶媒;エチルエーテル、iso−プロピルエーテル、n−ブチルエーテル、n−ヘキシルエーテル、2−エチルヘキシルエーテル、エチレンオキシド、1,2−プロピレンオキシド、ジオキソラン、4−メチルジオキソラン、ジオキサン、ジメチルジオキサン、2−メトキシエタノール、2−エトキシエタノール、エチレングリコールジエチルエーテル、2−n−ブトキシエタノール、2−n−ヘキソキシエタノール、2−フェノキシエタノール、2−(2−エチルブトキシ)エタノール、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ−n−ブチルエーテル、1−n−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル系溶媒;
【0051】
ジエチルカーボネート、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸iso−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等のエステル系溶媒;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン等の含窒素系溶媒;硫化ジメチル、硫化ジエチル、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン、1,3−プロパンスルトン等の含硫黄系溶媒等を挙げることができる。
これらの溶媒(C)のなかでも、エーテル系溶媒、エステル系溶媒が好ましい。更に、エーテル系溶媒及びエステル系溶媒のなかでも、グリコール系の溶媒が成膜性に優れるため特に好ましい。尚、具体的なグリコール系溶媒としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。
これらの溶媒(C)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0052】
(4)他の成分(i)
(4−1)酸発生化合物
本発明のシリコン含有膜形成用組成物には、前記ポリシロキサン及び溶媒以外に、紫外光の照射及び/又は加熱により酸を発生する酸発生化合物(以下、単に「酸発生剤」ともいう。)が含まれていてもよい。
このような酸発生剤を含有する場合には、レジストを露光することにより、又は露光後に加熱することにより、シリコン含有膜中に酸が発生し、該シリコン含有膜とレジスト膜との界面に酸が供給される。その結果、レジスト膜のアルカリ現像処理において、解像度及び再現性に優れたレジストパターンを形成することができる。
前記酸発生剤としては、加熱処理を行うことによって酸を発生する化合物(以下「潜在性熱酸発生剤」ともいう。)及び紫外光照射処理を行うことによって酸を発生する化合物(以下「潜在性光酸発生剤」ともいう。)が挙げられる。
【0053】
前記潜在性熱酸発生剤は、通常50〜450℃、好ましくは200〜350℃に加熱することにより酸を発生する化合物である。
この潜在性熱酸発生剤としては、例えば、スルホニウム塩、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩等のオニウム塩が挙げられる。
前記スルホニウム塩の具体例としては、4−アセトフェニルジメチルスルホニウム ヘキサフルオロアンチモネート、4−アセトキシフェニルジメチルスルホニウム ヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウム ヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウム ヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウム ヘキサフルオロアルセネート、ジメチル−3−クロロ−4−アセトキシフェニルスルホニウム ヘキサフルオロアンチモネート等のアルキルスルホニウム塩;ベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、4−アセトキシフェニルベンジルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル−2−メチル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、ベンゾイントシレート、2−ニトロベンジルトシレート等のベンジルスルホニウム塩;
【0054】
ジベンジル−4−ヒドロキシフェニルスルホニウム ヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウム ヘキサフルオロホスフェート、4−アセトキシフェニルジベンジルスルホニウム ヘキサフルオロアンチモネート、ジベンジル−4−メトキシフェニルスルホニウム ヘキサフルオロアンチモネート、ジベンジル−3−クロロ−4−ヒドロキシフェニルスルホニウム ヘキサフルオロアルセネート、ジベンジル−3−メチル−4−ヒドロキシ−5−tert−ブチルフェニルスルホニウム ヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウム ヘキサフルオロホスフェート等のジベンジルスルホニウム塩;p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、p−ニトロベンジル−3−メチル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート等の置換ベンジルスルホニウム塩;
【0055】
前記ベンゾチアゾニウム塩の具体例としては3−ベンジルベンゾチアゾリウム ヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾリウム ヘキサフルオロホスフェート、3−ベンジルベンゾチアゾリウム テトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾリウム ヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾリウム ヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾリウム ヘキサフルオロアンチモネート等のベンジルベンゾチアゾリウム塩が挙げられる。
更に、前記以外の熱酸発生剤として、2,4,4,6−テトラブロモシクロヘキサジエノンを挙げることもできる。
【0056】
これらのうち、4−アセトキシフェニルジメチルスルホニウム ヘキサフルオロアルセネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウム ヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウム ヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルスルホニウム ヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾリウム ヘキサフルオロアンチモネート等が好ましく用いられる。これらの市販品としては、サンエイド SI−L85、同SI−L110、同SI−L145、同SI−L150、同SI−L160(三新化学工業(株)製)等が挙げられる。
【0057】
また、前記潜在性光酸発生剤は、通常1〜100mJ、好ましくは10〜50mJの紫外光照射により酸を発生する化合物である。
この光酸発生剤としては、例えば、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムドデシルベンゼンスルホネート、ジフェニルヨードニウムノナフルオロn−ブタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムドデシルベンゼンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムナフタレンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(4−tert−ブチルフェニル)ヨードニウムノナフルオロn−ブタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニウムノナフルオロn−ブタンスルホネート、(ヒドロキシフェニル)ベンゼンメチルスルホニウムトルエンスルホネート、シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、
【0058】
ジメチル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムカンファースルホネート、(4−ヒドロキシフェニル)ベンジルメチルスルホニウムトルエンスルホネート、1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1−ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4−シアノ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4−ニトロ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4−メチル−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4−シアノ−1−ナフチル−ジエチルスルホニウムトリフルオロメタンスルホネート、4−ニトロ−1−ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4−メチル−1−ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4−ヒドロキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−メトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−エトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−メトキシメトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−エトキシメトキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−(1−メトキシエトキシ)−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−(2−メトキシエトキシ)−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−メトキシカルボニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−エトキシカルブニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−n−プロポキシカルボニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、
【0059】
4−iso−プロポキシカルボニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−n−ブトキカルビニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−tert−ブトキシカルボニルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−(2−テトラヒドロフラニルオキシ)−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−(2−テトラヒドロピラニルオキシ)−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4−ベンジルオキシ−1−ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート等のオニウム塩系光酸発生剤類;フェニル−ビス(トリクロロメチル)−s−トリアジン、メトキシフェニル−ビス(トリクロロメチル)−s−トリアジン、ナフチル−ビス(トリクロロメチル)−s−トリアジン等のハロゲン含有化合物系光酸発生剤類;
【0060】
1,2−ナフトキノンジアジド−4−スルホニルクロリド、1,2−ナフトキノンジアジド−5−スルホニルクロリド、2,3,4,4‘−テトラベンゾフェノンの1,2−ナフトキノンジアジド−4−スルホン酸エステルまたは1,2−ナフトキノンジアジド−5−スルホン酸エステル等のジアゾケトン化合物系光酸発生剤類;4−トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等のスルホン酸化合物系光酸発生剤類;ベンゾイントシレート、ピロガロールのトリストリフルオロメタンスルホネート、ニトロベンジル−9,10−ジエトキシアントラセン−2−スルホネート、トリフルオロメタンスルホニルビシクロ[2,2,1]ヘプト−5−エン−2,3−ジカルボジイミド、N−ヒドロキシスクシンイミドトリフルオロメタンスルホネート、1,8−ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等のスルホン酸化合物系光酸発生剤類等が挙げられる。
尚、これらの酸発生剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0061】
前記酸発生剤の含有量は、ポリシロキサン(A)の固形分100質量部に対して、0.1〜10質量部であることが好ましく、より好ましくは0.1〜5質量部である。
【0062】
(4−2)β−ジケトン
また、本発明のシリコン含有膜形成用組成物には、形成される塗膜の均一性及び保存安定性の向上を図るため、β−ジケトンが含まれていてもよい。
前記β−ジケトンとしては、例えば、アセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン、2,4−オクタンジオン、3,5−オクタンジオン、2,4−ノナンジオン、3,5−ノナンジオン、5−メチル−2,4−ヘキサンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ヘプタンジオン等が挙げられる。これらのβ−ジケトンは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0063】
前記β−ジケトンの含有量は、β−ジケトンと前記溶媒(C)との合計を100質量部とした場合に、1〜50質量部であることが好ましく、より好ましくは3〜30質量部である。
【0064】
(5)他の成分(ii)
また、本発明のシリコン含有膜形成用組成物には、更に、コロイド状シリカ、コロイド状アルミナ、有機ポリマー、界面活性剤等の成分が含まれていてもよい。
前記コロイド状シリカは、高純度の無水ケイ酸を親水性有機溶媒に分散した分散液であり、通常、平均粒径が5〜30nm、好ましくは10〜20nm、固形分濃度が10〜40質量%程度のものである。このような、コロイド状シリカとしては、例えば、日産化学工業(株)製、メタノールシリカゾル、イソプロパノールシリカゾル;触媒化成工業(株)製、オスカル等が挙げられる。これらのコロイド状シリカは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記コロイド状アルミナとしては、例えば、日産化学工業(株)製のアルミナゾル520、同100、同200;川研ファインケミカル(株)製のアルミナクリアーゾル、アルミナゾル10、同132等が挙げられる。これらのコロイド状アルミナは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0065】
前記有機ポリマーとしては、例えば、ポリアルキレンオキサイド構造を有する化合物、糖鎖構造を有する化合物、ビニルアミド系重合体、アクリレート化合物、メタクリレート化合物、芳香族ビニル化合物、デンドリマー、ポリイミド,ポリアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジアゾール、フッ素系重合体等が挙げられる。これらの有機ポリマーは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記界面活性剤としては、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、含フッ素界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
【0066】
[2]シリコン含有膜形成用組成物の製造方法
本発明のシリコン含有膜形成用組成物の製造方法は特に限定されないが、例えば、前記ポリシロキサン成分(A)と、前記溶媒(C)と、必要に応じて前記他の添加剤と、を混合することにより得ることができる。
また、本発明のシリコン含有膜形成用組成物において、樹脂分の固形分濃度は特に限定されないが、1〜20質量%であることが好ましく、より好ましくは1〜15質量%である。
【0067】
[3]シリコン含有膜
本発明のシリコン含有膜は、レジスト膜や他のレジスト下層膜との密着性が高く、裾引き等のないボトム形状に優れるレジストパターンが得られる。そのため、多層レジストプロセスにおいて好適に用いることができる。また、多層レジストプロセスのなかでも、90nmよりも微細な領域(ArF、液侵露光でのArF、F、EUV、ナノインプリント)での多層レジストプロセスを用いたパターン形成において、特に好適に用いることができる。
このシリコン含有膜は、前述の本発明のシリコン含有膜形成用組成物を用いることにより得ることができる。具体的には、例えば、レジスト被膜や他の下層膜(反射防止膜)等の表面に塗布することにより、シリコン含有膜形成用組成物の塗膜を形成し、この塗膜を加熱処理することにより、或いは、潜在性光酸発生剤を含有する場合には、紫外光の照射及び加熱処理を行うことにより、硬化させ、シリコン含有膜(レジスト下層膜)を形成することができる。
シリコン含有膜形成用組成物を塗布する方法としては、スピンコート法、ロールコート法、ディップ法等を利用することができる。
また、形成される塗膜の加熱温度は、通常50〜450℃であり、加熱処理後の膜厚は、通常10〜200nmである。
【0068】
[4]パターン形成方法
本発明のパターン形成方法は、(1)シリコン含有膜形成用組成物を被加工基板上に塗布してシリコン含有膜を形成する工程〔以下、単に「工程(1)」という。〕と、(2)得られた前記シリコン含有膜上に、レジスト組成物を塗布してレジスト被膜を形成する工程〔以下、単に「工程(2)」という。〕と、(3)得られた前記レジスト被膜に、フォトマスクを透過させることにより選択的に放射線を照射して前記レジスト被膜を露光する工程〔以下、単に「工程(3)」という。〕と、(4)露光した前記レジスト被膜を現像して、レジストパターンを形成する工程〔以下、単に「工程(4)」という。〕と、(5)前記レジストパターンをマスク(エッチングマスク)として、前記シリコン含有膜及び前記被加工基板をドライエッチングしてパターンを形成する工程〔以下、単に「工程(5)」という。〕と、を備える。
本発明のパターン形成方法によれば、ドライエッチングプロセスにおいて、被加工基板にレジストパターンを再現性よく忠実に転写することができる。
【0069】
(4−1)工程(1)
前記工程(1)では、前述のシリコン含有膜形成用組成物を用いて、被加工基板上にシリコン含有膜を形成する。これにより、被加工基板上にシリコン含有膜が形成されたシリコン含有膜付き基板を得ることができる。
【0070】
前記被加工基板としては、例えば、酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、以下、全て商品名で、ブラックダイヤモンド〔AMAT社製〕、シルク〔ダウケミカル社製〕、LKD5109〔JSR社製〕等の低誘電体絶縁膜で被覆したウェハ等の層間絶縁膜を使用することができる。また、この被加工基板としては、配線講(トレンチ)、プラグ溝(ビア)等のパターン化された基板を用いてもよい。
【0071】
また、前記被加工基板には、予めレジスト下層膜(本発明のシリコン含有膜形成用組成物を用いて得られるシリコン含有膜とは異なる他のレジスト下層膜)が形成されていてもよい。
このレジスト下層膜は、レジストパターン形成において、シリコン含有膜及び/又はレジスト被膜が有する機能を更に補ったり、これらが有していない機能を得るために、必要とされる所定の機能(例えば、反射防止機能、塗布膜平坦性、CF等のフッ素系ガスに対する高エッチング耐性)が付与された膜のことである。
【0072】
前記レジスト下層膜は、「NFC HM8005」〔JSR社製〕、「NFC CT08」〔JSR社製〕等の商品名で市販されている材料等を用いて形成することができる。
【0073】
前記レジスト下層膜の形成方法は特に限定されないが、例えば、前述のレジスト下層膜形成用の材料を被加工基板上に、スピンコート法等の公知の方法により塗布して形成された塗膜を、露光及び/又は加熱することにより硬化して形成することができる。
この露光に用いられる放射線としては、例えば、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等が挙げられる。
また、塗膜を加熱する際の温度は、特に限定されないが、90〜550℃であることが好ましく、より好ましくは90〜450℃、更に好ましくは90〜300℃である。
【0074】
尚、前記レジスト下層膜の膜厚は特に限定されないが、100〜20000nmであることが好ましい。
【0075】
また、工程(1)におけるシリコン含有膜の形成方法及び膜厚は、それぞれ、前述の説明(「[3]シリコン含有膜」における説明)をそのまま適用することができる。
【0076】
(4−2)工程(2)
前記工程(2)では、レジスト組成物を用いて、工程(1)にて得られたシリコン含有膜上にレジスト被膜を形成する。
この工程(2)にて用いられるレジスト組成物としては、例えば、光酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とからなるネガ型レジスト組成物等を好適例として挙げることができる。
【0077】
また、レジスト組成物の固形分濃度は特に限定されないが、例えば、5〜50質量%であることが好ましい。
また、レジスト組成物としては、孔径0.2μm程度のフィルターを用いてろ過したものを好適に用いることができる。尚、本発明のパターン形成方法においては、このようなレジスト組成物として、市販品のレジスト組成物をそのまま使用することもできる。
【0078】
レジスト組成物を塗布する方法は特に限定されず、例えば、スピンコート法等の従来の方法によって塗布することができる。尚、レジスト組成物を塗布する際には、得られるレジスト被膜が所定の膜厚となるように、塗布するレジスト組成物の量を調整する。
【0079】
前記レジスト被膜は、前記レジスト組成物を塗布することによって形成された塗膜をプレベークすることにより、塗膜中の溶媒(即ち、レジスト組成物に含有される溶媒)を揮発させて形成することができる。
プレベークする際の温度は、使用するレジスト組成物の種類等に応じて適宜調整されるが、30〜200℃であることが好ましく、より好ましくは50〜150℃である。
【0080】
(4−3)工程(3)
前記工程(3)では、工程(2)において得られたレジスト被膜に、フォトマスクを透過させることにより選択的に放射線を照射してレジスト被膜を露光する。
【0081】
この工程(3)において用いられる放射線としては、レジスト組成物に使用されている酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択されるが、遠紫外線であることが好ましく、特に、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(波長157nm)、Krエキシマレーザー(波長147nm)、ArKrエキシマレーザー(波長134nm)、極紫外線(波長13nm等)等を好適例として挙げることができる。
また、露光する方法についても特に制限はなく、従来公知のパターン形成において行われる方法に準じて行うことができる。
【0082】
(4−4)工程(4)
前記工程(4)では、工程(3)において露光したレジスト被膜を現像して、レジストパターンを形成する。
【0083】
現像に用いる現像液は、使用されるレジスト組成物の種類に応じて適宜選択することができる。ポジ型化学増幅型レジスト組成物やアルカリ可溶性樹脂を含有するポジ型レジスト組成物の場合には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネン等のアルカリ性水溶液を用いることができる。また、これらのアルカリ性水溶液は、水溶性有機溶媒、例えば、メタノール、エタノール等のアルコール類や、界面活性剤を適量添加したものであってもよい。
【0084】
また、ネガ型化学増幅型レジスト組成物、アルカリ可溶性樹脂を含有するネガ型レジスト組成物の場合には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第四級アンモニウム塩、ピロール、ピペリジン等の環状アミン類等のアルカリ類の水溶液等を用いることができる。
【0085】
工程(4)においては、前記現像液で現像を行った後、洗浄し、乾燥することによって、前記フォトマスクに対応した所定のレジストパターンを形成することができる。
【0086】
尚、この工程(4)では、解像度、パターンプロファイル、現像性等を向上させるため、現像を行う前(即ち、工程(3)における露光を行った後)に、ポストベークを行うことが好ましい。このポストベークの温度は、使用されるレジスト組成物の種類等に応じて適宜調整されるが、50〜200℃であることが好ましく、より好ましくは80〜150℃である。
【0087】
(4−5)工程(5)
前記工程(5)では、工程(4)にて形成したレジストパターンをマスク(エッチングマスク)として、シリコン含有膜及び被加工基板をドライエッチングしてパターンを形成する。尚、レジスト下層膜が形成された被加工基板を用いた場合には、シリコン含有膜及び被加工基板と共にレジスト下層膜もドライエッチングする。
【0088】
前記ドライエッチングは、公知のドライエッチング装置を用いて行うことができる。
また、ドライエッチング時のソースガスとしては、被エッチ膜の元素組成にもよるが、O、CO、CO等の酸素原子を含むガス、He、N、Ar等の不活性ガス、Cl、BCl等の塩素系ガス、H、NHのガス等を使用することができる。尚、これらのガスは混合して用いることもできる。
【0089】
本発明のパターン形成方法では、これまでに説明した工程(1)〜(5)を適宜行うことにより、所定の基板加工用のパターンを形成することができる。
【実施例】
【0090】
以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。ここで、「部」及び「%」は、特記しない限り質量基準である。
尚、本実施例における固形分の含有割合の決定、及び重量平均分子量(Mw)、NMRの測定は下記の方法により行った。
<固形分の含有割合の決定>
シロキサン樹脂溶液0.5gを30分間250℃で焼成することで、樹脂溶液0.5gに対する固形分の重量を測定し、シロキサン樹脂溶液の固形分の含有割合を決定した。
<重量平均分子量(Mw)の測定>
東ソー社製のGPCカラム(商品名「G2000HXL」2本、商品名「G3000HXL」1本、商品名「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した
19F−NMR分析>
日本電子社製、型式「JNM−Delta400」を用いて測定した。
【0091】
[1]重合体[ポリシロキサン(A)]の合成
後述の各合成例においては、下記化合物(M−1)〜(M−6)の単量体を用いて、重合体の合成を行った。各単量体の構造を下記式に示す。
化合物(M−1);テトラメトキシシラン
化合物(M−2);メチルトリメトキシシラン
化合物(M−3);フェニルトリメトキシシラン
化合物(M−4);2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
化合物(M−5);3−グリシドキシプロピルトリメトキシシラン
化合物(M−6);トリス(トリメチルシリル)シリルエチルトリメトキシシラン
【0092】
【化3】

【0093】
合成例1[ポリシロキサン(A−1)]
トリフルオロ酢酸4.85gを水6.12gに溶解させて、トリフルオロ酢酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕12.24g、メチルトリメトキシシラン〔前記式(M−2)〕3.91g、フェニルトリメトキシシラン〔前記式(M−3)〕1.14g、及びプロピレングリコール−1−エチルエーテル71.74gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、トリフルオロ酢酸水溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液45.4gを得た。この樹脂溶液中における固形分をポリシロキサン(A−1)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、18.0%であった。また、固形分の重量平均分子量(Mw)は1900であった。また、得られた樹脂溶液(0.6ml)に重クロロホルム(0.4ml)を加えた測定試料を調製し、19F−NMRを測定したところ−76.5ppmにピークが観測された。この結果よりポリシロキサン(A−1)中にはトリフルオロ酢酸由来の化合物が含まれることが確認された。
【0094】
合成例2[ポリシロキサン(A−2)]
トリフルオロ酢酸3.43gを水4.33gに溶解させて、トリフルオロ酢酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕8.66g、フェニルトリメトキシシラン〔前記式(M−3)〕0.81g、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン5.00〔前記式(M−4)〕g、及びプロピレングリコール−1−エチルエーテル77.78gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、トリフルオロ酢酸水溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液46.4gを得た。この樹脂溶液中における固形分をポリシロキサン(A−2)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、17.6%であった。また、固形分の重量平均分子量(Mw)は2000であった。また、得られた樹脂溶液(0.6ml)に重クロロホルム(0.4ml)を加えた測定試料を調製し、19F−NMRを測定したところ−76.5ppmにピークが観測された。この結果よりポリシロキサン(A−3)中にはトリフルオロ酢酸由来の化合物が含まれることが確認された。
【0095】
合成例3[ポリシロキサン(A−3)]
トリフルオロ酢酸3.50gを水4.43gに溶解させて、トリフルオロ酢酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕8.85g、フェニルトリメトキシシラン〔前記式(M−3)〕0.82g、3−グリシドキシプロピルトリメトキシシラン〔前記式(M−5)〕4.91g、及びプロピレングリコール−1−エチルエーテル77.49gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、トリフルオロ酢酸水溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液50.2gを得た。この樹脂溶液中における固形分をポリシロキサン(A−3)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、16.0%であった。また、固形分の重量平均分子量(Mw)は1800であった。また、得られた樹脂溶液(0.6ml)に重クロロホルム(0.4ml)を加えた測定試料を調製し、19F−NMRを測定したところ−76.5ppmにピークが観測された。この結果よりポリシロキサン(A−3)中にはトリフルオロ酢酸由来の化合物が含まれることが確認された。
【0096】
合成例4[ポリシロキサン(A−4)]
トリフルオロ酢酸2.43gを水3.07gに溶解させて、トリフルオロ酢酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕6.13g、フェニルトリメトキシシラン〔前記式(M−3)〕0.57g、トリス(トリメチルシリル)シリルエチルトリメトキシシラン〔前記式(M−6)〕5.70g、及びプロピレングリコール−1−エチルエーテル82.11gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、トリフルオロ酢酸水溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液48.5gを得た。この樹脂溶液中における固形分をポリシロキサン(A−4)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、17.0%であった。また、固形分の重量平均分子量(Mw)は1700であった。また、得られた樹脂溶液(0.6ml)に重クロロホルム(0.4ml)を加えた測定試料を調製し、19F−NMRを測定したところ−76.5ppmにピークが観測された。この結果よりポリシロキサン(A−4)中にはトリフルオロ酢酸由来の化合物が含まれることが確認された。
【0097】
合成例5[ポリシロキサン(A−5)]
シュウ酸0.55gを水7.66gに溶解させて、シュウ酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕12.24g、メチルトリメトキシシラン〔前記式(M−2)〕3.91g、フェニルトリメトキシシラン〔前記式(M−3)〕1.14g、及びプロピレングリコール−1−エチルエーテル74.51gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、酸水溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液49.2gを得た。この樹脂溶液中における固形分をポリシロキサン(A−5)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、18.0%であった。また、固形分の重量平均分子量(Mw)は1600であった。
【0098】
合成例6[ポリシロキサン(A−6)]
シュウ酸4.12gを水57.73gに溶解させて、シュウ酸水溶液を調製した。その後、テトラメトキシシラン〔前記式(M−1)〕16.08g、テトラメトキシシラン〔前記式(M−1)〕16.08g、メチルトリメトキシシラン〔前記式(M−2)〕0.80g、フェニルトリメトキシシラン〔前記式(M−3)〕1.16g、及びプロピレングリコール−1−エチルエーテル20.11gを入れたフラスコに、冷却管と、調製したトリフルオロ酢酸水溶液を入れた滴下ロートをセットした。次いで、オイルバスにて35℃に加熱した後、酸水溶液をゆっくり滴下し、その後60℃に昇温し、2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷してからエバポレーターにセットし、反応により生成したメタノールを除去して樹脂溶液12.2gを得た。この樹脂溶液中における固形分をポリシロキサン(A−6)とする。
得られた樹脂溶液中の固形分の含有割合は、焼成法により測定した結果、14.0%であった。また、固形分の重量平均分子量(Mw)は2100であった。
【0099】
【表1】

【0100】
[2]シリコン含有膜形成用組成物の製造
前述の各合成例で得られたポリシロキサン(A)[ポリシロキサン(A−1)〜(A−5)]、及び有機溶媒(C)[有機溶媒(B−1)〜(B−3)]を用いて、下記のように、実施例1〜9及び比較例1〜4のシリコン含有膜形成用組成物を調製した。
<実施例1>
表2に示すように、合成例1で得られたポリシロキサン(A−1)11部を、有機溶媒(B−1)74部、及び有機溶媒(B−2)15部に溶解させた後、この溶液を孔径0.2μmのフィルターでろ過して、実施例1のシリコン含有膜形成用組成物を得た。
尚、表2における有機溶媒(C)の詳細は以下の通りである。
B−1:プロピレングリコールモノメチルエーテルアセテート
B−2:プロピレングリコール−1−エチルエーテル
<実施例2〜4及び比較例1〜2>
表2に示す割合で各成分を用いる以外は実施例1と同じ要領にて、実施例2〜4及び比較例1のシリコン含有膜形成用組成物を調製した。
【0101】
【表2】

【0102】
[3]シリコン含有膜形成用組成物(実施例1〜4及び比較例1〜2)の評価
前述のようにして得られた実施例1〜4及び比較例1〜2の各シリコン含有膜形成用組成物について、以下の各種評価を行った。それらの結果を表3に示す。
(1)溶液の保存安定性
シリコンウェハの表面に、スピンコーターを用いて、回転数2000rpm、20秒間の条件でシリコン含有膜形成用組成物を塗布し、その後250℃のホットプレート上で60秒間乾燥させることによりシリコン含有膜を形成した。得られたシリコン含有膜について、光学式膜厚計(KLA−Tencor社製、「UV−1280SE」)を用いて50点の位置で膜厚を測定し、その平均膜厚(初期膜厚=T)を求めた。
更に、温度80℃で6時間加熱した後のシリコン含有膜形成用組成物を用いて、前記と同様にしてシリコン含有膜を形成して膜厚を測定し、その平均膜厚(貯蔵後膜厚=T)を求めた。
そして、初期膜厚Tと貯蔵後膜厚Tとの差(T−T)を求め、平均膜厚Tに対するその差の大きさの割合〔(T−T)/T〕を膜厚変化率として算出し、その値が5%以下である場合を「○」、5%を超える場合を「×」として評価した。
【0103】
(2)密着性
シリコンウェハ上に、下層膜形成用組成物(商品名「NFC HM8005」、JSR(株)製)をスピンコーターによって塗布し、250℃のホットプレート上で60秒間乾燥させることにより、膜厚が300nmの下層膜を形成した。
その後、この下層膜上に、シリコン含有膜形成用組成物をスピンコーターによって塗布し、250℃のホットプレート上で60秒間焼成することによりシリコン含有膜を形成した。
次いで、前記シリコン含有膜上にレジスト材料「ARX2014J」〔JSR(株)製〕を塗布し、90℃で60秒間乾燥させた。このときのレジストの膜厚は100nmに制御した。さらに、形成したレジスト膜上に液浸上層膜材料「NFC TCX091−7」〔JSR(株)製〕を塗布し、90℃で60秒間乾燥させた。このときの液浸上層膜の膜厚は30nmに制御した。その後、ArFエキシマレーザー照射装置「S610C」〔(株)ニコン製〕を用い、16mJ/cmの条件で照射した後、基板を115℃で60秒間加熱した。次いで、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で30秒間現像処理し、50nmのライン・アンド・スペースパターンのレジストパターンを形成した。
前記のようにして基板上に形成されたレジストパターンを走査型電子顕微鏡(SEM)で観察し、このレジストパターンの現像剥離が生じていない場合を「○」、現像剥離が生じている場合を「×」と評価した。
(3)レジストパターンの再現性
前記(2)と同様の手法で形成したレジストパターンをSEMで観察し、レーザーが照射された箇所にレジストの膜残りが生じておらず、光マスクの50nmのライン・アンド・スペースのパターンにおいて、レジストパターンのボトムに裾引きがない場合を「○」、裾引きがある場合を「×」と評価した。
【0104】
【表3】

【0105】
表3から明らかなように、実施例1〜4のシリコン含有膜形成用組成物は、保存安定性に優れていることが分かった。また、これらの組成物により、レジスト膜との密着性に優れるシリコン含有膜を形成することができ、且つ裾引き等のないボトム形状に優れるレジストパターンを安定して形成することができることが分かった。

【特許請求の範囲】
【請求項1】
(A1)ポリシロキサン、
(B)下記一般式(1)で表される化合物、および
(C)有機溶媒を含有することを特徴とするシリコン含有膜形成用組成物。
【化1】

〔一般式(1)において、Rは、フッ素置換された炭素数1〜6のアルキル基を示し、Rは水素原子または置換されていてもよい炭素数1〜6のアルキル基を示す。〕
【請求項2】
(A2)前記一般式(1)で表される化合物(但し、Rは水素原子である)の存在下でシラン化合物を加水分解縮合させることにより得られたポリシロキサン、および
(C)有機溶媒を含有することを特徴とするシリコン含有膜形成用組成物。
【請求項3】
前記ポリシロキサンのゲルパーミエーションカラムクロマトグラフィーによるポリスチレン換算の重量平均分子量が、500〜15000である請求項1または2に記載のシリコン含有膜形成用組成物。
【請求項4】
前記ポリシロキサンが、テトラアルコキシシランおよび下記一般式(2)で表される化合物から選ばれる少なくとも一種を含むシラン化合物を加水分解縮合させて得られる構造を有する、請求項1乃至3に記載のシリコン含有膜形成用組成物。
【化2】

〔一般式(2)において、Rはフッ素原子、アルキルカルボニルオキシ基または置換されていてもよい1価の炭化水素基を示し、Xは、塩素原子、臭素原子またはOR(但し、Rは1価の有機基を示す。)を示す。〕
【請求項5】
(1)請求項1乃至4のいずれかに記載のシリコン含有膜形成用組成物を被加工基板上に塗布してシリコン含有膜を形成する工程と、
(2)得られた前記シリコン含有膜上に、レジスト組成物を塗布してレジスト被膜を形成する工程と、
(3)得られた前記レジスト被膜に、フォトマスクを透過させることにより選択的に放射線を照射して前記レジスト被膜を露光する工程と、
(4)露光した前記レジスト被膜を現像して、レジストパターンを形成する工程と、
(5)前記レジストパターンをマスクとして、前記シリコン含有膜及び前記被加工基板をドライエッチングしてパターンを形成する工程と、を備えることを特徴とするパターン形成方法。

【公開番号】特開2011−213921(P2011−213921A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−84497(P2010−84497)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】