説明

パタン幅測定装置

【課題】被測定マスク基板に焼き付きを生じさせることなく、非破壊での測定を可能とするとともに、個々の露光条件を考慮して精度良く微細加工処理が施された基板上のパタン幅を露光機における実効的なパタン幅として測定することが可能なパタン幅測定装置を提供する。
【解決手段】空間領域及び/又は時間領域でのコヒーレントな光を、被検パタンを微細加工した被検マスク基板2に照射する照射部10と、照射部10により照射された被検マスク基板2上の被検パタンからの回折光を受光する撮像素子15と、撮像素子15による受光結果である画像情報を記録する記録部16aと、記録部16aに記録された受光結果である画像情報を解析して、微細加工処理が施された被検マスク基板2上のパタン幅を測定する測定処理部16とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微細加工処理が施された基板上のパタン幅を測定するパタン幅測定装置に関する。
【背景技術】
【0002】
近年、半導体製造分野では、デザインルールの短縮に伴い、製造プロセスの複雑さや、欠陥サイズの縮小が進み、歩留まり向上が課題となっている。LSIなどの半導体において、配線やホールなどのパタン幅の不均一性は、デバイス特性に影響を与える。そのため半導体パタンの原盤であるマスク基板には、パタン幅の均一性が厳しく求められる。例えば、極端紫外線(EUV)リソグラフィが適用される22nm世代の半導体では、許容される測定不確かさが、ライン系のパタンが3σで0.65nm以下と非常に厳しくなる。
【0003】
ここで、従来の半導体マスク基板のパタン幅計測には、走査型電子顕微鏡(Scanning Electron Microscope、以下、SEMという。)が用いられている。SEMは、高加速電子をパタンに照射し、生成する2次電子強度により像を得る。得られたパタン像の信号強度分布において、ある閾値となる幅をパタン幅として評価している(非特許文献1)。
【0004】
また、パタン幅計測に求められるのは、個々のパタン幅ではなく平均的なパタン幅の変化である。そのため、SEMでは詳細に測定した個々のパタン幅を平均化して評価していた。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】SEMを利用した線幅測定方法、Atsuko Yamaguchi, Yoshinori Momonoi, Ken Murayama, Hiroki Kawada and Junichi Tanaka, ”Three-Dimensional Profile Extraction from CD-SEM Top-View”, Proc.of SPIE 7272, (2009) 7272G-1.
【発明の概要】
【発明が解決しようとする課題】
【0006】
マスク基板のパタン幅評価では、例えば、150mm角のマスク基板面上の全てのパタン幅を小視野で詳細に測定する必要がある。そのため、上述したSEMを用いた電子ビームによる評価では、測定時間が長くなりマスク基板の全面検査が困難であった。
【0007】
また、SEMは高加速電子を利用しているため、測定に伴うマスク基板の焼き付きが生じてしまうという問題があった。さらに、形状を、パタンから放出される二次電子で評価するため、パタンの断面形状によって得られる強度分布が大きく変化してしまった。
【0008】
具体例として、EUV露光機における照明光の入射角が6度であるとき、パタンの高さによって影ができるため、実測されたパタン幅が変化してしまった。このため、SEMでは、このようなEUVマスク特有の斜入射照明の影響など、入射角度などの個別の露光条件を考慮した実効的なパタン幅の測定ができなかった。
【0009】
上述したように、SEMにおける電子ビームによるマスク検査の課題は、照射する領域が小さいため、検査に時間を要する。また、電子ビーム照射により、マスク基板にチャージアップがおこり、異物が付着する。したがって、EUVマスクでは、ガラス基板上に多層膜が形成されているため、膜構造も崩れてしまう。さらに実際の露光機におけるEUVマスク基板への入射角は6度のため、正確な評価ができない。
【0010】
本発明は、このような実情に鑑みて提案されたものであり、被測定マスク基板に焼き付きを生じさせることなく、非破壊での測定を可能とするとともに、個々の露光条件を考慮して精度良く微細加工処理が施されたマスク基板上の実効的なパタン幅を測定することが可能なパタン幅測定装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決するための手段として、本発明は、空間領域及び/又は時間領域でのコヒーレントな光を、被検パタンが微細加工された被検マスク基板に照射する照射手段と、照射手段により照射された被検マスク基板上の被検パタンからの回折光を受光する受光手段と、受光手段による受光結果である画像情報を記録する記録手段と、記録手段に記録された画像情報を解析して、微細加工処理が施された被検マスク基板上のパタン幅を測定する測定処理手段とを備える。
【発明の効果】
【0012】
本発明は、マスク基板上のパタンからの回折光を記録し、解析することで、微細加工処理が施されたマスク基板上のパタン幅を評価する。このようにして、本発明は、被測定マスク基板に焼き付きを生じさせることなく、非破壊での測定を可能とするとともに、個々の露光条件を考慮して精度良く微細加工処理が施されたマスク基板上の実効的なパタン幅を測定することができる。
【図面の簡単な説明】
【0013】
【図1】本発明が適用されたパタン幅測定装置の構成を示した図である。
【図2】測定結果の一例のCCDカメラ画像を示した図である。
【図3】本発明が適用されたパタン幅測定装置での線幅測定結果と、従来の測定技術であるSEMでの測定結果とを示す図である。
【図4】パタン領域が50μm角であるライン アンド スペース(L/S)パタンのパタン幅分布を、パタン幅測定装置1で測定した具体例を示す図である。
【発明を実施するための形態】
【0014】
本発明が適用されたパタン幅測定装置は、微細加工処理が施されたマスク基板上の実効的なパタン幅を測定するパタン幅測定装置である。以下では、図1に示すようなパタン幅測定装置を用いて本発明を実施するための形態について説明する。
【0015】
パタン幅測定装置1は、図1に示すように、微細加工処理が施されたマスク基板上の実効的なパタン幅を測定するため、次のような構成を備えている。
【0016】
すなわち、形状測定装置1は、空間領域及び/又は時間領域でのコヒーレントな波長が6[nm]乃至15[nm]程度の極端紫外光を被検マスク基板2に照射するための照射部10と、基板2を固定するステージ14と、ステージ14に固定されたマスク基板2の表面による回折光を受光して電気信号に変換する撮像素子15と、撮像素子15により電気信号に変換された受光結果である画像情報からマスク基板2の形状を測定する測定処理部16と、測定処理部16による測定結果をユーザに視認可能に表示する表示部17とを備える。
【0017】
被検マスク基板2は、上述した形状測定装置1による測定対象であって、例えば、所定の繰り返しパタンが微細加工された半導体マスク基板である。
【0018】
照射部10は、極端紫外光を発光する光源11と、光源11から発光された極端紫外光をコヒーレントな光にするための光学部12とからなる。
【0019】
光源11は、波長が6[nm]乃至15[nm]程度の極端紫外光を発光する光源である。具体的には、シンクロトロン放射光や高次高調波光源、レーザプラズマ光源、放電型のピンチプラズマ光源などであるが、極端紫外光を発光するものであれば、いかなる光源を用いるようにしてもよい。
【0020】
光学部12は、光源11から発光された極端紫外光をコヒーレントな光にするためのピンホール12aと、照射領域を調整するためのアパーチャ12bとからなる。
【0021】
ピンホール12aは、光源11とステージ14との間に設けられており、光源11が発光した極端紫外光を空間的に制限して通過させることにより、空間領域及び/又は時間領域でのコヒーレントな極端紫外光にしてステージ14側に出射する。
【0022】
アパーチャ12bは、ピンホール12aとステージ14との間に設けられており、ステージ14上に照射される照射領域と、被検マスク基板2の観察面積(Field Of View:FOV)領域とが一致するように、ピンホール12aから照射されるコヒーレントな極端紫外光を空間的に制限して被検マスク基板2側に通過させる。
【0023】
ステージ14は、アパーチャ12bから通過された極端紫外光が照射される位置に設けられている。ステージ14に固定されたマスク基板2は、そのFOV領域に、上述した光源11、ピンホール12a、及びアパーチャ12bからなる照射部10によりコヒーレントな極端紫外光が照射される。このようにして、コヒーレントな極端紫外光が照射された被検マスク基板2のFOV領域は、微細加工された被検パタンに応じた回折光を放射する。
【0024】
撮像素子15は、例えばX線用のCCD検出素子であって、被検マスク基板2上の被検パタンからの反射される光を受光する。すなわち、撮像素子15は、この回折光を0次回折光から数次回折光に亘って検出する。FOV領域から放出される光が、このFOV領域の被検パタンに応じた回折の複素振幅を示すので、撮像素子15は、FOV領域に対応する回折像の強度分布が得られ、この受光結果である画像情報を測定処理部16に供給する。
【0025】
具体例として、測定結果の一例のCCDカメラ画像を図2に示す。ここで、測定条件としては、ニュースバル放射光施設のBL−3の放射光光源11から波長が13.5nmのEUVを含む白色光を放射するものとし、測定処理部16にはニュースバル放射光施設のBL−3に設置したパタン幅測定装置を用いた。また、白色の放射光をMo/Si多層膜とZr薄膜により波長13.5nmへ単色化し、被検マスク基板2への照射領域をピンホール12aにより、φ5μmに制限した。さらに、照射光のマスク基板への入射角は、EUVリソグラフィと同等な6°とした。測定サンプルであるマスク基板2上の被検パタンは、半導体32nm世代用のハーフピッチ(hp)130nmのL/Sパタンで、線幅を70〜135nmと変化させている。
【0026】
図2中に5つ並んだ回折光において、中心の一番強い回折光が0次であり、横に±1次と±2次光とが順次現れる。
【0027】
測定処理部16は、撮像素子15による受光結果である画像情報を記録する記録部16aを有し、記録部16aに記録された受光結果である画像情報を解析して、微細加工処理が施された上記被検基板2上のパタン幅を測定する。そして、測定処理部16は、測定結果を表示部17に出力する。
【0028】
ここで、記録部16aは、撮像素子15による受光結果である画像情報として、被検パタンからの回折光の強度を示す回折光強度情報を記録し、測定処理部16は、記録部16aに記録された回折光強度情報に計算処理することで、微細加工処理が施された被検マスク基板2上のパタン幅を測定する。
【0029】
測定処理部16は、記録部16aに記録された回折光強度情報のうち、0次の回折光強度Iと、±m(mは自然数。)次の回折光強度Iとの比を用いて、微細加工処理が施された被検マスク基板2上のパタン幅を測定する。具体的には、測定処理部16は、記録部16aが記録する二次元の回折強度情報に対して周波数情報である各次数の回折強度を用い、画像形成を行うことでパタン幅を測定する。
【0030】
表示部17は、測定処理部16による測定結果、すなわち、FOV領域の形状やマスク基板上の被検パタンのパタン幅や欠陥の有無をユーザに視認可能に表示する。
【0031】
ここで、半導体の製造工程において、評価対象となるパタン幅は、マスク基板上のパタン幅ではなく、露光結果であるウェハ上のパタン幅であるため、以上のような構成からなるパタン幅測定装置1は、マスクからの回折光を記録し、解析することで、微細加工処理が施された基板上のパタン幅を露光結果であるウェハ上のパタン幅と等価となる実効的なパタン幅として評価する。
【0032】
よって、パタン幅測定装置1では、被検マスク基板2へのコヒーレント照射光を、例えば、EUVマスクの場合はEUVと同一の波長とし、また、露光機における入射角とコヒーレント光の入射角を同一とする。
【0033】
また、パタン幅測定装置1では、上述したように、測定処理部16が、記録部16aに記録された回折光強度情報に計算処理を施し、微細加工処理が施された被検マスク基板2上のパタン幅を測定することによって、被検マスク基板2上の微細加工された被検パタンに焼き付きが生じることなく、非破壊での測定が可能となる。
【0034】
これは、回折光強度が、照射領域内の情報を含むため、SEMのように領域内を平均化する必要はなく、さらに、上述したように、実際の露光機と同一の光を利用して測定するため、SEMに比べると低エネルギー粒子で測定が可能であるからである。
【0035】
また、パタン幅測定装置1では、強度の強い0次光と1次光の回折強度比を解析して、パタン幅を測定することが好ましい。これは、露光機の解像限界に近いパタン幅では、0次光と1次光とのみが結像に寄与し、上述のように回折光の0次と1次強度を用いると、実際のウェハ上に焼き付けられるパタン幅と相関のある実効的なパタン幅が得られるからである。また、0次と1次光は強度が強いため、測定時間を短縮可能であり、マスク基板全面検査も実現できるからである。
【0036】
さらに、パタン幅測定装置1では、測定処理部16が、さらに、2次光などの高次回折光強度を解析に用いることで、パタン幅のみならずパタン断面形状測定も可能となる。
【0037】
露光機による入射光強度が変化するとレジストへの入射光量が変化し転写されるパタン幅が変化するが、パタン幅測定装置1は、回折強度比を取って測定処理を行うために、入射光強度には影響されずにパタン幅評価が可能であり、安定な光源である放射光のみならず、たとえば実験室内で利用される比較的強度が不安定な光源にも適用して測定することができる。
【0038】
次に、以上のような構成からなるパタン幅測定装置1での線幅測定結果を縦軸に表し、従来の測定技術であるSEMでの測定結果を横軸に表した比較結果を図3に示す。
【0039】
図3では、L/Sパタンのパタン方向を照射光の入射面と平行にした場合と垂直にした場合におけるパタン幅変化を測定したものである。この図3に示すように、パタン幅測定装置1での測定結果から得られるパタン線幅は、SEMの測定結果とのよい相関が得られた。
【0040】
また、パタン幅測定装置1は、L/Sパタンのパタン方向を照射光の入射面と平行にした場合と垂直にした場合におけるパタン幅変化も精度良く測定できた。これは、一般にShadowing効果と呼ばれており、斜めから照明する場合にパタン方向によっては実効的なパタン幅が変化することである。
【0041】
パタン幅測定装置1で同一点を連続測定した場合のパタン線幅測定再現性は、3σで0.24nmであり、例えば、22nm世代の半導体技術で求められる0.65nmを十分に満たすことができる。なお、入射強度変動を補正する前の測定再現性が、3σで1.05nmであるため、パタン幅測定装置1では、4倍以上の精度向上が実現できる。
【0042】
また、パタン領域が50μm角であるL/Sパタンのパタン幅分布を、パタン幅測定装置1で測定した例を図4に示す。横軸は測定位置であり、周辺部のパタン線幅が小さくなっているのが測定できた。具体的には、中心部±10μmの均一性が±0.3nm以内となり、この精度でのパタン線幅均一性の評価を実現できた。
【0043】
以上のように、パタン幅測定装置1は、マスク基板上の被検パタンからの回折光を記録し、解析することで、微細加工処理が施された基板上のパタン幅を露光機における実効的なパタン幅として評価する。
【0044】
このようにして、パタン幅測定装置1は、被測定マスク基板に焼き付きを生じさせることなく、非破壊での測定を可能とするとともに、個々の露光条件を考慮して精度良く微細加工処理が施されたマスク基板上の実効的なパタン幅を測定することができる。
【0045】
なお、本発明は、以上の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。
【符号の説明】
【0046】
1 形状測定装置、2 マスク基板、10 照射部、11 光源、12 光学部、12a ピンホール、12b アパーチャ、14 ステージ、15 撮像素子、16 測定処理部、16a 記録部、17 表示部

【特許請求の範囲】
【請求項1】
空間領域及び/又は時間領域でのコヒーレントな光を、被検パタンが微細加工された被検基板に照射する照射手段と、
上記照射手段により照射された被検基板上の被検パタンからの回折光を受光する受光手段と、
上記受光手段による受光結果である画像情報を記録する記録手段と、
上記記録手段に記録された画像情報を解析して、微細加工処理が施された上記被検基板上のパタン幅を測定する測定処理手段とを備えるパタン幅測定装置。
【請求項2】
上記記録手段は、上記受光手段による受光結果である画像情報として、被検パタンからの回折光の強度を示す回折光強度情報を記録し、
上記測定処理手段は、上記記録手段に記録された回折光強度情報に計算処理を施すことで、微細加工処理が施された上記被検基板上のパタン幅を測定する請求項1記載のパタン幅測定装置。
【請求項3】
上記測定処理手段は、上記記録手段に記録された回折光強度情報のうち、0次の回折光強度Iと、±m(mは自然数。)次の回折光強度Iとの比を用いて、微細加工処理が施された上記被検基板上のパタン幅を測定する請求項2記載のパタン幅測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−47695(P2012−47695A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−192518(P2010−192518)
【出願日】平成22年8月30日(2010.8.30)
【出願人】(592216384)兵庫県 (258)
【Fターム(参考)】