説明

レーザ光源及びその動作方法

レーザ光源は、パルス動作用に適合される半導体レーザと、部分伝達型で波長選択性の光反射器とを具える。半導体レーザは前面ファセットと後面ファセットとを具える。前面ファセット及び後面ファセットは内部レーザキャビティを規定する。内部レーザキャビティはレーザ活性媒体を具える。部分伝達型で波長選択性の光反射器は前記レーザ活性媒体の利得帯域幅内にピーク反射率を有する。波長選択性の光反射器及び後面ファセットは外部レーザキャビティを規定する。外部レーザキャビティ中の光の往復時間は約20ナノ秒又はそれ未満である。波長選択性の光反射器の全幅半値帯域幅は、少なくとも12の内部レーザキャビティの縦モードと、少なくとも250の外部レーザキャビティの縦モードとを収容するように適合される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般的にレーザ光源に関し、特に半導体レーザ及び/又は光ファイバ増幅器を具えるレーザ光源に関し、かつ、レーザ溶接、レーザアブレーション、レーザアニーリング、レーザ焼結、レーザ印刷、レーザスクライビング、レーザマーキング、レーザドリリング、及び/又はレーザパターニングのようなレーザ加工プロセスで、ならびに、手術及び画像診断などの医学用途で用いられうるレーザ光源に関する。
【背景技術】
【0002】
現代の製造技術において、レーザマーキング、レーザ溶接、及びレーザ切断といったレーザ加工プロセスは重要な役割を果たす。これらの用途において、レーザ光源によって生成されるレーザ光線を、少なくとも1のワークピースと相互作用させて、少なくとも1のワークピースを加工させる。レーザマーキングにおいて、レーザ光は金属、プラスチック、あるいは別の材料を含むワークピースに向けられ、ワークピース上にテキスト、ロゴ、及びデザインを適合できる。レーザマーキング用途においては、パルスレーザ源が用いられうる。レーザ溶接においては、レーザ光線はワークピースの合体を引き起こすために2又はそれ以上のワークピースを加熱するのに用いられうる。レーザ切断においては、レーザ光をワークピース上に集束して、レーザ光線に曝露される一部のワークピースを溶融、燃焼及び/又は蒸発させることができる。従って、ワークピースの一部を除去でき、及び/又は切開部をワークピース中に生成できる。レーザマーキング、レーザ溶接、及びレーザ切断に加えて、レーザ光線はレーザクラッディング及び微細加工の用途のために、及び光コヒーレンス断層撮影法、顕微手術、及び皮膚表面再形成(skin resurfacing)のような医学用途で用いられうる。
【0003】
最新技術においては、レーザ加工用途のために光ファイバ増幅器を具えるレーザ光線源を用いることが提唱されてきた。最新技術による光ファイバ増幅器は、エルビウム又はイッテルビウム等のドーパントを含む光ファイバを具える。ポンプ光源(シード光源)からの光は、ドープ光ファイバに供給してもよい。ポンプ光源の波長は、ドーパントがポンプ光源からの光を吸収するように、光ファイバ中のドーパントの吸収波長に適合できる。光の吸収によってドーパントを準安定性の励起状態にする。励起状態と、励起状態より低いエネルギーを有するドーパント状態との間のエネルギー差に対応する光子エネルギーを有するシード光源からの光が、光ファイバに供給される場合、シード光源からの光は誘導放射によって増幅できる。シード光源はパルスモードで動作させてもよい。シード光源が半導体レーザを具える、最新技術による方法の実施例においては、このことはパルス電流を半導体レーザに印加することによってなされうる。シード光源からの光パルスは次いでファイバ増幅器中で増幅できる。従って、数ワットないし数十ワットの光ファイバ増幅器の平均出力電力、及び数百ワットないし数キロワットのピーク電力を得ることができる。
【0004】
最新技術によるシード型光ファイバ増幅器の問題は、スペクトルパワー密度が高くなるとともに、誘導ブリルアン散乱といった所望されない非線形光学効果が光ファイバ増幅器中に、及び/又は、レーザ光線源に提供され、あるいはそこに接続される他の光ファイバ中に、生成されうることである。
【0005】
光ファイバ増幅器、及び/又は、レーザ光線源に提供され、あるいはそこに接続される別の光ファイバにおける誘導ブリルアン散乱は、逆方向に、すなわち半導体レーザに向かう方向に、光の生成を起こす。このことによって、最大90%まで光ファイバ増幅器の電力出力を低減させ、及び/又は、半導体のシード型及びポンプ型レーザを含む増幅器の素子に重大な損害を引き起こしうる。
【0006】
上述の問題を実質的に回避、又は少なくとも低減するレーザ光源及び方法を提供することが、本発明の目的である。
【発明の概要】
【0007】
例示的な実施例によると、レーザ光源はパルス動作用に適合される半導体レーザと、部分伝達型で波長選択性の光反射器とを具える。半導体レーザは前面反射エレメントと、後面反射エレメントとを具える。前面反射エレメント及び後面反射エレメントは内部レーザキャビティを規定する。内部レーザキャビテはレーザ活性媒体を具える。部分伝達型で波長選択性の光反射器は、前記レーザ活性媒体の利得帯域幅内にピーク反射率を有する。波長選択性の光反射器及び後面反射エレメントは外部レーザキャビティを規定する。外部レーザキャビティ中の光の往復時間は約20ナノ秒又はそれ未満である。波長選択性の光反射器の全幅半値帯域幅は少なくとも5の内部レーザキャビティの縦モードと、少なくとも20の外部レーザキャビティの縦モードとを収容するように適合される。
【0008】
別の例示的な実施例によると、レーザ光源はパルス動作用に適合される半導体レーザと、部分伝達型で波長選択性の光反射器と、光ファイバ増幅器とを具える。半導体レーザは前面反射エレメントと、後面反射エレメントとを具える。前面反射エレメント及び後面反射エレメントは内部レーザキャビティを規定する。内部レーザキャビティはレーザ活性媒体を具える。波長選択性の光反射器は、レーザ活性媒体の利得帯域幅内にピーク反射率を有する。波長選択性の光反射器及び後面反射エレメントは外部レーザキャビティを規定する。光ファイバ増幅器は波長選択性の光反射器によって送られる光を受けるように配置される。光ファイバ増幅器は非線形光学効果の蓄積時間を有する。外部レーザキャビティは非線形光学効果の蓄積時間より短い、外部レーザキャビティ中の光の往復時間を提供するように構成される。波長選択性の光反射器の全幅半値帯域幅は少なくとも5の内部レーザキャビティの縦モードと、少なくとも20の外部レーザキャビティの縦モードとを収容するように適合される。
【0009】
更に別の例示的な実施例によると、ある方法は第1の光ファイバ中の非線形光学効果の蓄積時間を決定するステップを具える。前面反射エレメントと後面反射エレメントとを具える半導体レーザが提供される。前面反射エレメント及び後面反射エレメントは内部レーザキャビティを規定する。内部レーザキャビティはレーザ活性媒体を具える。レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器が提供される。波長選択性の光反射器と半導体レーザの後面反射エレメントとによって規定される外部レーザキャビティを形成するように、波長選択性の光反射器は配置される。電流を半導体レーザに供給する際に半導体レーザによって放射される光のスペクトルを波長選択性の光反射器の帯域幅に固定する時間[H1]が決定される。非線形光学効果の蓄積時間より短い値に固定する時間を調整するために、外部レーザ共振器中の光の光路長が設定される。波長選択性の光反射器によって送られる光は第1の光ファイバに供給される。
【0010】
更に別の例示的な実施例によると、ある方法は、前面反射エレメントと後面反射エレメントとを具える半導体レーザを提供するステップを具える。前面反射エレメント及び後面反射エレメントは内部レーザキャビティを規定する。内部レーザキャビティはレーザ活性媒体を具える。レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器が提供される。波長選択性の光反射器及び後面反射エレメントは外部レーザキャビティを規定する。電流を半導体レーザに供給する際に波長選択性の光反射器によって送られる光の波長チャープの持続時間が決定される。パルス電流は半導体レーザに供給される。パルス電流のパルス時間は、波長選択性の光反射器によって送られる光を受ける光ファイバ中の波長チャープの持続時間及び非線形光学効果の蓄積時間のうちの少なくとも1つに基づいて選択される。
【0011】
シード光源が半導体レーザを具える最新技術によるレーザ光線源の実施例においては、半導体レーザは、半導体レーザの縦モードに対応する1又はそれ以上の波長の狭帯域内に相対的に高い強度を有するレーザ光線を放射できる。従って、誘導ブリルアン散乱の利得帯域幅内で相対的に高いスペクトル密度が得られ、誘導ブリルアン散乱開始のしきい値に到達する可能性を増加させうる。
【0012】
それに対して、本主題によるレーザ光源及び方法は、誘導ブリルアン散乱の利得帯域幅内のスペクトル密度の低減を可能にし、及び/又は、相対的に高いスペクトル密度が持続時間を限定でき、誘導ブリルアン散乱の蓄積時間未満で生じる。従って、誘導ブリルアン散乱の可能性及び/又は他の非線形効果の発生が低減できる。
【図面の簡単な説明】
【0013】
本主題[H2]の更なる利点、目的及び実施形態は、添付の請求項に規定され、添付の図面を引用した以下の詳細な説明で明らかとなるであろう。
【0014】
【図1】図1は、ある実施形態によるレーザ光源の概略図を示す。
【図2】図2は、ある実施形態におけるレーザ活性媒体の利得及び波長選択性の光反射器の反射率の概略図を示す。
【図3】図3は、ある実施形態における半導体レーザに供給される電流のアンペア数の概略図を示す。
【図4】図4は、電流を半導体レーザに供給する際の時間の関数として、半導体レーザによって放射される光のスペクトルの中心波長の概略図を示す。
【図5】図5は、半導体レーザによって放射される光のスペクトルの概略図を示す。
【図6】図6は、ある実施形態における部分伝達型の波長選択性の反射器を通って送られる光のスペクトルの中心波長の概略図を示す。
【図7】図7a及び7bは、ある実施形態によるレーザ光源中の部分伝達型で波長選択性の光反射器を通って送られる光のスペクトルの概略図を示す。
【図8】図8は、本発明の別の実施形態によるレーザ光源の概略図を示す。
【発明を実施するための形態】
【0015】
本主題は以下の詳細な説明ならびに図面に例示されるような実施形態によって記載されるが、以下の詳細な説明ならびに図面は、本発明を開示された特定の実施形態に限定することを意図しておらず、むしろ実施形態の記載は本主題の様々な態様を例示するだけのものであり、その範囲は添付の請求項によって規定されることは理解すべきである。
【0016】
一実施形態によると、レーザ光源はパルス動作用に適合される半導体レーザを具える。半導体レーザのパルス動作に対し、パルス電流は半導体レーザに供給されうる。パルス中の半導体レーザの出力電力はいくつかの実施例では比較的高くなりうる。従って、光ファイバ増幅器は前置増幅段階なく駆動できるか、あるいは多数の前置増幅段階の使用は低減できる。
【0017】
いくつかの実施形態においては、半導体レーザは内部レーザキャビティを規定する前面ファセットと後面ファセットとを具えてもよい。しかしながら、本主題は内部レーザキャビティが半導体レーザのファセットによって規定される実施形態に限定されない。他の実施形態においては、内部レーザキャビティは前面ファセット以外の前面反射エレメントと、後面ファセット以外の後面反射エレメントとによって規定されてもよい。例えば、前面反射エレメント及び後面反射エレメントは、半導体レーザに接続された光ファイバ中に形成されるファイバブラッグ格子を具えてもよい。このような実施形態においては、前面ファセット及び後面ファセットでの光の反射が実質的に回避されるように、前面ファセット及び後面ファセットは反射防止コーティングを具えてもよい。更なる実施形態においては、内部レーザキャビティは半導体レーザの前面ファセット及び後面ファセットのうちの1つと、半導体レーザのファセット以外の1の反射エレメントとによって規定しても良い。内部レーザキャビティにおいてはレーザ活性媒体は、電流が半導体レーザに供給される場合に電子正孔対が生成されるpn遷移の形態で提供できる。前面反射エレメント及び後面反射エレメントの反射率は、内部レーザキャビティが半導体レーザのレイジング動作を誘発するためにレーザ活性媒体に十分な光フィードバックを提供する光共振器を形成するように適合してもよい。従って、半導体レーザは更なる光学素子の不存在下で、スタンドアロン動作可能にできる。
【0018】
レーザ光源は、レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器を更に具えてもよい。いくつかの実施形態においては、波長選択性の光反射器のピーク反射率はレーザ活性媒体の利得帯域幅内にあってもよい。部分伝達型で波長選択性の光反射器は半導体レーザの後面反射エレメント及び波長選択性の光反射器が外部レーザキャビティを規定するように配置される。波長選択性の光反射器の全幅半値帯域幅は少なくとも12の内部レーザキャビティの縦モードと、少なくとも250の外部レーザキャビティの縦モードとを収容するように適合してもよい。
【0019】
半導体レーザによって放射される光は、波長選択性の光反射器によって半導体レーザに反射され、レーザ活性媒体に入りうる。反射光が半導体レーザによる光の生成に影響を与えるように、反射光はレーザ活性媒体と干渉しうる。
【0020】
半導体レーザによる光の生成の反射光の影響は2倍になりうる。第1に、波長選択性の光反射器のピーク反射率はレーザ活性媒体の利得帯域幅内にあるため、反射光はレーザ活性媒体中の光の誘導放射によって増幅しうる。このことが、波長選択性の光反射器によって反射されるそれらの波長に対する、正味のレーザ光源の利得の増加を導く。従って、レーザ光源によって放射されるスペクトルは、波長選択性の光反射器によって反射される波長を含むスペクトルに流れ込む。以下においては、この効果は「固定(locking)」として示される。
【0021】
第2に、内部レーザキャビティにおいては、反射光はノイズ源として作用し、半導体レーザがマルチモード型で動作するように、単一モード型での半導体レーザの動作可能性を低減できる。従って、内部レーザキャビティと外部レーザキャビティとによって形成される複合キャビティを具えるレーザ光源によって放射される光のスペクトルは、波長選択性の光反射器の帯域幅内で内部レーザキャビティのモードと外部レーザキャビティのモードとによって影響される複数の波長を含みうる。従って、ピーク波長のうちの1つ又はいくつかでの高スペクトル密度の発生は低減又は実質的に回避されうる。
【0022】
非線形光学効果の「利得帯域幅(gain bandwidth)」として示される比較的狭い波長範囲内で高密度の光を受ける光学エレメントに、非線形光学効果は生じうる。従って、誘導ブリルアン散乱の利得帯域幅内の光密度がしきい値を超える場合に、誘導ブリルアン散乱は光学エレメント中に生じうる。
【0023】
誘導ブリルアン散乱のような非線形光学効果開始のしきい値は、入射光が光学エレメントと干渉可能な場合、光のスペクトル密度に依存し、かつ様々な光学エレメントの特性に依存しうる。光ファイバを具える光学エレメントにおいては、誘導ブリルアン散乱開始のしきい値は、例えばファイバの材料及びファイバの厚さに依存しうる。
【0024】
いくつかの実施形態においては、波長選択性の光反射器によって送られる光は、光ファイバ中に提供される光ファイバ増幅器をシードするために、光ファイバに供給されうる。光ファイバにおいては、誘導ブリルアン散乱が生じうる。特に光ファイバ増幅器においては、誘導ブリルアン散乱が生じうる光密度のしきい値は、ファイバ増幅器中の光の増幅によって比較的容易に到達しうる。従って誘導ブリルアン散乱は、いくつかの実施形態においては約1メートルの比較的短い光ファイバ増幅器の長さであっても生じうる。誘導ブリルアン散乱は逆方向、すなわち、半導体レーザに向かう方向に光の生成を導き、最大90%まで光ファイバ増幅器の出力電力を低減し、レーザ光源の損傷を生じさせうる。
【0025】
誘導ブリルアン散乱のような非線形光学効果は特徴的な蓄積時間を有しうる。蓄積時間よりも長い期間、非線形光学効果の利得帯域幅内の光のスペクトル密度がしきい値を超える場合、非線形光学効果が生じうる。誘導ブリルアン散乱の場合において、蓄積時間はフォノンの寿命によって影響されうる。光学エレメントがイッテルビウムドープファイバ増幅器を具え、かつ半導体レーザがパルス時に約1ワットのピーク電圧を放射するように構成されるいくつかの実施形態においては、誘導ブリルアン散乱の蓄積時間は約10ナノ秒又はそれ以上であってもよい。
【0026】
外部レーザキャビティは、半導体レーザによって放射される光のスペクトルが波長選択性の光反射器の帯域幅に固定されるまでに要求される時間が非線形光学効果の蓄積時間より短くなるように構成してもよい。このことにより、非線形光学効果が生じる可能性を低減できる。
【0027】
固定時間は外部レーザキャビティ中の光の往復時間に依存する。半導体レーザによって放射され、かつ、波長選択性の光反射器によって半導体レーザに反射される光は、外部レーザキャビティの一往復時間がパルス開始から経過した後に、レーザ活性媒体に到達し、レーザ活性媒体と干渉しうる。従って、半導体レーザの固定及びマルチモード動作は、パルス開始後、固有の期間で生じ、固有の期間は外部レーザキャビティの往復時間を変えることによって、例えば、半導体レーザと波長選択性の光反射器との間の距離を変えることによって制御されうる。
【0028】
いくつかの実施形態においては、往復時間は約20ナノ秒又はそれ未満の値、約10ナノ秒又はそれ未満の値、約5ナノ秒又はそれ未満の値、又は約1ナノ秒又はそれ未満の値を有してもよい。半導体レーザと波長選択性の光反射器との間の距離は約2メートル又はそれ未満、約1メートル又はそれ未満、約50センチメートル又はそれ未満、又は約10センチメートル又はそれ未満であってもよい。
【0029】
電流パルスが半導体レーザに供給される場合、波長チャープが生じうる。チャープ中に、レーザ光源によって放射される光のスペクトルの中心波長が増加しうる。誘導ブリルアン散乱の蓄積時間より短い期間、レーザ光源によって放射される放射線を受ける光学エレメントが誘導ブリルアン散乱のしきい値より大きな光密度に曝露されるように、レーザ光源によって放射される光のスペクトルの中心波長が比較的高速度で誘導ブリルアン散乱の利得帯域幅を通って移動する場合に、誘導ブリルアン散乱の発生は実質的に回避されうる。
【0030】
一実施形態においては、誘導ブリルアン散乱の利得帯域幅は約100メガヘルツにでき、誘導ブリルアン散乱の蓄積時間は約10ナノ秒にできる。このような実施形態においては、中心波長が約1060ナノメートルである場合に中心波長が10ナノ秒又はそれ以上につき約0.4ピコメートルで変化する速度に対応して、光のスペクトルの中心周波数が10ナノ秒又はそれ以上につき約100メガヘルツで変化する場合に、誘導ブリルアン散乱が生じる可能性は低減できる。
【0031】
パルス時間は、レーザ光源から放射線を受ける光学エレメント中の、波長チャープの持続時間と、例えば誘導ブリルアン散乱のような非線形効果の蓄積時間とに基づいて決定できる。いくつかの実施形態においては、パルス時間はチャープの有効持続時間と非線形光学効果の蓄積時間との和にほぼ等しい、又はそれ未満であってもよい。非線形光学効果の発生は、蓄積時間より長い期間、狭い波長範囲の放射線に対し光学エレメントの曝露を要求しうるため、この方法でパルス時間を決定するステップは、非線形光学効果を回避又は低減するのを助けうる。
【0032】
更なる実施形態は、図1ないし7によって述べられる。
【0033】
図1は、ある実施形態によるレーザ光源100の概略図を示す。レーザ光源100は半導体レーザ101を具える。半導体レーザ101はパルス動作用に適合される半導体レーザダイオードを具えてもよい。
【0034】
半導体レーザ101はレーザ活性媒体104と、第1の電極105と、第2の電極106とを具える。第1の電極105と第2の電極106との間に電流を印加することにより、光がレーザ活性媒体104中の光の誘導放射によって増幅されるように反転分布はレーザ活性媒体中に生成されうる。いくつかの実施形態においては、レーザ活性媒体104は当該技術分野の当業者に既知のInGaAlAs/GaAs材料系のレーザダイオードに基づく量子井戸構造を具えることができる。いくつかの実施形態においては、レーザ活性媒体104は、1060ナノメートルの波長が中心となる波長範囲の光が増幅されるように適合してもよい。他の実施形態においては、レーザ活性媒体104は、約974ナノメートルの波長が中心となる波長範囲の光が増幅されるように適合してもよい。当該技術分野の当業者に既知のように、量子井戸のインジウム量を制御することによって、レーザ活性媒体104中で増幅される波長の範囲は制御してもよい。しかしながら、本主題はInGaAlAs/GaAs材料系、又はそれぞれ974nm又は1060nmが中心となる波長範囲に限定されない。他の実施形態においては、他の材料系及び他の波長範囲を用いてもよい。
【0035】
半導体レーザ101は前面反射エレメントを規定する前面ファセット102と、後面反射エレメントを規定する後面ファセット103とを具えることができる。前面ファセット102はレーザ活性媒体104中に生成される光の一部分を送り、光の別の部分をレーザ活性媒体104内に反射するように適合できる。前面ファセット102はレーザ活性媒体104から到達する比較的小さな割合の光をレーザ活性媒体104内に反射し、比較的大きな割合の光を送るように構成できる。いくつかの実施形態においては、前面ファセットは約0.01%又はそれ以上の反射率、及び/又は約0.1%又はそれ以上の反射率、及び/又は約0.5%又はそれ以上の反射率を有してもよい。更なる実施形態においては、前面ファセットは比較的小さな反射率を有してもよい。特に、前面ファセットは約0.01%又はそれ未満の反射率、及び/又は約0.1%又はそれ未満の反射率、及び/又は約1%又はそれ未満の反射率を有してもよい。
【0036】
前面ファセット102と同様、後面ファセット103は活性媒体104に到達する光を活性媒体104内に反射するように構成してもよく、後面ファセット103は比較的大きな割合の光を反射するように構成できる。いくつかの実施形態においては、後面ファセット103は約90%又はそれ以上の反射率を有してもよい。
【0037】
半導体レーザ101の前面ファセット102及び後面ファセット103の反射率はそれぞれ、レーザ活性媒体104の屈折率と異なる屈折率を有する材料で前面ファセット102及び/又は後面ファセット103をコーティングすることによって制御できる。得られた反射率はコーティング厚に依存しうる。レーザ活性媒体104から離れた(averted)コーティング面で反射される光がレーザ活性媒体104に隣接するコーティング面で反射される光と建設的に干渉するようにコーティング厚が適合される場合、比較的高い反射率が得られうる。レーザ活性媒体104から離れた(averted)コーティング面で反射される光がレーザ活性媒体104に隣接するコーティング面で反射される光と破壊的に干渉するようにコーティング厚が適合される場合、比較的低い反射率が得られうる。
【0038】
半導体レーザ101の前面ファセット102及び後面ファセット103は、内部レーザキャビティ121を規定できる。半導体レーザ101の一般的な動作条件下で、前面ファセット102と後面ファセット103とを通した伝達によるレーザ活性媒体中の光強度の減少、及び他の供給源により生じる減少が、レーザ活性媒体104中の増幅によって補償されるように、前面ファセット102及び後面ファセット103の反射率は適合されうる。従って、半導体レーザ101はそこに接続された他の光学素子の不存在下で動作可能である。
【0039】
いくつかの実施形態においては、内部レーザキャビティ121は前面ファセット102以外の前面反射エレメントと、後面ファセット103以外の後面反射エレメントとによって規定してもよい。例えば、前面反射エレメント及び/又は後面反射エレメントは活性媒体104に接続される光ファイバ中に提供されるファイバブラッグ格子の形態で提供してもよく、あるいは、レーザ活性媒体は前面反射エレメントと後面反射エレメントとをそれぞれ規定する前面ミラーと後面ミラーとの間に提供してもよく、少なくとも前面ミラーが部分的に光を送っていてもよい。他の実施形態においては、前面反射エレメント及び後面反射エレメントのうちの一方は、前面ファセット又は後面ファセットによってそれぞれ規定してもよく、前面反射エレメント及び後面反射エレメントのうちの他方は、ミラー又はファイバブラッグ格子によって規定してもよい。
【0040】
本主題は図1に示したように、電極105、106が前面ファセット102及び後面ファセット103に対して実質的に垂直なエッジ放射型の半導体レーザを、半導体レーザ101が具える実施形態に限定しない。他の実施形態においては、半導体レーザ101は垂直キャビティ面放射型のレーザダイオードを具えもよい。
【0041】
レーザ光源100は更に電源107を具えてもよい。電源107はパルス電流を半導体レーザ107に供給するように構成してもよい。電源107は制御ユニット108に接続してもよい。制御ユニット108はパルス、ならびにパルスの持続時間中に供給される電圧及びアンペア数のようなパルス電流のパラメータを制御するように適合してもよい。更に、電源はパルスの形状を制御するように構成してもよい。例えば、電源は方形パルス、台形パルス、及び/又は鋸波パルスを提供するように適合してもよい。
【0042】
半導体レーザ101の後面ファセット103の近くに、半導体レーザ101の後面ファセット103によって送られる光強度を測定するように適合される光検出器109を提供してもよい。いくつかの実施形態においては、光検出器109はフォトダイオードを具えてもよい。光検出器109は制御ユニット108に接続してもよい。所望の光強度が得られるように、制御ユニットは半導体レーザ101に供給される電流を制御するように適合してもよい。
【0043】
レーザ光源100は更に、半導体レーザ101によって放射される光を受けるように適合される少なくとも1の光ファイバ110を具えてもよい。少なくとも1の光ファイバ110は半導体レーザ101に隣接して配置されるレンズ面111を有する末端部を具えてもよい。レンズ面は少なくとも1の光ファイバ110の厚い末端部で設けてもよく、あるいは少なくとも1の光ファイバ110の先端の形状で設けてもよい。このことが、少なくとも1の光ファイバ110内への半導体レーザ101によって出力される光の有効な結合を可能にする。いくつかの実施形態においては、光ファイバ内への半導体レーザ101によって出力される光の結合効率は約50%又はそれ以上にできる。更なる実施形態においては、結合効率は約60%ないし約80%の範囲の値を有することができ、及び/又は約65%又はそれ以上の結合効率にできる。
【0044】
本発明は少なくとも1の光ファイバ110の末端部に設けられるレンズ面111を、少なくとも1の光ファイバ110が具える実施形態に限定されない。他の実施形態においては、例えば、半導体レーザ101と少なくとも1の光ファイバ110との間に配置される1又はそれ以上のレンズといった、光ファイバ110内に、半導体レーザ101によって放射される光を結合するための異なる手段を用いてもよい。
【0045】
少なくとも1の光ファイバ110は、第1の光ファイバ113と第2の光ファイバ112とを具えてもよい。
【0046】
いくつかの実施形態においては、第1の光ファイバ113は、例えばイッテルビウムドープファイバ増幅器115といった当該技術分野の当業者に既知の型の光ファイバ増幅器115を具えてもよい。光ファイバ増幅器115は、いくつかの実施形態においては1又はそれ以上の半導体レーザを具えるポンプ光源116から、光によってポンピングしてもよい。ポンプ光源116からの光は、第3の光ファイバ117と、当該技術分野の当業者に既知の型の結合エレメント118とによって光ファイバ増幅器116に供給してもよい。
【0047】
当該技術分野の当業者に既知のように、イッテルビウムドープ光ファイバを具える場合の光ファイバ増幅器115は、約920ナノメートル及び約980ナノメートルの2の有効吸収波長領域でポンピングできる。増幅は約970ナノメートルないし約1200ナノメートルの波長範囲で生じうる。特に、イッテルビウムドープ光ファイバを具える場合の光ファイバ増幅器115中の利得は、約1060ナノメートルの波長を有する光を増幅するのに最適化できる。
【0048】
本発明は、光ファイバ増幅器115がイッテルビウムドープ光ファイバを具える実施形態に限定されない。他の実施形態においては、光ファイバ増幅器115は、例えばエルビウム、ツリウム、ネオジム、又はその組合せといった他の元素でドープされた光ファイバを具えてもよい。更なる実施形態においては、第1の光ファイバ113は光ファイバ増幅器を具えていない。代わりに、第1の光ファイバ113はレーザ光源100によって生成される光を遠隔位置に誘導する光伝導体として構成してもよい。いくつかの実施形態においては、第1の光ファイバ113及び第2の光ファイバ112は単一の光ファイバの部分を含んでもよい。
【0049】
第2の光ファイバ112は負荷型のブラッグ格子114を有するファイバを具えてもよい。ファイバブラッグ格子114は第2の光ファイバ112中に形成される周期的に交互になる屈折率パターンを具える。当該技術分野の当業者に既知のように、周期的に交互になる屈折率パターンは第2の光ファイバ112を紫外線放射で照射することによって形成できる。紫外線放射での照射は、第2の光ファイバ112の材料の屈折率の変化を導き、屈折率は高線量の紫外線放射を受ける第2の光ファイバ112の一部において、大きな範囲で変化する。いくつかの実施形態においては、第2の光ファイバ112を例えばゲルマニウムでドープして、紫外線放射に対する第2の光ファイバ112の感度を提供し、あるいは増加させてもよい。
【0050】
第2の光ファイバ112に沿って伝わる光の一部は、交互になる屈折率の位置で反射させてもよい。交互になる屈折率パターンの周期性によって、交互になる屈折率の隣接位置で反射する光が、建設的に干渉するほどの光の波長である場合に、中程度に大きな割合の光が反射されうる。逆に、光の波長がファイバブラッグ格子114の周期性と合致しない場合、比較的低い反射率が得られるように、破壊的な干渉が交互となる屈折率の異なる位置で反射される光の間で生じうる。ファイバブラッグ格子114のピーク反射率の波長及びファイバブラッグ格子114の帯域幅は交互になる屈折率パターンを変えることによって制御してもよい。所望の中心波長での所望のピーク反射率と、所望の帯域幅とを有するファイバブラッグ格子を設計する方法は、当該技術分野の当業者に既知である。
【0051】
従って、ファイバブラッグ格子114は、所定の波長範囲内で所望の割合の光を反射するように適合され、かつ、所定の波長範囲外の波長を有する光を実質的に完全に送る、波長選択性の光反射器を提供できる。一実施形態においては、ファイバブラッグ格子は約1%ないし約15%の範囲のピーク反射率、例えば約2.5%のピーク反射率を有してもよい。ファイバブラッグ格子は例えば約2ナノメートルの全幅半値帯域幅といった、約0.2ナノメートルないし約5ナノメートルの範囲の全幅半値帯域幅、及び/又は約0.5ナノメートルないし約5ナノメートルの範囲の全幅半値帯域幅、ならびに、約1060ナノメートルの中心波長、及び/又は約974ナノメートルの中心波長を有してもよい。
【0052】
半導体レーザ101によって放射される光は、ファイバブラッグ格子114によって反射してもよい。反射光は第2の光ファイバ112に沿って伝わり、半導体レーザ104内に結合され、レーザ活性媒体104と干渉しうる。特に、反射光はレーザ活性媒体104中の光の誘導放射によって増幅させてもよい。レーザ活性媒体104との干渉後、光は半導体レーザ101の後面ファセット103で反射しうる。反射光は再度レーザ活性媒体104と干渉しうる。次いで、反射光は前面ファセット102を介して内部レーザキャビティ121を離れて第2の光ファイバ112に入り、ファイバブラッグ格子114で反射されうる。従って、ファイバブラッグ格子114及び半導体レーザ101の後面ファセット103は外部レーザキャビティ122を規定する。
【0053】
図2はレーザ活性媒体104の利得と、ファイバブラッグ格子114の反射率との間の関係を示す概略図を示す。座標系200は光の波長を表わす水平座標軸を具える。第1の垂直座標軸202はレーザ活性媒体104の利得を表わし、第2の垂直座標軸207はファイバブラッグ格子114の反射率を表わす。
【0054】
第1の曲線203は、光の波長に対するレーザ活性媒体104の利得の従属性を概略的に示す。活性媒体の利得は全幅半値206と利得帯域幅212とを具える。当該技術分野の当業者に既知のように、「全幅半値(full width half maximum)」という用語は、活性媒体の利得が最大利得208の50%より大きい波長範囲を示す。最大利得208は曲線203の最大値に対応する最大利得波長210として得ることができる。
【0055】
図2において、第2の曲線204は光の波長に対するファイバブラッグ格子114の反射率の従属性を概略的に示す。反射率が最大反射率209の50%よりも大きい波長範囲を有する全幅半値帯域幅205を、反射率は含むことができる。最大反射率209は曲線204の最大値に対応する最大反射率波長211で得られうる。
【0056】
ファイバブラッグ格子214の最大反射率波長211は、レーザ活性媒体104の利得帯域幅212内にできる。従って、ファイバブラッグ格子114によって反射される比較的大きな光の増幅はレーザ活性媒体104中で得られうる。このことは、レーザ光源100によって放射されるスペクトルの、ファイバブラッグ格子の全幅半値帯域幅205への特に有効な固定を導く。
【0057】
いくつかの実施形態においては、ピーク反射率波長211はピーク利得波長210に比較的近くなりうる。一実施形態においては、ピーク反射率波長211とピーク利得波長との間の差の絶対値は、約10ナノメートル又はそれ未満になりうる。更なる実施形態においては、ピーク利得波長210及びピーク反射率波長211はぼぼ等しくなりうる。
【0058】
ファイバブラッグ格子114の全幅半値帯域幅205は、利得帯域幅212及び/又はレーザ活性媒体104の利得の全幅半値帯域幅206よりも小さくなりうる。このことは、ファイバブラッグ格子114によって、より有効なモード選択を得るのを助ける。
【0059】
ファイバブラッグ格子114の全幅半値帯域幅205は、多数の外部レーザキャビティ122のモードと、多数の内部レーザキャビティ121のモードとを収容できる。当該技術分野の当業者に既知のように、長さLの光路を有するレーザ共振器は、波長
λ=L/(2n) (1)
で複数のモードを有する。ここでnは0より大きな整数である。従って、レーザのモード間の空間は、
λn+1−λ=Δλ=λn/(n+1) (2)
となる。よって、

となる。
【0060】
後面ファセット103と前面ファセット102とによって形成される内部レーザキャビティ121中の光の光路長は、半導体レーザ101の後面ファセット103と前面ファセット102との間の距離に対応して、内部レーザキャビティ121の長さ119に関連づけられる。いくつかの実施形態においては、内部レーザキャビティ119の長さ119は約3.6mmであってもよい。外部レーザキャビティ122中の光の光路長は、後面ファセット103とファイバブラッグ格子114との間の距離に対応して、外部レーザキャビティ122の長さ120と関連づけられる。従って、内部レーザキャビティ121及び外部レーザキャビティ122中の光路長ならびにモード空間は更に、レーザ活性媒体104及び第2の光ファイバ112の屈折率によって影響されうる。内部レーザキャビティ121及び外部レーザキャビティ122内のモード空間を算出する方法は、当該技術分野の当業者に既知である。いくつかの実施形態においては、レーザ活性媒体104は約3.74の屈折率を有してもよく、第2の光ファイバ112は約1.41の屈折率を有してもよい。
【0061】
外部レーザキャビティ122中の光の光路長120が内部レーザキャビティ121の光の光路の長さ119より大きいため、外部レーザキャビティ122中の隣接するレーザモード間の空間が、内部レーザキャビティ121中の隣接するレーザモード間の空間よりも小さくなりうる。従って、ファイバブラッグ格子114の全幅半値帯域幅205は多数の外部レーザキャビティ122のモードを収容でき、その数はファイバブラッグ格子114の全幅半値帯域幅内での内部レーザキャビティ121のモードの数より大きい。いくつかの実施形態においては、ファイバブラッグ格子114は、少なくとも5の内部レーザキャビティ121の縦モードと、少なくとも20の外部レーザキャビティ122の縦モードとを収容し、及び/又は、少なくとも12の内部レーザキャビティ121の縦モードと、少なくとも250の外部レーザキャビティ122の縦モードとを収容するように適合してもよい。更なる実施形態においては、ファイバブラッグ格子114の全幅半値帯域幅は、少なくとも100の内部レーザキャビティ121の縦モードと、少なくとも2500の外部レーザキャビティ122の縦モードとを具えてもよく、及び/又は、少なくとも50の内部レーザキャビティ121の縦モードと、少なくとも1000の外部レーザキャビティ122の縦モードとを具えてもよい。
【0062】
既に上述したように、電源107はパルス電流を半導体レーザ101に供給するように適合してもよい。図3は電源107によって半導体レーザ101に供給される電流のアンペア数の概略図を示す。座標系300は時間を表わす水平座標軸301と、アンペア数を表わす垂直座標軸302を具える。曲線303は半導体レーザ101に供給される電流の時間従属性を示す。電流は複数のパルス304、305を含んでもよい。各々のパルス304、305はパルス時間306を有してもよく、次のパルスとの間にオフタイム307があってもよい。パルス304、305中に、電流は半導体レーザ101のレイジングのしきい値よりも大きくなるアンペア数308を有しうる。パルス304、305の間でアンペア数はほぼ0であってもよい。他の実施形態においては、半導体レーザ101のレイジングのしきい値未満のアンペア数を有する電流は、パルス304、305の間で供給してもよい。
【0063】
パルス時間306は約3ナノ秒ないし約1マイクロ秒の範囲に、及び/又は約10ナノ秒ないし約1マイクロ秒の範囲に値を有してもよい。更なる実施形態においては、パルス時間306は約10ナノ秒ないし約250ナノ秒の範囲に、及び/又は約10ナノ秒ないし約500ナノ秒の範囲に、及び/又は約3ナノ秒ないし約1マイクロ秒の範囲に値を有してもよい。更なる実施形態においては、パルス時間206は約100ナノ秒の値であってもよい。
【0064】
半導体レーザ101に供給されるパルス電流の衝撃係数はパルス電流のパルス時間306と周期との間の比率として算出でき、周期はパルス時間306とオフタイム307との合計によって与えられる。いくつかの実施形態においては、衝撃係数は約10%又はそれ未満の値、例えば約2%の値を有してもよい。
【0065】
パルス304、305のアンペア数308は約0.7アンペアないし約2アンペアの範囲に値を有してもよい。半導体レーザ101の変換効率に依存して、このことはパルス304中に第2の光ファイバ112に供給される約1ワット又はそれ以上のピーク電力を導く。従って、パルス304、305中に、半導体レーザ101は比較的高い強度を有する光を出力できる。パルス304、305間の間隔においては、半導体レーザ101は比較的低い光強度を放射してもよく、あるいは実質的に光を全く放射しなくてもよい。
【0066】
パルスモード動作中に半導体レーザ101によって出力される光の更なる特性は図4及び5で述べられている。
【0067】
図4は、第2の光ファイバ112及び/又はファイバブラッグ格子114の不存在下で、半導体レーザ101に供給される電流パルス304、305中に、半導体レーザ101によって放射される光のスペクトルの中心波長の時間従属性を示す概略図を示す。座標系400は時間を表わす水平座標軸401と、半導体レーザ101によって放射される光のスペクトルの中心波長を表わす垂直座標軸402とを具える。
【0068】
光のスペクトルの中心波長は、放射される光を、例えばプリズム分光計、又は回折格子を具える分光計のような、当該技術分野の当業者に既知の型の分光計に供給することによって決定してもよい。例えば電荷結合素子のようなセンサは、時間分解法で波長の関数として放射光の強度を測定するよう用いてもよい。中心波長は平均波長及び/又は最大強度の波長を算出することによって測定されたスペクトルに基づいて決定してもよい。
【0069】
図4においては、曲線403は中心波長の時間従属性を示す。パルス304、305の開始で、比較的迅速な中心波長の増加が図4の引用番号405によって示されるように得られる。次いで、中心波長は図4中の引用番号406に示されるように実質的に一定のままにでき、1の内部レーザキャビティ121のモードだけ、あるいは数個のモードだけでのレーザ動作を示す。図4の引用番号407によって示されるように、より長いパルス持続時間でレーザの中心波長が別のモードにホップできる。比較的迅速な中心波長405の増加405は約5ナノ秒又はそれ未満の持続時間を有しうる。いくつかの実施形態においては、持続時間の比較的迅速な増加405は電源107の立上がり時間に対応しうる。
【0070】
図5は、半導体レーザ101が第2の光ファイバ112及び/又はファイバブラッグ格子114の不存在下で動作する場合に、パルス304、305中の時点404(図4)で得られるスペクトルを概略的に示す。座標系500は水平座標軸501と垂直座標軸502とを具える。水平座標軸501は波長を表わし、垂直座標軸502は各波長で得られる光強度を表わす。曲線503は半導体レーザ101によって放射される光のスペクトルを概略的に示す。
【0071】
スペクトル503は約6ナノメートル又はそれ以上の比較的大きな帯域幅504を有することができ、1又はそれ以上のピーク506、507を具えうる。ピーク506、507は、それぞれ引用番号505、508によって示されるような比較的大きなピーク強度を有することができ、それぞれ引用番号509、510によって示されるような比較的小さな帯域幅を有することができる。ピーク506、507の波長は半導体レーザ101の内部レーザキャビティ121の縦モードの波長に対応しうる。
【0072】
第2の光ファイバ112及びファイバブラッグ格子114の不存在下で半導体レーザ101によって出力される光が光ファイバ増幅器115内に結合される場合、ピーク506、507の波長で得られる比較的高い強度は、光ファイバ増幅器115中の、及び/又は増幅後の光ファイバ増幅器115中の、誘導ブリルアン散乱のような非線形光学効果の発生を導くであろう。
【0073】
当該技術分野の当業者に既知のように、誘導ブリルアン散乱においては光媒体中の光のビームによって生成される電場の変化は、電気ひずみを通した光媒体中の音響振動を生成しうる。音響振動のフォノンは光のビームのフォトンと干渉し、光の散乱を導きうる。誘導ブリルアン散乱は、光媒体が誘導ブリルアン散乱の蓄積時間より長い期間、誘導ブリルアン散乱の利得帯域幅内の比較的高い光強度に曝露される場合に生じうる。従って、ピーク506、507の存在、及び初期増加405後の中心波長403の比較的ゆっくりとして変化は光ファイバ増幅器115中の、及び/又は増幅後の光ファイバ増幅器115中の、誘導ブリルアン散乱の発生可能性を増加させうる。
【0074】
誘導ブリルアン散乱の蓄積時間は、光媒体の材料特性、スペクトル、及び光媒体が照射される光の強度に依存しうる。上述のように半導体レーザ101に結合されるイッテルビウムドープ光ファイバ出力において、誘導ブリルアン散乱の蓄積時間は約10ナノ秒ないし約50ナノ秒の範囲の値を有してもよい。誘導ブリルアン散乱の蓄積時間は、当該技術分野の当業者に既知の方法によって、例えば第1の光ファイバ113中に反射される光の密度、及び/又は時間の関数として第1の光ファイバ113によって送られる光密度を測定することによって、決定してもよい。代替的に、誘導ブリルアン散乱の蓄積時間は、第1の光ファイバ113の材料特性に基づいて理論的に算出してもよい。
【0075】
外部レーザキャビティ122の存在は、以下に説明されるように誘導ブリルアン散乱の発生の可能性を低減できる。
【0076】
既に上述したように、ファイバブラッグ格子114によって反射される光はレーザ活性媒体104と干渉しうる。従って、半導体レーザ101によって放射される光のスペクトルのファイバブラッグ格子114の帯域幅への固定、及びファイバブラッグ格子114の帯域幅以上の比較的均一な強度分布が得られうる。
【0077】
半導体レーザ101によって放射される光が、ファイバブラッグ格子114によってレーザ活性媒体104中に反射される場合、反射光は半導体レーザ101の後面ファセット103とファイバブラッグ格子114とによって形成される外部レーザキャビティ122の往復時間に対応する期間の後に、レーザ活性媒体104に到達しうる。従って、パルス電流が半導体レーザ101に印加される場合、レーザ活性媒体104は、光がパルス開始後にファイバブラッグ格子114に移動して、半導体レーザ101に戻るのに要求される時間より遅い時点で反射光を受けうる。よって、レーザ活性媒体104はパルス開始後の外部レーザキャビティ122の一往復時間より遅くに反射光を受けうる。従って、固定は外部レーザキャビティ122の一往復時間よりも遅い時点で得られうる。
【0078】
レーザ光源100中のファイバブラッグ格子114を通って送られる光の特徴は、図6、7a及び7bによって述べられる。
【0079】
図6は、電流パルス304、305が半導体レーザ101に印加される場合に、ファイバブラッグ格子114を通って送られる光のスペクトルの中心波長の時間従属性を例示する図面を示す。座標系600は時間を表わす水平座標軸601と、各時点で得られるスペクトルの中心波長を表わす垂直座標軸602とを具える。曲線603は時間の関数としてスペクトルの中心波長を概略的に示す。
【0080】
パルス304、305の開始で、図6中の引用番号605に示されるように、スペクトルの中心波長603は初期増加605を示しうる。その後、中心波長は、引用番号606で示されるように、ゆっくりと増加しうる。初期増加605の持続時間は、ファイバブラッグ格子114の不存在下で得られる初期増加405よりも長くなりうる。いくつかの実施形態においては、初期増加605は固定時間に対応する約20ナノ秒の持続時間を有してもよい。更に、中心波長603が初期増加606後に増加する速度は、中心波長が図4の引用番号406によって示される期間中に増加する速度より大きくなりうる。従って、半導体レーザ101に印加される電流パルス304、305中で、波長チャープを得て、ファイバブラッグ格子114によって送られる光のスペクトルの中心波長は時間とともに増加しうる。比較的長い時間、電流が半導体レーザ101に印加される場合、ファイバブラッグ格子114によって送られるスペクトルの中心波長は実質的に一定値で飽和しうる。この形態は図6に示されていない。チャープの発生は半導体レーザ101中の温度性の波長移動に起因し、長パルス時間での波長の飽和は温度決定(thermal settling)に起因する。
【0081】
いくつかの実施形態は波長チャープの持続時間を決定するステップを具えてもよい。この目的のために、電流は半導体レーザ101に印加してもよく、ファイバブラッグ格子114によって送られる光のスペクトルの中心波長は時間分解法で測定してもよい。その後、時間に対する中心波長の導関数を含む、中心波長が変化する速度は、しきい値と比較できる。チャープの持続時間は電流がオンにされる時点と、初めて中心波長が変化する速度がしきい値を超える時点との間の期間として決定できる。
【0082】
いくつかの実施形態においては、しきい値は誘導ブリルアン散乱の利得帯域幅と、誘導ブリルアン散乱の蓄積時間とに基づいて決定してもよい。一実施形態においては、しきい値は誘導ブリルアン散乱の利得帯域幅と、誘導ブリルアン散乱の蓄積時間との間の比率に対応してもよい。従って、誘導ブリルアン散乱の利得帯域幅が1060ナノメートルの波長で約100メガヘルツであり、かつ誘導ブリルアン散乱の蓄積時間が約10ナノ秒である場合、しきい値は10ナノ秒につき約4ピコメートルないし10ナノ秒につき約40ピコメートルの範囲に値を有しうる。
【0083】
レーザ光源100の動作においては、パルス電流は半導体レーザ101に供給してもよく、この場合、パルス電流のパルス時間306は第1の光ファイバ113中の波長チャープの持続時間、及び、例えば誘導ブリルアン散乱の蓄積時間といった非線形光学効果の蓄積時間のうちの少なくとも1つに基づいて選択される。一実施形態においては、パルス時間306は波長チャープの持続時間と非線形光学効果の蓄積時間との和に等しい、又はそれ未満であってもよい。別の実施形態においては、パルス時間はチャープの持続時間に等しい、又はそれ未満であってもよい。
【0084】
上に詳述したように、誘導ブリルアン散乱のような非線形光学効果の発生は、ある期間の比較的狭い波長範囲中の比較的高い光密度の発生により増大しうる。波長チャープ中に、特定波長の高い光強度に第1の光ファイバ113を曝露する期間が比較的短くなるように、ファイバブラッグ格子を通って送られる光のスペクトルの中心波長は時間の関数として変化しうる。よって、波長チャープの存在は誘導ブリルアン散乱又は他の所望されない非線形光学効果の可能性を低減できる。従って、所望されない非線形効果の可能性は波長チャープの持続時間と等しい又はそれ未満のパルス時間を選択することによって低減できる。波長チャープの持続時間と非線形光学効果の蓄積時間との和より短いパルス時間を選択することによって、実質的に一定の中心波長でスペクトルを有する光に第1の光ファイバ113を曝露する時間は、非線形光学効果の蓄積時間のために要求される時間よりも短いため、非線形光学効果の発生可能性の低減が更に可能になる。
【0085】
いくつかの実施形態においては、チャープの持続時間は特有の型のパルス形状によって明確に影響されうる。一例としては、振幅の増加を伴うパルスの勾配は、中心波長が移動する速度を増加させうる。
【0086】
図7aは、スペクトルのファイバブラッグ格子114の帯域幅への固定前にパルス304、305の開始の時点607(図6)で、ファイバブラッグ格子114を通って送られる光のスペクトルを例示する概略図を示している。座標系700は光の波長を表わす水平座標軸701と、各波長での光強度を表わす垂直座標軸702とを具える。曲線703は測定された光のスペクトルを概略的に例示する。スペクトル703は約6ナノメートル又はそれ以上の比較的大きな帯域幅を有し、複数のピーク705ないし710を具えてもよく、その波長は内部レーザキャビティ121のモードに対応しうる。
【0087】
図7bは、時点607より遅い時点604でファイバブラッグ格子114を通って送られる光のスペクトル711を例示する概略図を示し、ここではスペクトル711はファイバブラッグ格子114の帯域幅に固定されている。スペクトル711は時点607で得られるスペクトル703の帯域幅704より小さな帯域幅712を有してもよいが、内部レーザキャビティ119のモードと、外部レーザキャビティ120のモードとからなる比較的広い複合的なモードフィールドを含んでもよい。更に、光強度はファイバブラッグ格子114の帯域幅を超えて比較的均一に分布してもよい。
【0088】
外部レーザキャビティ122中の光の往復時間が第1の光ファイバ113中の誘導ブリルアン散乱、あるいは他の実施形態においては別の非線形光学効果の蓄積時間より短くなるように、外部レーザキャビティ122が適合されてもよい。
【0089】
従って、レーザ光源100によって放射されるスペクトルの、ファイバブラッグ格子114の帯域幅への固定に導きうる、ファイバブラッグ格子114で反射される光と、ファイバブラッグ格子の帯域幅を超える比較的均一な密度分布との間での干渉は、非線形光学効果が第1の光ファイバ113中に生じる前に得られうる。スペクトルの固定及び比較的均一な光密度分布が一度得られると、誘導ブリルアン散乱の可能性はレーザ光源と比較して低減でき、半導体レーザ101の出力は第1の光ファイバ113中に直接的に結合される。スペクトルの固定が誘導ブリルアン散乱の蓄積時間前に得られるため、誘導ブリルアン散乱の発生の可能性が低減できる。
【0090】
外部レーザキャビティ122中の光の往復時間は、半導体レーザ101の可干渉時間より長くてもよい。従って、半導体レーザ101中にファイバブラッグ格子114によって反射される光は半導体レーザ101中で振動する、内部レーザキャビティのモードに対するノイズ源として作用し、一般的には、外部キャビティからのモードはスペクトル広幅化に寄与しうる。このことは、ファイバブラッグ格子114の帯域幅を超えて、ファイバブラッグ格子114を通って送られる光のスペクトルのより有効な分布を導きうる。
【0091】
外部レーザキャビティ122中の光の往復時間、及びこれによって更にスペクトル広幅化に寄与する外部レーザキャビティ120のモードの数は、外部レーザキャビティ122中の光の光路長を変えることによって制御してもよく、これは外部レーザキャビティ122の長さを変えることによって、例えば、半導体レーザ101とファイバブラッグ格子114との間の第2の光ファイバ112の一部の長さを変えることによってなされてもよい。外部レーザキャビティ122中の光の往復時間は例えば、半導体レーザ101とファイバブラッグ格子114との間の第2の光ファイバ112の一部の長さを第2の光ファイバ112中の光の速度によって、2つに分けることによって決定してもよい。
【0092】
いくつかの実施形態においては、ファイバブラッグ格子114によって送られる光のスペクトルをファイバブラッグ格子114の帯域幅に固定する時間を決定してもよく、外部レーザ共振器中の光の光路長は、誘導ブリルアン散乱の蓄積時間より短い値に固定する時間を調整するよう設定してもよい。
【0093】
これらの実施形態のうちのいくつかにおいては、スペクトルをファイバブラッグ格子114の帯域幅に固定する時間は、ファイバブラッグ格子を通って送られる、時間分解した光のスペクトルの測定を行うことによって決定してもよい。スペクトルのファイバブラッグ格子114の帯域幅への固定は、スペクトルの帯域幅をファイバブラッグ格子114の帯域幅と比較することによって同定してもよい。スペクトルの帯域幅は波長範囲を決定することによって得ることができ、ここでは所定のしきい値より大きな強度が測定される。一実施形態においては、スペクトルの帯域幅がファイバブラッグ格子114の帯域幅に等しい又はそれ未満である場合に、スペクトルは安定して固定されたと評価されうる。いくつかの実施形態においては、固定する時間は、半導体レーザ101とファイバブラッグ格子114との間の複数の距離のために測定してもよい。その後、誘導ブリルアン散乱の蓄積時間より短い固定時間を提供する、半導体レーザ101とファイバブラッグ格子114との間の距離を選択できる。
【0094】
他の実施形態においては、スペクトルをファイバブラッグ格子114の帯域幅に固定する時間は、理論的な計算によって決定してもよい。光と活性レーザ媒体104との間の干渉に対するモデル、ならびに内部レーザキャビティ121及び外部レーザキャビティ122の光の伝播のモデルは当該技術分野の当業者に既知である。
【0095】
上に詳述したように、ファイバブラッグ格子114の全幅半値帯域幅は、少なくとも250の外部レーザキャビティ122の縦モードを収容するように適合してもよい。式(3)によると、外部レーザキャビティ122のモード間の空間は外部レーザキャビティ122中の光の光路長に依存しうる。よって、例えば半導体レーザ101とファイバブラッグ格子114との間の第2の光ファイバ112の一部の長さを減少させることによって、外部レーザキャビティ122中の光路長が減少し、かつ、ファイバブラッグ格子114の全幅半値帯域幅が維持される場合、ファイバブラッグ格子の全幅半値帯域幅によって収容される外部レーザキャビティ122の縦モードの数は低減されうる。従って、外部レーザキャビティ122中の比較的短い光路が提供される実施形態においては、ファイバブラッグ格子114は比較的大きな全幅半値帯域幅を有して、所望の数の外部レーザキャビティ122の縦モードを収容できる。逆に、外部レーザキャビティ122中に比較的長い光路が提供される実施形態においては、ファイバブラッグ格子は比較的狭い全幅半値帯域幅を有しうる。
【0096】
いくつかの実施形態においては、ファイバブラッグ格子114は約0.5ナノメートル又はそれ以上の全幅半値帯域幅、約0.5ナノメートルないし約5ナノメートルの範囲の全幅半値帯域幅、及び/又は約2ナノメートルの全幅半値帯域幅を有してもよい。外部レーザキャビティ122中の光の往復時間が約20ナノ秒又はそれ未満の値、約10ナノ秒又はそれ未満の値、約5ナノ秒又はそれ未満の値、及び/又は約1ナノ秒又はそれ未満の値を有するように、外部レーザキャビティ122を適合してもよい。半導体レーザ101とファイバブラッグ格子との間の第2の光ファイバの一部の長さは、約10センチメートルないし約2メートルの範囲の値、約10センチメートルないし約1メートルの範囲の値、約10センチメートルないし約50センチメートルの値の範囲、約20センチメートルないし約50センチメートルの値の範囲、約25センチメートルの値、及び/又は約75センチメートルの値を有してもよい。
【0097】
図8は本発明の別の実施形態によるレーザ光源800の概略図を示す。便宜のために、図1及び8において、同様の引用番号が同様の要素を示すのに用いられる。以下で別に示さない限りにおいては、レーザ光源800の特徴は図1によって上述したレーザ光源100に対応し、レーザ光源800を形成し、動作させる方法は、レーザ光源100を形成し、動作させる方法に対応しうる。
【0098】
レーザ光源800は長さ119を有する内部レーザキャビティ121を規定する、前面ファセット102と後面ファセット103とを有する半導体レーザ101と、レーザ活性媒体104と、電源107に接続される電極105、106と有し、その動作は制御ユニット108によって制御してもよい。光センサ109は、後面ファセット103を通して送られる光強度を測定するために半導体レーザ101の後面ファセット103の近くに提供してもよい。光センサ109は制御ユニット108に接続してもよく、光センサ109の出力は制御ユニット108によって用いられて、半導体レーザ101に供給される電圧及び電流のアンペア数のうちの少なくとも1つを制御してもよい。
【0099】
レーザ光源800は更に、半導体レーザ101の後面ファセット103、及び波長選択性の光反射器が外部レーザキャビティ822を形成するように配置される部分伝達型で波長選択性の光反射器813を具えてもよい。波長選択性の光反射器813は半導体レーザ101の後面ファセットからの距離120に提供してもよい。従って、外部レーザ共振器中の光の光路長は距離120にほぼ等しくてもよい。
【0100】
レンズ812を半導体レーザ101と波長選択性の光反射器813との間に提供して、半導体レーザ101によって放射される光を視準してもよく、波長選択性の光反射器813によって反射される光を半導体レーザ101内に集束してもよい。
【0101】
レーザ光源800は更に、波長選択性の光反射器813によって送られる光を受けるように配置される光ファイバ810を具えてもよい。レンズ814を波長選択性の光反射器813と光ファイバ810との間に提供して、波長選択性の光反射器813によって送られる光を光ファイバ810内へ集束してもよい。更に、又はその代替的に、光ファイバ810はレンズ形状面811を有する末端部を具えてもよい。レンズ814及び/又はレンズ形状面812は、波長選択性の光反射器813によって送られる光の、光ファイバ810内への結合効率を改善するのを助けうる。
【0102】
光ファイバ810の特性は図1に示したレーザ光源100中の第1の光ファイバ115と同様であってもよい。いくつかの実施形態においては、光ファイバ810は光ファイバ増幅器115と同様の光ファイバ増幅器を具えてもよい。このような実施形態においては、レーザ光源800は更に、ポンプ光源116と同様のポンプ光源と、ポンプ光源によって放射される光を光ファイバ810内に結合するための結合エレメント118と、ポンプ光源と結合エレメントとを接続する、光ファイバ117と同様の光ファイバとを具えてもよい。
【0103】
いくつかの実施形態においては、波長選択性の光反射器813は当該技術分野の当業者に既知の型の二色性ミラーを具えてもよい。当該技術分野の当業者に既知のように、二色性ミラーは干渉の原理を利用して動作する。交互の光学コーティング層がガラス基板上に蓄積され、特定波長の光を選択的に増強し、他の波長と干渉させる。その層は真空中で行われる蓄積プロセスを用いて蓄積してもよい。層の厚さと数とを制御することによって、二色性ミラーは波長範囲内の光を反射し、波長範囲外の波長を有する光を実質的に完全に送るように適合できる。しかしながら、本発明は、波長選択性の光反射器813が二色性ミラーを具える実施形態に限定されない。他の実施形態においては、波長選択性の光反射器831は、所望の波長範囲内の光が半導体レーザの方に部分反射されるように、リトロー配置中に配置される部分伝達型の回折格子を具えてもよい。
【0104】
部分伝達型で波長選択性の光反射器813の反射率及び全幅半値帯域幅は、上述のファイバブラッグ格子114(図1)に対応してもよい。よって、レーザ光源800においては、波長選択性の反射器813によって送られる光のスペクトルの、波長選択性の光反射器813の帯域幅への固定、波長選択性の光反射器813の帯域幅を超える比較的均一な光密度分布、及び波長チャープはレーザ光源100と同様に得られうる。都合の良いことにレーザ光源800においては、外部レーザキャビティ822中の光の往復時間は、波長選択性の光反射器813と半導体レーザ101との間の距離を変えることによって、レーザ光源800の動作中に都合の良い方法で変えることができる。従って、レーザ光源800はフレキシブルな方法で特定用途の要求に適合できる。
【0105】
一実施形態においては、レーザ光源100(図1)及び/又はレーザ光源800(図8)はレーザ加工用途で用いてもよく、レーザ光源100、800によって生成される光は、図1で上述した光ファイバ増幅器115のような光ファイバ増幅器中の選択的な増幅後に、ワークピースに向けられて、ワークピースのレーザ溶接、ワークピースのレーザマーキング、及びワークピースのレーザ切断のうちの少なくとも1つを行ってもよい。
【0106】
本発明の更なる変更及び変形は本記載を考慮すると当該技術分野の当業者に明らかである。従って、本記載は例示としてのみに解釈すべきであり、当該技術分野の当業者に本発明を行う一般的な方法を教示する目的のためにある。本明細書中に示され、記載された本発明の形態は、現行の好ましい実施形態として解釈すべきであると理解されたい。


【特許請求の範囲】
【請求項1】
レーザ光源であって、
パルス動作用に適合され、前面反射エレメントと後面反射エレメントとを具え、前記前面反射エレメント及び前記後面反射エレメントが内部レーザキャビティを規定し、当該内部レーザキャビティがレーザ活性媒体を具える半導体レーザと、
前記レーザ活性媒体の利得帯域幅内にピーク反射率を有する波長選択性の光反射器であって、当該波長選択性の光反射器及び前記後面反射エレメントが外部レーザキャビティを規定する、部分伝達型で波長選択性の光反射器と、
を具え、前記外部レーザキャビティ中の光の往復時間が約20ナノ秒又はそれ未満であり、前記波長選択性の光反射器の全幅半値帯域幅が、少なくとも5の前記内部レーザキャビティの縦モードと、少なくとも20の前記外部レーザキャビティの縦モードを収容するように適合されることを特徴とするレーザ光源。
【請求項2】
請求項1に記載のレーザ光源が、パルス電流を前記半導体レーザに供給するように構成される電源を更に具えることを特徴とするレーザ光源。
【請求項3】
請求項1又は2に記載のレーザ光源が、前記半導体レーザによって放射される光を受けるように配置される光ファイバを更に具え、前記波長選択性の光反射器が前記光ファイバ中に形成されるファイバブラッグ格子を具えることを特徴とするレーザ光源。
【請求項4】
請求項1ないし3のいずれかに記載のレーザ光源において、前記外部レーザキャビティ中の前記光の往復時間が、約10ナノ秒、約5ナノ秒、及び約1ナノ秒のうちの少なくとも1つより短いことを特徴とするレーザ光源。
【請求項5】
請求項1ないし4のいずれかに記載のレーザ光源において、前記波長選択性の光反射器の前記全幅半値帯域幅が、少なくとも25の前記内部レーザキャビティの縦モードと、少なくとも250の前記外部レーザキャビティの縦モードとを収容するように適合されることを特徴とするレーザ光源。
【請求項6】
請求項1ないし5のいずれかに記載のレーザ光源において、前記前面反射エレメントの反射率が約0.01%及び約0.1%のうちの少なくとも1つと等しい、又はそれより大きいことを特徴とするレーザ光源。
【請求項7】
請求項1ないし5のいずれかに記載のレーザ光源において、前記前面反射エレメントの反射率が約0.01%及び約1%のうちの少なくとも1つと等しい、又はそれより小さいことを特徴とするレーザ光源。
【請求項8】
請求項1ないし7のいずれかに記載のレーザ光源において、前記半導体レーザが、前記外部レーザキャビティ中の前記光の往復時間より短い可干渉時間を有する光を放射するように適合されることを特徴とするレーザ光源。
【請求項9】
請求項2に記載のレーザ光源において、前記電源が、約3ナノ秒ないし約1マイクロ秒の範囲のパルス持続時間を有する前記パルス電流を供給するように適合されることを特徴とするレーザ光源。
【請求項10】
請求項9に記載のレーザ光源において、前記パルス持続時間が約5ナノ秒ないし約500ナノ秒の範囲にあることを特徴とするレーザ光源。
【請求項11】
レーザ光源であって、
パルス動作用に適合され、前面反射エレメントと後面反射エレメントとを具え、前記前面反射エレメント及び前記後面反射エレメントが内部レーザキャビティを規定し、当該内部レーザキャビティがレーザ活性媒体を具える半導体レーザと、
前記レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器であって、当該波長選択性の光反射器及び前記後面反射エレメントが外部レーザキャビティを規定する、部分伝達型で波長選択性の光反射器と、
前記波長選択性の光反射器によって送られる光を受けるように配置され、非線形光学効果の蓄積時間を有する光ファイバ増幅器と、
を具え、前記外部レーザキャビティが前記非線形光学効果の前記蓄積時間よりも短い、前記外部レーザキャビティ中の光の往復時間を提供するように構成され、前記波長選択性の光反射器の全幅半値帯域幅が、少なくとも5の前記内部レーザキャビティの縦モードと、少なくとも20の前記外部レーザキャビティの縦モードとを収容するように適合されることを特徴とするレーザ光源。
【請求項12】
請求項11に記載のレーザ光源が、パルス電流を前記半導体レーザに供給するように構成される電源を更に具えることを特徴とするレーザ光源。
【請求項13】
請求項11又は12に記載のレーザ光源において、前記非線形光学効果が誘導ブリルアン散乱を含むことを特徴とするレーザ光源。
【請求項14】
請求項11ないし13のいずれかに記載のレーザ光源が、前記半導体レーザと前記光ファイバ増幅器とを接続する光ファイバを更に具え、前記波長選択性の光反射器が前記光ファイバ中に形成されるファイバブラッグ格子を具えることを特徴とするレーザ光源。
【請求項15】
第1の光ファイバ中の非線形光学効果の蓄積時間を決定するステップと、
前面反射エレメントと後面反射エレメントとを具える半導体レーザを提供するステップであって、前記前面反射エレメント及び前記後面反射エレメントが内部レーザキャビティを規定し、当該内部レーザキャビティがレーザ活性媒体を具えるステップと、
当該レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器を提供するステップであって、当該波長選択性の光反射器が、当該波長選択性の光反射器と前記半導体レーザの前記後面反射エレメントとによって規定される外部レーザキャビティを形成するように配置されるステップと、
電流を前記半導体レーザに供給する際に、前記半導体レーザによって放射される光のスペクトルを、前記波長選択性の光反射器の帯域幅に固定する時間を決定するステップと、
前記非線形光学効果の前記蓄積時間より短い値に固定する前記時間を調整するために、前記外部レーザ共振器中の光の光路長を設定するステップと、
前記波長選択性の光反射器によって送られる光を前記第1の光ファイバに供給するステップと、
を具えることを特徴とする方法。
【請求項16】
請求項15に記載の方法において、前記波長選択性の光反射器を提供するステップが、前記半導体レーザによって放射される光をファイバブラッグ格子を含む第2の光ファイバに結合するステップを具え、前記第2の光ファイバが前記半導体レーザと前記第1の光ファイバとの間に提供されることを特徴とする方法。
【請求項17】
請求項16に記載の方法において、前記外部レーザキャビティ中の光の前記光路長を設定するステップが、前記半導体レーザと前記ファイバブラッグ格子との間で前記第2の光ファイバの一部の長さを選択するステップを具えることを特徴とする方法。
【請求項18】
請求項15ないし17のいずれかに記載の方法が、パルス電流を前記半導体レーザに供給するステップを更に具えることを特徴とする方法。
【請求項19】
請求項18に記載の方法において、前記パルス電流が約3ナノ秒ないし約1マイクロ秒の範囲のパルス持続時間を具えることを特徴とする方法。
【請求項20】
請求項15ないし19のいずれかに記載の方法において、前記第1の光ファイバが光ファイバ増幅器を具えることを特徴とする方法。
【請求項21】
請求項20に記載の方法がワークピースに対し、前記波長選択性の光反射器によって送られる前記光に応じて、前記ワークピースのレーザ溶接、前記ワークピースのレーザマーキング、及び前記ワークピースのレーザ切断のうちの少なくとも1つを行うように、前記光ファイバ増幅器によって放射される光を向けるステップを更に具えることを特徴とする方法。
【請求項22】
前面反射エレメントと後面反射エレメントとを具える半導体レーザを提供するステップであって、前記前面反射エレメント及び前記後面反射エレメントが内部レーザキャビティを規定し、当該内部レーザキャビティがレーザ活性媒体を具えるステップと、
当該レーザ活性媒体の利得帯域幅内にピーク反射率を有する部分伝達型で波長選択性の光反射器を提供するステップであって、当該波長選択性の光反射器及び前記後面反射エレメントが外部レーザキャビティを規定するステップと、
電流を前記半導体レーザに供給する際に、前記波長選択性の光反射器によって送られる光の波長チャープの持続時間を決定するステップと、
パルス電流を前記半導体レーザに供給するステップと、
を具え、前記パルス電流のパルス時間が、前記波長選択性の光反射器によって送られる前記光を受ける光ファイバ中の前記波長チャープの持続時間及び非線形光学効果の蓄積時間のうちの少なくとも1つに基づいて選択されることを特徴とする方法。
【請求項23】
請求項22に記載の方法において、前記部分伝達型で波長選択性の反射器を提供するステップが、前記半導体レーザによって放射される光をファイバブラッグ格子を含む光ファイバに結合するステップを具えることを特徴とする方法。
【請求項24】
請求項22又は23に記載の方法が、前記波長選択性の反射器によって送られる光を光ファイバ増幅器に供給するステップを更に具えることを特徴とする方法。
【請求項25】
請求項24に記載の方法がワークピースに対し、前記波長選択性の光反射器によって送られる前記光に応じて、前記ワークピースのレーザ溶接、前記ワークピースのレーザマーキング、及び前記ワークピースのレーザ切断のうちの少なくとも1つを行うように、前記光ファイバ増幅器によって放射される光を向けるステップを更に具えることを特徴とする方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8】
image rotate


【公表番号】特表2011−501423(P2011−501423A)
【公表日】平成23年1月6日(2011.1.6)
【国際特許分類】
【出願番号】特願2010−529286(P2010−529286)
【出願日】平成20年10月15日(2008.10.15)
【国際出願番号】PCT/EP2008/008735
【国際公開番号】WO2009/049880
【国際公開日】平成21年4月23日(2009.4.23)
【出願人】(510104621)オクラーロ テクノロジー ピーエルシー. (1)
【氏名又は名称原語表記】OCLARO TECHNOLOGY PLC.
【Fターム(参考)】