説明

フェーズロックドループ回路

【課題】入力される水平同期信号に対して、サンプリングクロックの周期の値に制約されることなく、位相誤差量を低減することができるフェーズロックドループ回路を提供する。
【解決手段】入力される水平同期信号(H-sync)は、逓倍PLL回路2から出力される、周期が等しく、1/4周期分づつずれた位相関係の4種の第1〜第4サンプリングクロックによりサンプリング回路でそれぞれサンプリングされ、各サンプリングクロックに位相同期した4種の水平同期出力データが生成され、これらはさらに加算回路6で加算されて加算水平同期出力データが生成された後、位相比較器13に入力され、分周器14で分周されたシステムクロック(第1サンプリングクロック)と位相比較される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水平同期信号に同期した映像処理用のクロックの生成を行うフェーズロックドループ回路に関する。
【背景技術】
【0002】
近年、PC(パーソナルコンピュータ)等、外部から入力されるLow/Hiの2値の水平同期信号(H-syncと略記)に同期して映像を表示するディスプレイが広く用いられるようになった。この場合、2値の水平同期信号に同期させるためにデジタル方式のフェーズロックドループ(PLLと略記)回路を用いたデジタル−PLLシステムが広く採用される。
そして、このPLLシステムにおいては、映像処理用に用いられるシステムクロック或いはサンプリングクロックの基準位相(水平ロック位相)は、入力されるH-syncを基準にして決定される。
入力されるH-syncとアナログ映像信号は、伝送系で遅延差が生じる事があるため、水平ロック位相の微調整(例えば1サンプリングクロック中32段階や64段階等の複数段階の調整)を行う機能が必要になる場合がある。
【0003】
特にアナログPC信号において、Dot-by-Dotで液晶パネルに表示する場合、映像信号のエッジが立っているため、ジッタが多いと縦線が揺れたり薄く見えたりする事から、上記水平ロック位相の微調整だけでなく、ジッタを低減させることが望まれる。
従来例においては、PLL回路の制御ループによりH-sync等の参照信号にサンプリングクロックを位相同期させた場合、サンプリングクロックの周期の値がジッタを低減する妨げになっていた。そして、従来例では、サンプリングクロックの周期未満にジッタを低減することが困難であった。換言すると、従来例においては、サンプリングクロックの周期の値によって、H-sync等の参照信号に位相同期させる際の位相誤差量が制約される。
【0004】
なお、特許文献1には、サンプリングクロックの位相を調整してジッタによるノイズを軽減するため、映像データにおける隣接する2つのドット波形のレベル差分値を求め、それに基づいて入力波形に三角波のような大きな歪みがあっても、ノイズを低減する装置及び方法が開示されている。
しかし、この特許文献1は、サンプリングクロックの周期によるジッタ或いは位相誤差量を低減するものでない。
【特許文献1】特開2003−209768号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は上述した点に鑑みてなされたもので、入力される水平同期信号に対して、サンプリングクロックの周期の値に制約されることなく、位相誤差量を低減することができるフェーズロックドループ回路を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一実施形態に係るフェーズロックドループ回路は、周波数が等しく位相がそれぞれ異なる所定の位相関係に設定された複数種のサンプリングクロックを発生するサンプリングクロック発生回路と、外部から入力される水平同期信号を、前記複数種のサンプリングクロックそれぞれでサンプリングすることにより、各サンプリングに用いたサンプリングクロックそれぞれに位相同期した複数種の水平同期出力データを生成する水平同期出力データ生成回路と、前記複数種の水平同期出力データを加算又は積算して加算/積算水平同期出力データとして出力する加算/積算回路と、前記加算/積算水平同期出力データに対して、前記複数種のサンプリングクロックにおける1種のサンプリングクロックを位相同期させる制御ループを形成するように、前記加算/積算水平同期出力データと前記1種のサンプリングクロックとの位相比較を行う位相比較回路と、を備えたことを特徴とする。
【発明の効果】
【0007】
本発明によれば、周波数が等しく位相がそれぞれ異なる所定の位相関係に設定された複数種のサンプリングクロックを用いることにより、サンプリングクロックの周期の値に制約されることなく、水平同期信号に対する位相誤差量を低減できる。
【発明を実施するための最良の形態】
【0008】
以下、図面を参照して本発明の実施形態を説明する。
本発明の一実施形態に係るデジタル方式のフェーズロックドループ(PLLと略記)回路を説明するに先立ち、これに関連する参考例のPLL回路を説明する。
図6は第1参考例のPLL回路11を示す。
このPLL回路11は、外部からH-syncが入力され、このH-syncは、サンプリングを行うフリップフロップ(以下、FFと略記)12において、サンプリングクロックによりサンプリングされる。
FF12においてサンプリングされた信号は、位相比較器(位相比較回路)13に参照信号として入力され、位相比較器13は、この参照信号と分周器14から出力される分周された分周信号と位相比較する。
【0009】
そして、この位相比較器13は、参照信号と分周信号との位相差に対応した位相誤差量の誤差信号を出力する。この場合、参照信号を基準として、分周信号の位相が進んでいる場合と遅れている場合とで、例えばその出力値の極性が変化する誤差信号を出力する。 位相比較器13から出力される誤差信号は、フィルタ回路15に入力され、フィルタ回路15は、誤差信号の低域成分を抽出して、数値制御発振器(NCOと略記)16に出力する。
このNCO16は、クロックを発生する発振器と、この発振器から出力されるクロックを、フィルタ回路15を経て入力される信号に応じてアップ/ダウンカウントするアップ/ダウンカウンタとを用いて構成される。
【0010】
そして、このアップ/ダウンカウンタから、位相比較器13の位相比較結果に対応したデジタル値を出力する。このデジタル値は、デジタル/アナログ変換回路(以下、DACと略記)17に出力される。
DAC17は、入力されるデジタル値をアナログの信号に変換する。そして、このDAC17から位相比較器13の位相比較結果に対応した周波数のアナログの例えば正弦波信号が出力される。
この正弦波信号は、サンプリングクロック発生手段としてのアナログの逓倍PLL回路18に入力され、この逓倍PLL回路18は、入力される正弦波信号を逓倍してシステムクロック及び(このシステムクロックと同等のクロックとしての)サンプリングクロックとを分周器14及びFF12にそれぞれ出力する。
【0011】
このような構成のPLL回路11においては、入力されるH-syncの位相が変化した場合におけるその動作は図7のタイミングチャートのようになる。
つまり、図7における最も上に入力されるH-syncを示し、その下の2つのH-sync′、H-sync″、は、このH-syncから位相ずれしてPLL回路11に入力された場合のものを示している。
これら3つにおけるいずれのものも、その下に示すサンプリングクロックによりサンプリングされて、最も下に示すサンプリング後のH-syncのようになる。
図6のPLL回路11においては、サンプリングクロックによるサンプリングにより、サンプリング後のH-syncにおいては、サンプリングクロックの周期(図7ではTsで示している)以下の情報が消失する。
【0012】
従って、サンプリングクロックによるサンプリングにより、サンプリングクロック(或いはシステムクロック)の周期Tsのジッタ量が発生してしまう。
また、サンプリングクロック(或いはシステムクロック)の周期Ts以下の位相調整(タイミング調整)を行うことができない。
図8はこのジッタを低減する第2参考例のPLL回路11Bを示す。
【0013】
このPLL回路11Bは、図6のPLL回路11において、アナログの逓倍PLL回路18よりも遙かに逓倍数が大きいアナログの逓倍PLL回路18Bが採用されている。そして、この逓倍PLL回路18Bは、上記システムクロックと共に、このシステムクロックよりも遙かに逓倍数が大きいサンプリングクロックを出力する。
【0014】
また、このPLL回路11Bにおいては、入力されるH-syncは、直列接続或いは縦列接続されたサンプリング回路としてのFF群21に入力される。つまり、このFF群21は、複数、より具体的には多数のFF21a、FF22b、…、FF21mー1、FF21mが縦列接続されている。そして、入力されるH-syncは、逓倍数に対応した高い周波数のサンプリングクロックにより多段階でサンプリングされ、それぞれ加算回路22において、加算される。
加算回路22で加算されたサンプリング後H-syncは、さらにFF23においてサンプリングクロックによりサンプリングされた後、積分回路24に入力され、積分される。この積分回路24の出力信号は、さらにFF25においてサンプリングクロックによりサンプリングされる。このFF25の出力信号は、さらにFF26においてシステムクロックによりサンプリングされた後、位相比較器13に入力される。
【0015】
この位相比較器13の出力信号は、上述したようにフィルタ、NCO16,DAC17を経て逓倍PLL回路18Bに入力される。
このような構成のPLL回路11Bによれば、システムクロックを逓倍したサンプリングクロックを用いてH-syncをサンプリングする構成にしているので、図6におけるサンプリングクロックの周期Tsの値よりも小さなジッタ量に低減できる。
しかし、図8のPLL回路11Bの場合、入力されるH-syncの例えば1/32或いは1/64のような位相調整を必要とする場合に簡単に対応し難い場合がある。
例えば、システムクロックが108MHzのSXGAの場合、サンプリングクロックは、32/64逓倍すると、3.456/6.912GHzになってしまうため、アナログの逓倍PLL回路18Bの逓倍率アップにより、配線による遅延の影響とバラツキが大きくなると共に、消費電力も増大する。
【0016】
このため、安定した位相調整を行い難くなる可能性がある。従って、システムクロックからの逓倍数を大きくすることなく、H-syncに同期して詳細な位相調整が可能となるPLL回路が望まれる。
【0017】
つまり、サンプリングクロック自体を高い周波数にすることにより、その周期の値を小さくするができるが、そのようなことを必要としないで、サンプリングクロックの周期の値に制約されないでH-syncとの同期させた場合の位相誤差量を低減できるようなPLL回路を実現できると、使い易いものとなる。
【0018】
換言すると、低い周波数のサンプリングクロックにより、その周期の値に制約されないで、H-syncとの同期させた場合の位相誤差量を低減できるようなPLL回路を実現できると、上記配線による遅延の影響等が増大する欠点を解消できる。
次にそのようなPLL回路を実現する実施形態を説明する。図1は、本発明の一実施形態に係るPLL回路1の構成を示す。
このPLL回路1は、図6のPLL回路11における逓倍PLL回路18の代わりに、システムクロックと周期が等しく、位相のみが所定の位相関係に設定された状態でそれぞれ異なる複数種のサンプリングクロックを発生するサンプリングクロック発生回路としての逓倍PLL回路2を有する。
この逓倍PLL回路2は、DAC17の出力信号から逓倍された逓倍クロックを生成する逓倍クロック生成回路3と、この逓倍クロックからシステムクロック及びこのシステムクロックと同じ周期で、所定の位相関係の複数種(複数種類)のサンプリングクロックを生成するサンプリングクロック生成回路4とを有する。
【0019】
また、このPLL回路1は、入力されるH-syncをサンプリングして、複数種の水平同期出力データを生成する水平同期出力データ生成回路としてのサンプリング回路5と、このサンプリング回路5でサンプリングされて出力される複数種の水平同期出力データを加算する加算回路6を有する。
また、このPLL回路1は、この加算回路6で加算された加算水平同期出力データをサンプリングするFF7と、このFFの出力データをオフセットデータと加算する加算回路8とを有する。なお、オフセットデータは、実際には図3に示すように例えば選択スイッチ9を介して加算回路8に印加される。
そして、この加算回路8の出力データは、加算水平同期出力データとして、位相比較器13に入力される。
また、このこのPLL回路1は、図6で説明したPLL回路11と同様に、位相比較器13には分周器14の分周信号が入力される。この位相比較器13の出力信号としての位相誤差データは、フィルタ13,NCO16,DAC17を経て逓倍PLL回路2に入力される。
【0020】
また、逓倍PLL回路2から出力されるシステムクロックは、分周器14に入力されると共に、FF7に入力される。
また、逓倍PLL回路2から出力される複数種のサンプリングクロックは、サンプリング回路5に入力される。なお、本実施形態においては、システムクロックも1つのサンプリングクロックとして、サンプリング回路5に入力される構成例としている。
逓倍PLL回路2を構成する逓倍クロック生成回路3は、DAC17の出力信号からその逓倍高調波を抽出し、それを波形整形して例えば図2の最も上に示す逓倍クロックを生成する。この逓倍クロックは、サンプリングクロック生成回路4を構成するFF3aと、インバータ3bを介してFF3cとのクロック入力端に印加される。
FF3aは、逓倍クロックを2分周し、出力端Qから図2のタイミングチャートに示すようなシステムクロックを出力する。
【0021】
また、このシステムクロックは、第1サンプリングクロックとして、サンプリング回路5を構成する複数、具体的には4個のFF5a〜5dにおける例えばFF5aに第1サンプリングクロックとして印加される。この第1サンプリングクロックも図2に示してある。
このサンプリング回路5の各FF5i(i=a〜d)(のデータ入力端)には、それぞれH-syncが入力され、各クロック入力端に印加される第j(j=1〜4)サンプリングクロックによりサンプリングされた第j水平同期出力データ(第jH−Sデータと略記)を出力する。
また、FF3cは、その出力端Qから図2に示すように第1サンプリングクロックから逓倍クロックの1/2周期遅延した位相関係で第2サンプリングクロックをFF5bに出力する。
また、FF3aは、その反転出力端(図面中では符号も付してある)から図2に示すように第1サンプリングクロックから逓倍クロックの1周期遅延した位相関係で第3サンプリングクロックをFF5cに出力する。
【0022】
また、FF3cは、その反転出力端(図面中では符号も付してある)から図2に示すように第1サンプリングクロックから逓倍クロックの3/2周期遅延した位相関係で第4サンプリングクロックをFF5dに出力する。
つまり、サンプリングクロック生成回路4は、システムクロックと、このシステムクロックの1周期に対して、その1/4周期分づつ位相ずれの関係、換言すると逓倍クロックの2周期を4分割して0、1/2、2/2、3/2周期の位相ずれの関係の第1〜4サンプリングクロックを生成し、サンプリング回路5の各FF5iに印加する。
このサンプリング回路5の各FF5iには、図2に示すようにH-syncが入力されるため、各FF5iから、図2に示すような第jH−Sデータが出力される。
【0023】
これらの第1〜第4H−Sデータは、加算回路6で加算されて、図2に示す加算水平同期出力データ(加算H−Sデータと略記)となる。なお、図2の加算動作例は、加算回路6は、例えばサンプリングクロックの周期で、その立ち上がりエッジで加算する動作する場合で示しているが、この動作に限定されるものでない。
この加算H−Sデータは、さらにFF7においてシシテムクロックでサンプリングされて、この加算H−Sデータからサンプリングクロックの1周期遅延した加算H−Sデータとなり、加算回路8を経て位相比較器13に入力される。なお、加算H−Sデータを、FF7をスルーして加算回路8に入力しても良い。このため、以下では、FF7を経たものも、単に加算H−Sデータと表記する。
【0024】
そして、この加算回路8を経て位相比較器13に入力される加算H−Sデータに対して、この加算H−Sデータに位相同期するようにシステムクロック(第1サンプリングクロック)の位相がPLL調整されることになる。また、このシステムクロックが位相調整されると、他のサンプリングクロックも(所定の位相関係に設定されているため)これに連動して位相調整される。
図1或いは図2で示すように位相比較器13に入力される加算H−Sデータは、第1〜第4サンプリングクロックの各周期単位での各位相情報を保有している。
このため、本実施形態においては、図2に示すようにサンプリング回路5により発生するジッタ量を、図6の第1参考例の場合で発生するジッタ量としてのサンプリングクロックの周期Tsであったものをその値の1/4(のジッタ量)に低減できるようになる。 つまり、本実施形態は、H-syncにサンプリングクロック(システムクロック)を位相同期させるようにPLL制御プープを構成した場合、その場合に発生するジッタ量を、サンプリングクロックの周期Tsの値に制約されることなく、その値の例えば1/4のジッタ量に低減できる。
【0025】
従って、サンプリングクロックを高い周波数にすることによりその周期の値自体を小さくしなくても、ジッタ量を低減できるので、使用する回路素子の制約も少なくなり、かつ上述したように高周波化に伴う配線の影響や、消費電力の増大を低減できる。
図3は、オフセットデータにより水平位相を微調整可能とする水平位相調整回路(或いは水平位相微調整回路)10及び位相比較器13の構成例を示す。本実施形態は、水平位相調整回路(或いは水平位相微調整回路)10を備えた構成とすることにより、上述した目的の他に、水平位相の微調整を可能とするPLL回路を提供する目的を達成する。
図3に示すように水平位相調整回路10を構成する加算回路8は、位相微調整用のオフセットデータとデータゼロ(ゼロのオフセットデータ)とが印加される選択スイッチ9と接続されている。そして、この選択スイッチ9は、H-syncの周期に同期したオフセット付加タイミング信号により、オフセットデータが選択される。
【0026】
そして、このオフセットデータは、加算回路8に入力される加算H−Sデータと加算される。オフセットデータが加算された加算H−Sデータは、位相比較器13を構成するスイッチ13aの一端及びインバータ13bを介してこのスイッチ13aの他端に印加される。このスイッチ13aは、分周器14からの分周信号により切り替えられる。
このスイッチ13aを通ったデータは、積分回路13cに入力され、積分されて位相誤差データとして次段のフィルタ回路15に出力される。この積分回路13cは、ゲート比較タイミング信号が入力される期間(具体的にはこのゲート比較タイミング信号が”H”となる期間)積分を行う。
このゲート比較タイミング信号は、システムクロックを用いてH-syncが入力される期間を含むように生成される。
【0027】
図4は、図3に示した水平位相調整回路10を位相比較器13を含めた動作のタイミングチャートを示す。
図4に示すH-syncに対して、上述したサンプリング回路5、加算回路6,FF7により、その下に示す加算H−Sデータが生成され、この加算H−Sデータは加算回路8に入力される。
まず、オフセットデータが0であるとする。この場合には、加算H−Sデータは、加算回路8をスルーしたのと同等のデータのまま、スイッチ13aに入力される。このスイッチ13aは、図4に示す分周信号により、積分回路13cに入力される加算H−Sデータの極性が切り替えられる。
また、この分周信号は、その下に示すゲート比較タイミング信号が”H”となる期間の中央で”H”から”L”となる。
【0028】
従って、ゲート比較タイミング信号が”H”となる積分期間において、分周信号が”H”の期間で積分された積分値Aと、分周信号が”L”の期間で積分された積分値Bとの差分値が積分回路13c或いは位相比較器13から位相誤差データとして出力される。
この位相誤差データによりNCO16の発振周波数値が、この位相誤差データの値を小さくする方向に変化する。
そして、PLL閉ループにより、この位相誤差データが0となるように、つまり積分値Aと積分値Bとが0或いは等しくなるようにシステムクロック(或いは第1サンプリングクロック)の位相が自動調整される。換言すると、分周信号の立ち下がり時の位相が、入力されるH-syncを積分した値の真ん中になる様にPLL制御が機能する。
次に図4に示すオフセット付加タイミング信号により、オフセットデータを加算回路8に入力する場合を説明する。
【0029】
オフセット付加タイミング信号は、例えばゲート比較タイミング信号が”H”の積分期間におけるエンド側のタイミングとする。
この場合には、位相比較器13内部においては、積分値Aは変化しないで、積分値B側にオフセットデータが(オフセット付加タイミング信号期間の)積分値が加算されることになる。つまり、積分値Bが変更されたものになる。
そして、この場合には、上述した動作と同様に積分値Aと変更された積分値Bとが等しくなるようにPLL制御が機能する。
このようにオフセットデータの値に応じて、入力されるH-syncに位相同期するシステムクロックの水平位相を微調整することが簡単に行うことができる。
【0030】
以上のように本実施形態に係るPLL回路1によれば、サンプリングクロックの周期の値に制約されないで、ジッタ量を十分に低減することができる。このため、サンプリングクロックの周波数を回路的に扱い易い周波数にして、ジッタ量を十分に低減することが可能になる。従って、安定した動作を実現し易く、回路部品の制約も少なくできる。また、高周波化に伴う消費電力の増大の防止、つまり省電力化を実現できる。
また、本実施形態に係るPLL回路1によれば、オフセットデータの値により水平位相の微調整を容易に実現する事ができる。
また、2つのFF3a,3c及びインバータ3bを用いた簡単な構成で複数種、ここでは4種のサンプリングクロックを生成できる。
【0031】
図5は変形例に係るPLL回路1Bを示す。図1のPLL回路1では、4個のFF群5a〜5dによるサンプリング回路5とし、これに応じて逓倍PLL回路2は、4位相の第1〜第4サンプリングクロックを生成していた。
図5に示すPLL回路1Bは、例えば8個のFF群5a〜5hによるサンプリング回路5Bとし、これに応じて逓倍PLL回路2Bは、8位相の第1〜第8サンプリングクロックを生成する構成にしている。
図5に示すように逓倍PLL回路2Bは、図1に示す逓倍PLL回路2のサンプリングクロック生成回路4において、さらに4個の遅延素子D1〜D4を追加した構成のサンプリングクロック生成回路4bとなっている。
【0032】
そして、図5においては図1の第1,第2,第3,第4サンプリングクロックを第1,第3,第5,第7サンプリングクロックとし、遅延素子D1,D2,D3,D4でそれぞれ遅延して第2,第4,第6,第8サンプリングクロックを生成する構成にしている。 つまり、遅延素子D1は、第1及び第3サンプリングクロックの中央の位相関係となる第2サンプリングクロックの生成に利用される。同様に遅延素子D2,D3は、それぞれ、第3及び第5、第5及び第7サンプリングクロックの中央の位相関係となる第4,第6サンプリングクロックの生成に利用される。
また、遅延素子D4は、第7サンプリングクロックから逓倍クロックの1/4(つまりシステムクロックの1/8)周期分、遅延した第8サンプリングクロックの生成に利用される。このように遅延素子D1〜D4は、同じ遅延量を発生する遅延素子である。
【0033】
具体的には、FF3aの出力端Qに、逓倍クロックの1/4周期(或いはシステムクロックの1/8周期)に相当する遅延量を発生する遅延素子D1を接続して、FF3aの出力端Qから出力される第1サンプリングクロックからシステムクロックの1/8周期分遅れた第2サンプリングクロックを発生する。
また、このFF3cの出力端Qに接続された遅延素子D2から第3サンプリングクロックからシステムクロックの1/8周期分遅れた第4サンプリングクロックを発生する。 また、FF3aの反転出力端に、接続された遅延素子D3から第5サンプリングクロックからシステムクロックの1/8周期分遅れた第6サンプリングクロックを発生する。
【0034】
また、このFF3cの反転出力端に接続された遅延素子D4から第7サンプリングクロックからシステムクロックの1/8周期分遅れた第8サンプリングクロックを発生する。 第1〜第8サンプリングクロックは、サンプリング回路5BのFF5a〜5hにそれぞれ印加される。
【0035】
その他の構成は、図1に示したPLL回路1と同様の構成である。
本変形例に係るPLL回路1Bによれば、PLL回路1の場合と同様にサンプリングクロックの周波数或いは周期を変更することなく、位相誤差量(或いはジッタ量)をPLL回路1の場合の半分の大きさに低減することができる。
ここでは簡単化のため、複数種のサンプリングクロックの発生例として2の3乗(つまり8種)の例で説明したが、2の4乗、5乗、6乗等に容易に拡張できる。例えば、図5の構成例において、さらに遅延素子D1〜D4の半分の遅延量を有する8個の遅延素子(便宜上、D5〜D12とする)を追加することにより16種のサンプリングクロックを生成できる構成にすることができる。
さらにこの構成において、遅延素子D5〜D12の半分の遅延量を有する16個の遅延素子(便宜上、D13〜D28とする)を追加することにより32種のサンプリングクロックを生成できる構成にすることができる。
【0036】
また、例えば図1ではサンプリングクロック発生回路として、逓倍PLL生成回路3とサンプリングクロック生成回路4とからなる逓倍PLL回路2の構成例を説明したが、これに限定されるものでない。
サンプリングクロック発生回路として、逓倍クロック生成回路3の代わりに逓倍しないクロック生成回路により、第1サンプリングクロック(システムクロック)を生成し、さらにクロック生成回路の出力端に3個の遅延素子を縦列接続する。
【0037】
そして、第1サンプリングクロックを1つ、2つ、3つの遅延素子を経て出力される第1サンプリングクロックから1/4、2/4,3/4周期分づつ位相が遅れた、第2〜第4サンプリングクロックを生成する構成にしても良い。つまり、FF3aなどを用いないで、複数の遅延素子(遅延回路でも良い)を用いて複数種のサンプリングクロックを生成する構成にしても良い。
この場合も簡単な構成で複数種のサンプリングクロックを生成できる。このため、回路規模を低減できる。また、低コストで実現できる。
なお、図6に示した複数種の水平同期出力データを加算する加算回路6の代わりに積分を行う積分回路を用いても良い。そして、この積分回路から複数種の水平同期出力データを積分して出力する構成にしても良い。
なお、上述した実施形態の一部を組み合わせる等して構成される実施形態等も本発明に属する。
【図面の簡単な説明】
【0038】
【図1】本発明の一実施形態に係るPLL回路の構成を示すブロック図。
【図2】一実施形態に係るPLL回路の動作説明用のタイミングチャート。
【図3】水平位相調整回路及び位相比較器の構成例を示す回路図。
【図4】図3の動作説明用のタイミングチャート。
【図5】変形例に係るPLL回路の構成を示すブロック図。
【図6】第1参考例のPLL回路の構成を示すブロック図。
【図7】第1参考例により発生するジッタ量を説明するタイミングチャート。
【図8】第2参考例のPLL回路の構成を示すブロック図。
【符号の説明】
【0039】
1…PLL回路、2…逓倍PLL回路、4…サンプリングクロック生成回路、5…サンプリング回路、6、8…加算回路、13…位相比較器、3a、3c、5a〜5d…FF

【特許請求の範囲】
【請求項1】
周波数が等しく位相がそれぞれ異なる所定の位相関係に設定された複数種のサンプリングクロックを発生するサンプリングクロック発生回路と、
外部から入力される水平同期信号を、前記複数種のサンプリングクロックそれぞれでサンプリングすることにより、各サンプリングに用いたサンプリングクロックそれぞれに位相同期した複数種の水平同期出力データを生成する水平同期出力データ生成回路と、
前記複数種の水平同期出力データを加算又は積算して加算/積算水平同期出力データとして出力する加算/積算回路と、
前記加算/積算水平同期出力データに対して、前記複数種のサンプリングクロックにおける1種のサンプリングクロックを位相同期させる制御ループを形成するように、前記加算/積算水平同期出力データと前記1種のサンプリングクロックとの位相比較を行う位相比較回路と、
を備えたことを特徴とするフェーズロックドループ回路。
【請求項2】
さらに前記加算/積算回路から出力される加算/積算水平同期出力データに、前記水平同期信号に同期したオフセット値を加算するオフセット値加算回路を有することを特徴とする請求項1に記載のフェーズロックドループ回路。
【請求項3】
前記水平同期出力データ生成回路は、前記水平同期信号を前記複数種のサンプリングクロックそれぞれでサンプリングし、該サンプリングに用いた各サンプリングクロックそれぞれに位相同期した複数種の水平同期出力データを生成する複数のフリップフロップ回路を用いて構成されることを特徴とする請求項1又は2に記載のフェーズロックドループ回路。
【請求項4】
前記サンプリングクロック発生回路は、前記複数種のサンプリングクロックを生成するために、複数の遅延素子を用いて構成されることを特徴とする請求項1から3のいずれか1つの請求項に記載のフェーズロックドループ回路。
【請求項5】
前記サンプリングクロック発生回路は、前記複数種のサンプリングクロックを生成するために、1つ以上のフリップフロップを用いて構成されることを特徴とする請求項1から4のいずれか1つの請求項に記載のフェーズロックドループ回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−81716(P2009−81716A)
【公開日】平成21年4月16日(2009.4.16)
【国際特許分類】
【出願番号】特願2007−249988(P2007−249988)
【出願日】平成19年9月26日(2007.9.26)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】