説明

対象物の照明方法及び照明装置を有する手術顕微鏡

【課題】選択された領域、とりわけ一次光による対象物照明から二次光が生じる領域を保護ないし減光する、とりわけ眼科用手術顕微鏡を用いた眼科検査ないし手術の際に使用される「赤色反射」照明を行う際に黄斑を有効に保護する方法及び手術顕微鏡。
【解決手段】とりわけ手術顕微鏡等の顕微鏡(1)によって結像されるべき対象物(16)を照明する方法において、前記対象物(16)は、第1のスペクトル強度分布を有する一次光と、第2のスペクトル強度分布を有する二次光によって照明され、該二次光は該一次光の散乱から生じ、該二次光の強度は少なくとも1つの波長に関して測定され、測定された強度又は該測定された強度から導出される量が所定の閾値を上回るか又は下回ると、前記二次光のスペクトル強度分布の変化を示す信号が生成されることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、とりわけ手術顕微鏡等の顕微鏡によって結像されるべき対象物の照明方法に関し、特に、対象物が第1のスペクトル強度分布を有する一次光と、第2のスペクトル強度分布を有する二次光によって照明され、該二次光が該一次光の散乱から生じる、照明方法に関する。本発明は、更に、結像されるべき対象物を照明するための一次光を生成するための照明装置を有する手術顕微鏡に関する。
【背景技術】
【0002】
本発明に関連する以下の説明は、手術目的のために網膜から反射される光が使用される眼科用手術顕微鏡において「赤色反射」照明と一般的に称される特殊例に関するが、本発明をこれに限定することは意図していない。網膜(Retina)で反射された光は赤色スペクトル領域に最大(極大)強度(複数)(Intensitartsmaxima)を有するため、これは「赤色反射」(英語の“Red Reflex”)と一般的に称される。この応用例では、検査されるべき(被検)対象物(水晶体から角膜までの前眼房(vorderer Augenraum/anterior chamber of eye))は、第1のスペクトル光強度分布を有する一次光によって照明される。眼の網膜から反射された光は、対象物に向かって後方散乱ないし反射され、したがって、いわばバックグラウンド照明(Hintergrundbeleuchtung)ないし反帰照明(retroillumination)として、下方(後方ないし裏側)から対象物を照明する。厳密に物理学的に考察すると、一次光は、網膜において、反射されるのではなく、立体角依存性の強度プロフィールをもって後方散乱される。説明を簡単にするために、本願の枠内において、用語「散乱」と「反射」は、とりわけここで論議する応用例においては、同義として取り扱うものとする。
【0003】
とりわけヒトの生来の水晶体(レンズ)が人工水晶体によって置換される白内障手術では、生来の水晶体の除去後に残存する物質(組織の小片)を赤色バックグラウンド照明(反帰照明)のもとで容易に検知するために、及び、該残存物質を容易に除去するために、「赤色反射」が使用される。「赤色反射」は、照明角が小さいほどいっそう顕著になるが、これは、照明ビーム路が手術顕微鏡の主対物レンズを介して延在すること及び主対物レンズの軸が基準軸と見なされるべきことを前提としている。照明角が−2°〜+2°の範囲にあれば、良好な「赤色反射」照明が保証される。
【0004】
ここに説明する応用例に加えて、本発明はまた、対象物が一次光と二次光によって照明されかつ該二次光が該一次光の散乱又は反射から生じる限り、顕微鏡分野にも一般的に適用可能である。
【0005】
「赤色反射」照明と関連して眼科で使用される照明角は小さく、しかも最近の発展に応じて(真正な0°照明にまで)ますます小さくなっているため、患者の眼の運動により患者の黄斑が直接的にかつ危険なほど長時間にわたって照射されることがますます起こるようになっている。黄斑(Makula)(「イエロースポット(gelber Fleck)」とも称される)は、視細胞がもっとも密集しているヒト網膜の領域であり、もっとも鋭敏な視覚の部位を含む。黄斑の直接照射及びそれから生じる患者の眼に対する著しい危険を排除することが不可欠である。網膜の照射時間の長期化が、とりわけ熱的作用及び光毒性作用の観点から全面的に回避されるべきことは自明である。
【0006】
この分野では、Zeiss社の手術顕微鏡OPMI Lumera Tが技術水準から知られている。Carl Zeiss Surgical GmbHの対応する2007年パンフレットの第4頁には、顕微鏡が患者の眼の上方に配置されて照明装置がスイッチオンされる場合に明るくかつ安定的に現れる「赤色反射」が説明されている。しかしながら、実際には、対応する写真において認められるのは黄色の「赤色反射」である。このことは場合によっては黄斑が照明されていることを示唆している可能性がある。
【0007】
Carl Zeiss Surgical GmbHの上記製品に関する技術的説明は、US 2004/0227989A1(特許文献1)に記載されている。この文献には、照明が顕微鏡の主対物レンズを介して導かれる眼科用手術顕微鏡が紹介されている。照明装置は、本質的に、光ファイバ(ファイバ照明)、後置の(下流に配置される)コリメータ及び偏向ミラーからなり、偏向ミラーはコリメータによって集束されかつ平行に揃えられた(コリメートされた)光を顕微鏡の主対物レンズを介して対象面に導く。対象面は眼の前部を貫通して延在する。ステレオ顕微鏡の観察チャネルにより近接して配置された第2の偏向ミラーは、照明光の一部を、主観察ビーム路に対して−2°〜+2°の間の角度で主対物レンズを介して対象面に導くが、この光は「赤色反射」を生成するために使用される。この照明ビーム路は、網膜で散乱され、立体角に依存するプロフィールで後方に反射されることにより、対象面の赤色バックグラウンド照明(反帰照明)が得られる。この構造では、とりわけ眼が運動する場合、「赤色反射」を十分な強度レベルで維持することができないので、この刊行物では、手術顕微鏡のズームシステム(複数)によって規定される観察チャネル(複数)の周囲に複数のLED(発光ダイオード)からなる照明リングを配することが提案されている。各LEDは、眼を熱的ストレス(負荷)から保護するために、網膜によってほぼ完全に後方反射ないし後方散乱される赤色スペクトル領域にある光を放射する。別の例では、LCD(液晶ディスプレイ)アレイがコリメータ及び白色光源に後置される(下流に配置される)従来の照明装置が使用される。LCDアレイは、中央領域では赤色光のみを透過させ、他方、環状の外側領域では白色光を透過させる。これにより、外側の白色照明光錐(コーン:Beleuchtungskegel)によって包囲される内側の赤色照明光錐(コーン)が生成される。したがって、この刊行物による保護措置(手段)は、網膜を熱的ダメージから保護するために、適切な(赤色の)スペクトル領域による網膜の照射に限定されている。
【0008】
同じ分野に関する本出願人のUS 6,914,721 B2(特許文献2)では、照明ビーム路を顕微鏡の主対物レンズの2つの異なる領域に偏向するプリズム組合せ体(コンビネーション)によって、被検眼の斜照明と0°照明が実現されている。この場合、斜照明は本来の意味での対象物照明のために使用され、他方、0°照明は「赤色反射」を生成するために使用される。保護措置(手段)として、シフト機構が設けられているが、このシフト機構は、プリズム組合せ体を主対物レンズの光軸からこの光軸に対して垂直の方向に遠ざける。シフトされた状態では、2つの斜めの照明路が形成されるため、「赤色反射」は生じ得ない。中央位置(「赤色反射」あり)からシフト位置(「赤色反射」なし)へのプリズム組合せ体のシフトは、患者眼の網膜を保護するために、作動距離(Arbeitsabstand)に依存して(応じて)及び/又は照明強度に依存して(に応じて)行われる。
【0009】
従って、この刊行物の教示によれば、所定の作動距離を下回るか又は所定の照明光強度を上回ると、保護措置(手段)として、「赤色反射」がプリズム組合体のシフトによって完全に阻止される。
【0010】
US 4,715,704(特許文献3)も同様に眼科用手術顕微鏡に関するものであるが、ここでは、眼の網膜を過大な照射負荷(ストレス)から保護するために、網膜保護(視野)絞り(Retina-Schutzblende)が設けられている。この網膜保護絞りは、照明装置内の、対象面と共役の位置に挿入可能であるが、対象面は眼の前部(例えば角膜)に位置する。網膜保護絞りが挿入されることにより、中心部の減光ないし遮蔽(eine zentrale Abschattung)が達成されるが、この場合、照明されない部分の直径は眼の瞳孔の直径に相当する。これにより、網膜はさらなる照射から保護される。
【0011】
上記の刊行物では、いずれも、網膜(Retina)の照明中における黄斑(Makula)の照明の回避に関する問題は論議されていない。
【0012】
別の関連において、DE 103 41 521 A1(特許文献4)から、観察対象物に適合される対象物照明を決定するための方法、即ち、顕微鏡検査の際に健康(正常)組織と悪性組織との間のコントラストを増強するための方法が知られている。この場合、悪性組織は健康組織に対し可視スペクトル領域において異なる散乱特性を示すという事実に基づいている。この刊行物の教示によれば、散乱特性における上記の相違がもっとも顕著に現れる波長領域が、スペクトル分析によって求められる。後続する対象物検査は、この求められた波長領域にある照明によって行われる。
【0013】
更に、DE 103 41 285A1(特許文献5)に、同様に、分光計システムを有する手術顕微鏡が提案されている。この分光計システムには、散乱された照明光が手術領域から供給され、この照明光がスペクトル的に評価される。散乱された照明光のスペクトル成分から、検査された手術領域に存在する組織の種類(健康又は悪性)を推測することができる。更に、手術領域は、傾動可能な偏向要素によっていわば走査される。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】US 2004/0227989
【特許文献2】US 6,914,721 B2
【特許文献3】US 4,715,704
【特許文献4】DE 103 41 521 A1
【特許文献5】DE 103 41 285 A1
【特許文献6】DE102 55 960 A1
【特許文献7】US 7,206,127 B2
【非特許文献】
【0015】
【非特許文献1】Carl Zeiss Surgical GmbH、"OPMI Lumera(R) T"のパンフレット(2007年)の第4頁
【非特許文献2】M. Hammer, D. Schweitzer, L. Leistritz:"Bestimmung der Konzentrationsverteilung des Makulapigmentes aus Reflektions- und Fluoreszenzaufnahmen", phthalmologe 2003-100; 611-617
【非特許文献3】David Sliney und Myron Wolbarsht:"Safety with Lasers and Other Optical Sources", Plenum Press, 1980, S.89
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の課題は、とりわけ眼科用手術顕微鏡の上述の応用例において「赤色反射」照明を行う際に黄斑を有効に保護すること、より一般的には選択された領域(該領域において一次光による対象物照明から二次光が生じる)を保護ないし減光(ないし遮光)することである。
【課題を解決するための手段】
【0017】
上記の課題に鑑み、本発明の第1の視点により、とりわけ手術顕微鏡等の顕微鏡によって結像されるべき対象物を照明する方法が提供される。この方法において、
前記対象物は、第1のスペクトル強度分布を有する一次光と、第2のスペクトル強度分布を有する二次光によって照明され、該二次光は該一次光の散乱から生じ、該二次光の強度は少なくとも1つの波長に関して測定され、測定された強度又は該測定された強度から導出される量が所定の閾値を上回るか又は下回ると、前記二次光のスペクトル強度分布の変化を示す(前記二次光のスペクトル強度分布が変化したことを示す)信号が生成されることを特徴とする(形態1・第1基本構成)。
更に、上記の課題に鑑み、とりわけ上記の方法を実際に使用するために、結像されるべき対象物を照明するための一次光のための照明装置を有し、該対象物が更に該一次光の散乱から生じる二次光によって照明される手術顕微鏡が提供される。
この手術顕微鏡は、前記二次光の少なくとも1つの波長に関して光強度を測定するための測定装置と、測定された光強度を閾値比較によって評価するための評価装置とを有し、当該比較の結果に依存して(に応じて)前記二次光のスペクトル強度分布の変化を示す(前記二次光のスペクトル強度分布が変化したことを示す)信号が生成可能に構成されることを特徴とする(形態17・第2基本構成)。
【発明の効果】
【0018】
本発明の方法に係る独立請求項1及び装置に係る独立請求項17により、上記課題に対応する効果が夫々達成される。即ち、本発明の方法及び装置は、選択された領域、とりわけ一次光による対象物照明から二次光が生じる領域を保護ないし減光(ないし遮光)すること、更に、とりわけ眼科用手術顕微鏡を用いた眼科検査ないし手術の際に使用される「赤色反射」照明を行う際に黄斑を有効に保護することができる。
更に、各従属請求項により夫々付加的な効果が達成される。
【発明を実施するための形態】
【0019】
以下に、本発明の好ましい実施の形態を示す。
(形態1) 上掲。
(形態2) 上記形態1の方法において、一次光として、白色光が使用されることが好ましい。
(形態3) 上記形態1又は2の方法において、対象物として、眼の前部、とりわけ水晶体嚢(Linsenkapselsack/capsular bag)の後部(水晶体後嚢)が使用されることが好ましい。
(形態4) 上記形態3の方法において、二次光として、眼の網膜から反射ないし後方散乱される光が使用されることが好ましい。
(形態5) 上記形態1〜4の何れかの方法において、強度の測定のために、赤色スペクトル領域内の1つの波長又は1つの波長領域が使用されることが好ましい。
(形態6) 上記形態1〜4の何れかの方法において、強度の測定のために、黄色スペクトル領域内の1つの波長又は1つの波長領域が使用されることが好ましい。
(形態7) 上記形態1〜6の何れかの方法において、強度の測定のために、フィルタを有するセンサが使用されることが好ましい。
(形態8) 上記形態1〜7の何れかの方法において、強度の測定のために、スペクトル分析が実行されることが好ましい。
(形態9) 上記形態1〜8の何れかの方法において、前記二次光のスペクトル強度分布の変化を示す(前記二次光のスペクトル強度分布が変化したことを示す)信号が、保護機構を作動させるために使用されることが好ましい。
(形態10) 上記形態9の方法において、前記保護機構は、保護絞り(視野絞り:Schutzblende)、シャッタ又は保護フィルタの作動、レンズ(複数)及び/又はプリズム(複数)又は偏向素子(複数)の(位置及び/又は配向等の)調整を含む群から選択され、これらの光学素子は前記一次光の伝播方向に配置されているか又は相応の作動に際して前記一次光の伝播方向に配置可能に構成されていることが好ましい。
(形態11) 上記形態9又は10の方法において、前記保護機構は、前記一次光の強度の低減、及びとりわけ(視野への)データの差込入射(スーパーインポーズ)による、音響的(可聴)及び/又は視覚的(可視)信号の生成を含む群から選択されることが好ましい。
(形態12) 第2のスペクトル強度分布を有する二次光を生成するために、第1の領域が第1のスペクトル強度分布を有する一次光によって照明され、第2の領域を保護するために、該第2のスペクトル強度分布とは異なる第3のスペクトル強度分布を有する二次光が生成され、閾値比較によって生成される信号が、前記第2の領域をさらなる照明から保護する保護機構を作動させるために使用されることを特徴とする上記形態1〜11のいずれかの方法の使用も好ましい。
(形態13) 上記形態12の使用において、前記二次光の前記第2のスペクトル強度分布及び前記第3のスペクトル強度分布に異なる最大(極大)強度(複数)(Intensitaetsmaxima)が存在し、該最大(極大)強度(の1つ)に割り当てられた波長が、強度の測定のために使用されることが好ましい。
(形態14) 上記形態13の使用において、前記保護されるべき第2の領域からの前記二次光の前記第3のスペクトル強度分布の(1つの)最大(極大)強度が、強度の測定のために使用され、所定の閾値を越える(上回る)ことにより、保護機構を作動させるための信号が生成されることが好ましい。
(形態15) 上記形態13の使用において、前記第1の領域からの前記二次光の前記第2のスペクトル強度分布の(1つの)最大(極大)強度が、強度の測定のために使用され、所定の閾値を下回ることにより、保護機構を作動させるための信号が生成されることが好ましい。
(形態16) 上記形態12〜15の何れかの使用において、前記保護されるべき第2の領域は眼の黄斑(Makula)であり、前記第1の領域は残余の網膜(網膜の黄斑以外の部分)であることが好ましい。
(形態17) 上掲。
(形態18) 上記形態17の手術顕微鏡において、前記信号に依存して(応じて)被照明領域(複数)のための保護機構を作動させるための保護装置を備えることが好ましい。
(形態19) 上記形態18の手術顕微鏡において、前記保護機構は、レンズ(複数)及び/又はプリズム(複数)を(位置及び/又は配向等に関して)調整するための及び/又は保護フィルタ又はシャッタを操作するためのコントロールユニットを含むことが好ましい。
(形態20) 上記形態18又は19の手術顕微鏡において、前記保護機構は、光源調整器及び/又は光源制御器を含むことが好ましい。
(形態21) 上記形態18〜20の何れかの手術顕微鏡において、前記保護機構は、音響的(可聴)及び/又は視覚的(可視)信号を生成するための保護信号装置を含むことが好ましい。
(形態22) 上記形態17〜21の何れかの手術顕微鏡において、前記光強度の測定するための前記測定装置は、前記測定されるべき波長を選択するための前置(上流側に配された)フィルタを有する光強度(測定)用センサを含むことが好ましい。
【0020】
本発明によれば、対象物の直接照明に用いられる一次光の散乱から生じる二次光の強度が、少なくとも1つの波長(又は1つの波長領域)に関して測定され、この測定された強度(「測定強度」)(又は該測定強度から導出された量)が所定の閾値を上回ると(又は下回ると)、二次光のスペクトル強度分布の変化、従って、二次光が散乱によって生成される領域の変化(が生じたこと)を示す(表す)信号が生成される。強度が(所定の閾値を)上回ることが検出されるか或いは下回ることが検出されるかは、所望の領域に由来する(から生じる)二次光のスペクトル領域における上記測定された波長(又は波長領域)の位置に依存する(に応じて決まる)。例えば、測定された波長が、所望の(保護される必要のない)領域から生じる二次光の主スペクトル領域(即ち高強度スペクトル領域)にある場合(即ち「赤色反射」が所望される場合に赤色の波長が検出される場合)、所定の閾値を下回ることは、二次光の主スペクトル領域即ちこの光が生じる照明された領域がシフトしたことを示すことができる。他方、不所望の(保護されるべき)領域からの二次光に割り当てることのできる波長(この場合、例えば黄色光)が検出される場合、所定の閾値を上回ることは、まさしくこの不所望の領域が照明されていることを示すことができる。
【0021】
一次光によって照明され、散乱によって二次光が生成される領域の上記の変化は、一方では、この領域における運動によって又は照明の方向の変化によって引き起こされることができる。眼科用手術顕微鏡における「赤色反射」照明に関する上記の場合、このような変化は、とりわけ眼の運動する際に生じる。例えば眼が回転すると、その結果、黄斑が照明され得る。この場合、「赤色反射(Red Reflex)」ではなく「黄色反射(Yellow Reflex)」が生じる。これに関連して、散乱によって対象面に後方反射される光のスペクトル成分に変化が生じる。本発明により、この変化は、二次光の強度が少なくとも1つの波長において測定されることによって検出される。これに適する方法の例として、以下の2つの方法が考えられる。一方では、通常の場合(例えば網膜照明の場合)に(複数の)最大(極大)強度(Intensitaetsmaxima)が存在する(赤色スペクトル領域の)波長を考慮することができる。二次光が生じる空間領域の変化がスペクトル成分の変化を引き起こす場合(例えば黄斑が網膜の残りの(黄斑以外の)領域の代わりに照明される場合)、この事実(現象)は、(赤色スペクトル領域において)選択された波長での強度が所定の閾値を下回ることによって、検出されることができる。他方では、二次光が生じる保護されるべき領域が1つの最大(極大)強度を有する(1つの)波長領域に(この例では黄色スペクトル領域に)、測定されるべき波長を設定することもできる。この種の領域に移行する場合、(黄色スペクトル領域にある)該選択された波長での光の強度は、所定の閾値を上回ることになろう。上記の何れの場合において、本発明によれば、二次光のスペクトル強度分布の変化(が生じたこと)を、即ち、保護される必要のない領域から二次光が生じる保護されるべき領域への不所望の移行(が生じたこと)を示す信号が生成される。
【0022】
黄色スペクトル領域における上記の強度測定を行う場合、本発明の方法は、(加齢)黄斑変性(Makuladegeneration)の確認(検出)にも使用可能である。検眼鏡検査では黄斑(Makulagelb)として視認され得るキサントフィルは、青色スペクトル領域において吸収を行う色素であるが、この色素は、カロチノイド類のルテイン及びゼアキサンチンを含んで構成され、かつ、光受容体に存在する。キサントフィルは、一方では短波長の高エネルギービームを吸収することによって、他方ではフリーラジカルに結合するその性質によって、黄斑を保護する。したがって、黄斑中のキサントフィルの濃度が小さいことは、加齢黄斑変性症(AMD)に関する可能な危険因子と見なされ得る(これについては、M. Hammer, D. Schweitzer, L. Leistritz:“Bestimmung der Konzentrationsverteilung des Makulapigmentes aus Reflektions- und Fluoreszenzaufnahmen(反射及び蛍光撮像画像からの黄斑色素の濃度分布の決定)”, Ophthalmologe 2003-100; 611-617 参照)。したがって、本発明の方法による強度測定が黄斑の黄色スペクトル領域で実行される際に、測定された強度(「測定強度」)値は健康な黄斑の強度値と比較されることができる。測定強度値が健康な黄斑に対応する強度値より小さいとすれば、それから黄斑変性を推測することができる。従って、この場合、黄斑の黄色スペクトル領域における測定強度が所定の閾値を下回れば、二次光のスペクトル強度分布の、この場合は病的な黄斑変性により生じた変化を示す(表す)信号が生成されることになろう。更に、この場合も同様に、黄斑反射のより小さい強度に依存して(に応じて)予め定められた更なる閾値の上回りが(変性的に病化した)黄斑が照明されたことを示す(ものとする)ことにより、本発明による方法はさらに(病気により変化した)黄斑の保護のために使用することができる。
【0023】
結像されるべき対象物を照明するための一次光を生成する照明装置を有し、該対象物が該一次光の散乱から生じる二次光によっても照明される本発明の手術顕微鏡は、該一次光の散乱から生じる二次光の少なくとも1つの波長(又は1つの波長領域)に関する光の強度を測定するための測定装置を有することを特徴とし、更に、閾値比較によって該測定された光強度を評価するための評価装置を有し、この比較結果に依存して(応じて)該二次光のスペクトル強度分布の変化を示す信号を生成することができることを特徴とする。
【0024】
そのような手術顕微鏡は、黄斑変性の検出装置としても使用可能である。これに関するより詳細な説明は、本発明の方法に関する上記の説明が参酌されるべきである。この使用のための前提(条件)は、上記の測定装置が黄斑の黄色スペクトル領域で光強度を測定すること、健康黄斑に関して(第1の)閾値が定められる(求められる)こと、及び、この(第1の)閾値を下回った場合、(加齢)黄斑変性(の存在)の可能性を示す(指示する)信号が生成されることである。
【0025】
当該適用(応用)から独立に(無関係に)又はそれに加えて、本発明の手術顕微鏡は、照明領域の保護のために使用することも可能である。この目的のために、本発明の手術顕微鏡は、上記信号ないし当該信号の存在に依存して(応じて)照明領域のための保護機構を作動(活性化)させるための保護装置を有する。
【0026】
すでに変成的に病化した黄斑が照明から保護されるべき場合、選択されるべき閾値は、健康な黄斑の場合よりも相応により小さく設定されるべきことは自明である。この場合、(より小さい)閾値の上回りは、(病化した)黄斑が照明されたことの指標として使用することができ、これに応じて上述の保護機構を作動させることができる。
【0027】
この種の手術顕微鏡を使用することによって、本発明の方法はとりわけ良好に(更なる形態に)転換(変更)されることができる。例えば、評価装置によって上記信号が生成されたとき、保護装置が駆動(制御)されて保護機構を作動させることができる。したがって、上記の信号の生成によって、対象物照明に使用される光の散乱によって二次ビームが生じる(保護されるべき)領域が不所望に照射されるのを防止するために効果的な(有効な)措置を取ることができる。
【0028】
以下に、本発明の方法及び本発明の手術顕微鏡の種々の実施形態を一緒に説明する。したがって、本発明の方法の従属請求項に記載された種々の実施形態から本発明の手術顕微鏡の対応する実施形態(構造ないし作動態様)を導出する(構成する)ことができ、その逆もまた同様である。更に、本発明の特徴(複数)は、ここ及び後に説明する組み合わせで使用できるだけではなく、他の組み合わせでも、適切である限り、単独でも使用可能であることに留意すべきである。したがって、互いに組み合わされて説明された特徴は、互いに分離されて(別々に)本発明のために使用することも可能である。
【0029】
一次光として白色光が使用されと、即ち、一次光を生成するために使用される白色光源が照明装置に含まれると、とくに有利である。顕微鏡によって結像されるべき対象物に対する白色光照明は、観察画像の色中立性(Farbneutralitaet)のために及び利用者のためのディテール識別能(Detailerkennbarkeit)のためには、例えば本明細書の冒頭部分で論議したUS2004/0227989A1(特許文献1)において網膜の保護のために提案されたような特定の1つの波長による対象物の照明よりも有利である。
【0030】
二次光は一次光の散乱から生じるので、二次光のスペクトルは、一般的に(眼科での使用の際に重要ではない物理的に特殊な場合を別にして)、一次光のスペクトルに含まれる。一次光の強度スペクトル分布が、とりわけ可視スペクトル領域において複数の色をカバーするために、二次光の強度スペクトル分布よりも広い帯域幅を有するように選択されると有利である。上述の白色光の使用はとくに好都合である。
【0031】
既述のとおり、眼前部、とりわけ水晶体嚢(Linsenkapselsack/capsular bag)の後部(水晶体後嚢)が結像されるべき対象物として使用される場合、本発明の適用は有利である。この場合、眼の網膜(Retina)から反射ないし後方散乱される光が二次光として使用される。同様に既述のとおり、赤色スペクトル領域又は黄色スペクトル領域にある1つの波長又は1つの波長領域を強度測定のために使用するのが有利である。この場合、本発明に応じ、黄色スペクトル領域にある所定の閾値を(測定)強度が上回ることによって又は赤色スペクトル領域にある所定の閾値を測定強度が下回ることによって、網膜から黄斑への移行が示される(指示ないし通知される)。
【0032】
上に検討した適用形態では、光強度測定において、とりわけ黄色及び/又は赤色反射光の強度が測定される。この目的のために、単純な場合では、適切な帯域幅を有する(1つの)フィルタを有する適切な(1つの)センサだけで十分である。他方、干渉計又は色温度測定器もこの目的のために使用することができる。これらの装置によって、スペクトル分析も実行することができるが、これは、フィルタを有する(1つの)センサを使用する場合と比べると技術的により大掛かりでありかつより高価である。
【0033】
原理的には、二次光が生じる領域(複数)の識別(区別)は、引き続き上述の適用形態について説明すると、まず「赤色反射」のスペクトル強度分布が記録(検出)されかつ適切に記憶され、次いで顕微鏡検査中に、有利には連続的に、二次光のスペクトル強度分布が記録(検出)されることによって実行されることができる。記憶されたスペクトルと(連続的に:laufend)記録(検出)されたスペクトルとの差分スペクトル(Differenzspektrum)は、黄斑が照射された場合即ち「赤色反射」の代わりに「黄色反射」が現れる場合に初めて、ゼロからの有意な偏差ないしずれ(すなわち最大(極大)差分(複数):Differenzmaxima)を生じる。したがって、この場合、二次光の強度は黄色スペクトル領域を含む(1つの)波長領域にわたって(連続的に)測定され、それから導出された差分スペクトルが黄色スペクトル領域にある所定の閾値を上回ると、照明領域の性質(状態)の変化を示し(通知ないし表示し:signalisiert)、したがって適切な保護機構を作動させることが可能な上述の信号が生成される。目的の領域(複数)における強度分布の性質(状態)に応じて、当業者であれば、適切な識別(区別)を行うことができよう。スペクトル強度分布における例えば上述の場合では網膜と黄斑との間の差が十分に大きければ、1つの波長(又は1つの狭い波長領域)で強度を測定し、これを(1つの)閾値と(直接的に)比較する単純な適用形態を使用することができる。
【0034】
本発明は、上記の意味での「バックグラウンドビーム(Hintergrundstrahlung)」を生成する特定の(所定の)領域(複数)を照明から除外すること又は該領域を過度に大きな照明強度から保護することを可能にする。このために、有利には、上述の閾値比較の結果に依存して(応じて)作動されることができる保護機構が設けられる。
【0035】
これに応じて、第2のスペクトル強度分布を有する二次光を生成するために第1の領域が第1のスペクトル強度分布を有する一次光によって照明される本発明の方法は、第2のスペクトル強度分布とは異なる第3のスペクトル強度分布を有する二次光を生成する第2の領域の保護のために使用することができる。この場合、閾値比較によって生成される信号は、当該第2の領域をさらなる照明から保護する保護機構の作動(制御)のために使用される。有利には、二次光の第2の及び第3のスペクトル強度分布に異なる最大(極大)強度(複数)が存在し、(少なくとも)1つのそのような最大(極大)強度(ないしそれに割り当てられた波長)が、上記方法に応じた強度測定のために使用される。
【0036】
既述のとおり、保護されるべき第2の領域からの二次光の第3のスペクトル強度分布の(1つの)最大(極大)強度が(例えば黄斑の黄色の波長の)強度測定に使用され、所定の閾値が上回られることにより保護機構の作動(Ansteuerung)のための信号が生成されると有利である。反対に、第1の領域からの二次光の第2のスペクトル強度分布の(1つの)最大(極大)強度が(例えば網膜の他の部分からの赤色の波長の)強度測定に使用され、所定の閾値を下回ることにより保護機構の作動のための信号が生成されることも有利であり得る。
【0037】
保護機構としては、以下に挙げるイベントの1つ又は複数が使用可能である:保護絞り(視野絞り:Schutzblende)又は保護フィルタの作動(Betaetigen)、レンズ(複数)及び/又はプリズム(複数)又は偏向素子(複数)の(位置及び/又は配向等の)調整、但し、これらの光学素子は一次光の伝播方向に配置(配向)されているか、又は該光学素子が相応に作動される際に一次光の伝播方向に配置(配向)可能に構成されている。より具体的には、(1つの)保護絞り(視野絞り)は、例えば本明細書冒頭部分に述べたUS4,715,704(特許文献3)に提案されているように、一次照明ビーム路上の、対象面に共役な照明装置内の位置に旋回されて配置されることができる。保護絞り(視野絞り)の代わりに、不所望の領域(例えば黄斑)で吸収され、そこに熱的及び/又は光毒性ダメージを引き起こし得る光を一次光からフィルタ除去する保護フィルタを設けることも可能である。したがって、黄斑を保護するために、黄色波長領域外の光に対して不透明な(非透過性の)保護フィルタが使用されるであろう。電子光学的な照明変化もまた、この目的のために使用することができる。一次光の伝播方向に配置された照明装置の内部におけるレンズ(複数)又はプリズム(複数)、とりわけ偏向プリズム(複数)又はより一般的な偏向素子(複数)の(位置及び/又は配向等の)調整によって、一次照明ビーム路の方向が変化されることができるため、「赤色反射」のために必要な照明角は最早維持されない。このようにして一次光の散乱を完全に阻止することができ、かくして、不所望の領域(黄斑)の照明を同時に阻止することができる。
【0038】
他方、上記保護機構は、一次光の強度の低減、及び、とりわけ(視野への)データの差込入射(スーパーインポーズ)のための、音響的(可聴)及び/又は視覚的(可視)信号の生成によって構成される群からの1つ又は複数の措置を含むことができる。一次光の強度の低減によって、不所望の領域(例えば黄斑)の照明を無害なレベルに低減することができる。音響的及び/又は視覚的信号(複数)は、ユーザ(例えば外科医)に対し、ユーザが不所望の領域(黄斑)を照明していることを知らせることにより、ユーザ自身が適切な是正措置を取ることができるようにする。手術顕微鏡の場合、データの差込入射(スーパーインポーズ)、例えば外科医の視界(視野)における視覚的(視認可能な)警報信号は重要である。
【0039】
以下に、本発明の実施例を図面を参照して詳細に説明する。なお、特許請求の範囲に付した図面参照符号は専ら発明の理解を助けるためのものであり、本発明を図示の態様に限定することは意図していない。
【図面の簡単な説明】
【0040】
【図1】本発明の手術顕微鏡の一例の模式図。
【図2】ヒトの眼の網膜の「赤色反射」に関する透過、吸収及び反射曲線。
【実施例】
【0041】
図1は、とりわけ眼科に適合されたステレオ顕微鏡の一例を概略的に示す。このようなステレオ顕微鏡の構造と作動態様は、DE 102 55 960 A1(特許文献6)及びこれに対応するUS 7,206,127 B2(特許文献7)に具体的に記載されている。これらの刊行物の全内容は引用を以って本書に繰り込みここに記載されているものとする。以下においては、説明の反復を回避しかつ理解を容易にするために、上述のステレオ顕微鏡の本質的な要素及び本発明に関連する要素のみを詳細に説明する。
【0042】
ステレオ顕微鏡1は、本質的な光学コンポーネントとして、主対物レンズ2、横置きないし水平ズームシステム7及び接眼鏡システム(不図示)を有する。主対物レンズ2とズームシステム7の間には、第1の偏向素子5が設けられている。ズームシステム7には、更なる偏向素子6a、6b、6c、6d、6e、9、10と、光学的付加(アドオン)コンポーネント8a、8b、8cが後置されている。横置きズームシステム7を使用するこの構造は、構造高さを低くすることを可能にするが、このことは(例えば眼科用の)手術顕微鏡にとって重要な利点である。
【0043】
照明装置3は、ファイバケーブル4を介して供給された光を、偏向素子3aを介して観察されるべき対象物16に案内するが、その際、照明ビーム路は、主対物レンズ2を介して案内される。照明装置3の主軸には図面参照符号12を付した。
【0044】
図示の場合、ズームシステム7は、主観察者及び補助観察者(副観察者)のために夫々2つの観察チャネルを有する。これに応じて、主対物レンズ2は、鉛直方向において、2つの主観察ビーム20a、20bと、2つの補助者用観察ビーム(副観察ビーム)20c、20dによって貫通通過される。これらの観察ビームは、偏向素子5によって偏向された後、ズームシステム7の夫々対応する観察チャネルに入射する。図面参照符号27はズームシステム7の中心軸を示す。
【0045】
上記観察ビームは、上記更なる偏向素子6a〜6eによって更に垂直又は水平に偏向される。この場合、これらの偏向素子の一部はビームスプリッタとして構成されることができるが、これにより、図面参照符号15、18及び17によって示された観察軸を実現することができる。本質的な観察軸は、図1に図面参照符号14及び23で示されており、それぞれ主観察者21及び補助観察者22のために使用される。観察のために必要なアイピース(接眼レンズ)を含む双眼(両眼)鏡筒(Binokulartuben)は見易さの観点から図1に示されていない。
【0046】
ビーム20a〜20dは偏向素子6bによって水平方向に偏向され、偏向素子9に入射する。偏向素子9は、ビーム20c、20dのみを補助者用観察軸(副観察軸)23に偏向するよう構成されており、他方、ビーム20a、20bは偏向素子9を(貫通)通過し、更なる偏向素子6dに入射する。そこから、ビーム20a、20bは偏向素子6eを介して主観察者21用の観察軸14に到達する。観察軸14は、(とりわけズームシステム7が横置き配置されることにより、)観察されるべき対象物16に対する鉛直方向の距離がとりわけ小さいという特徴を有する。
【0047】
1つの特別の実施例では、偏向素子10は、軸31を中心として回動可能に構成されているが、更に、付加的に(これに加えて)又は代替的に(これの代わりに)軸13を中心として回動可能に構成されることもできる。図示のステレオ顕微鏡のこの構造態様及び更なる構造態様については、冒頭に述べた刊行物を参照されたい。
【0048】
図面参照符号11は、図1において、主対物レンズ2の対称軸を示す。上記光学的付加(アドオン)コンポーネント8a〜8cとしては、フィルタ、レーザ(用)シャッタ、光学的スプリッタ、データ差込入射(スーパーインポーズ)装置等が使用可能である。更には、ダイヤフラム(絞り)、ディスプレイ等も使用可能である。適切なかつ一般的に利用されている付加(アドオン)コンポーネントは当業者には既知である。
【0049】
とりわけ眼科に適合された図1に示された手術顕微鏡は、本明細書の冒頭部分で詳細に説明したような、いわゆる「赤色反射」照明を使用して眼を手術するために使用することができる。眼の黄斑を有害な照明から保護するために又は黄斑変性疾患を検出(診断)することができるようにするために、手術顕微鏡1は、以下のように構成及び変更されると有利である:
【0050】
少なくとも1つの波長に関して光強度を測定するための測定装置として、この実施例では偏向素子5の周囲(Peripherie)に配置されたセンサ100が使用され、該センサ100は、測定されるべき波長に適合されたフィルタを備え、更に、(該センサ100に)後置された(下流に配された)信号分析装置101を有する。結像されるべき即ち照明される対象物16は、とりわけ眼の水晶体嚢(Linsenkapselsack)の後部(水晶体後嚢)である。照明装置3から放射された一次光は眼の網膜によって二次光として反射ないし後方散乱される。この二次光は、いわば、下方(裏側ないし後ろ側)からの対象物16の付加的照明を形成する。所望されているのは赤色波長領域にある付加的照明であり、他方、黄色波長領域にある(付加的)照明は、照明から保護されるべき眼の黄斑が照射されていることを示している。
【0051】
すでに何度も説明したように、この実施例では、1つの波長(又は1つの波長領域)は黄色スペクトル領域又は赤色スペクトル領域で測定可能である。信号分析ユニット(装置)101によって処理されるセンサ信号は、(該ユニット101の)後置された(下流に配された)信号処理ユニット即ち評価装置102に供給される。この場合、測定されたスペクトル光強度は閾値比較によって評価され、この比較の結果に依存して(応じて)(1つの)信号が生成されることができる。
【0052】
例えば黄色波長領域即ち凡そ560nm〜凡そ590nmの領域で測定が行われる場合、眼の網膜が照明されているあいだは、比較的小さい反射率が得られることになる。これに対し、黄斑が(意図せずに)照明されると、反射された光の強度は黄色スペクトル領域において急激に上昇することになろう。したがって、(1つの)閾値を適切に規定することによって、測定された光強度がこの閾値を上回ったとき、網膜から黄斑への照明の変化(照明の対象ないし領域が網膜から黄斑に変化したこと)が検出されることができる。評価装置102からコントロール(制御)ユニット103に信号が出力(供給)されることにより、照明された黄斑を保護するための措置が図られることができる。
【0053】
図示の実施例では、保護装置は、保護機構として、上述のコントロール(制御)ユニット103並びに(更なる)コントロール(制御)ユニット104及び光源調整器/制御器105を含む。(更なる)コントロールユニット104は、例えば照明装置3内のプリズム(複数)及び/又はレンズ(複数)を(位置及び/又は配向等について)調整し及び/又はフィルタ及び/又はシャッタを作動させることにより、黄斑の照明が有害作用を有しないように一次光の強度を低減しないし一次光の周波数を変化することができる。付加的に(これに加えて)又は代替的に(これの代わりに)、同様にコントロールユニット103により制御される光源制御器105を保護機構として備えることができる。光源制御器105は、光源110に作用し、例えば一次光の強度が黄斑に対して無害な値にまで低下されるように光源110の供給電圧を低下させる。
【0054】
同時に、保護されるべき黄斑の領域が照射されたことを示す(知らせる)ために、上述の保護機構に加えて視覚的及び/又は音響的信号を出力する外部の保護信号装置106を備えると好都合である。
【0055】
図2は、0.2μm〜1.5μmの波長領域(「波長」:横軸)に対するパーセント値(「パーセント」:縦軸)で示された、眼本体から網膜に至るまでの透過曲線及び網膜に対する吸収曲線を模式的に示す。このグラフから明らかなとおり、最大の吸収は青色から緑色のスペクトル領域で生じる。橙色から赤色の波長領域及びそれ以上には大きな透過率がある。この図は、書籍“Safety with Lasers and Other Optical Sources”、David Sliney及びMyron Wolbarsht著、Plenum Press、1980、第89頁(非特許文献3)から引用した。この図には反射曲線も記載されている。反射は、青色スペクトル領域から緑色、黄色及び橙色スペクトル領域を介して赤色スペクトル領域まで連続的に上昇する。これがいわゆる「赤色反射」の原因である。これに対し、黄斑は、560nm〜590nmの黄色波長領域に最大反射率(Reflexionsmaximum)を有する。
【0056】
以上、本発明を上記実施例に即して説明したが、本発明は上記実施例の構成にのみ制限されるものでなく、本発明の範囲内で当業者であればなし得る各種変形、修正を含むことは勿論である。
【符号の説明】
【0057】
1 ステレオ顕微鏡、手術顕微鏡
2 主対物レンズ
3 照明装置
3a 偏向素子
4 ファイバケーブル
5 偏向素子
6a〜6e 偏向素子
7 ズームシステム
8a〜8c 光学的付加(アドオン)コンポーネント
9 偏向素子
10 偏向素子
11 主対物レンズの対称軸
12 主軸
13 回転軸
14、15、17、18、23 観察軸
16 対象物
20a、20b 主観察ビーム
20c、20d 補助者用観察ビーム(副観察ビーム)
21 主観察者
22 補助観察者(副観察者)
27 ズームシステムの中心軸
31 回転軸
100 センサ
101 信号分析ユニット
102 信号処理ユニット、評価装置
103 コントロール(制御)ユニット
104 プリズム(複数)/レンズ(複数)の(位置)調整のための又はフィルタ/シャッタの操作のためのコントロール(制御)ユニット
105 光源調整器/制御器
106 外部の保護信号装置
110 光源

【特許請求の範囲】
【請求項1】
とりわけ手術顕微鏡等の顕微鏡(1)によって結像されるべき対象物(16)を照明する方法において、
前記対象物(16)は、第1のスペクトル強度分布を有する一次光と、第2のスペクトル強度分布を有する二次光によって照明され、該二次光は該一次光の散乱から生じ、該二次光の強度は少なくとも1つの波長に関して測定され、測定された強度又は該測定された強度から導出される量が所定の閾値を上回るか又は下回ると、前記二次光のスペクトル強度分布の変化を示す信号が生成されること
を特徴とする方法。
【請求項2】
一次光として、白色光が使用されること
を特徴とする請求項1記載の方法。
【請求項3】
対象物(16)として、眼の前部、とりわけ水晶体嚢の後部(水晶体後嚢)が使用されること
を特徴とする請求項1又は2に記載の方法。
【請求項4】
二次光として、眼の網膜から反射又は後方散乱される光が使用されること
を特徴とする請求項3に記載の方法。
【請求項5】
強度の測定のために、赤色スペクトル領域内の1つの波長又は波長領域が使用されること
を特徴とする請求項1〜4のいずれか1項に記載の方法。
【請求項6】
強度の測定のために、黄色スペクトル領域内の1つの波長又は波長領域が使用されること
を特徴とする請求項1〜4のいずれか1項に記載の方法。
【請求項7】
強度の測定のために、フィルタを有するセンサ(100)が使用されること
を特徴とする請求項1〜6のいずれか1項に記載の方法。
【請求項8】
強度の測定のために、スペクトル分析が実行されること
を特徴とする請求項1〜7のいずれか1項に記載の方法。
【請求項9】
前記二次光のスペクトル強度分布の変化を示す信号が、保護機構(104;105;106)を作動させるために使用されること
を特徴とする請求項1〜8のいずれか1項に記載の方法。
【請求項10】
前記保護機構(104)は、視野絞り(Schutzblende)、シャッタ又は保護フィルタの作動、レンズ及び/又はプリズム又は偏向素子の調整を含む群から選択され、これらの光学素子は前記一次光の伝播方向に配置されているか又は相応の作動に際して前記一次光の伝播方向に配置可能に構成されていること
を特徴とする請求項9に記載の方法。
【請求項11】
前記保護機構(105;106)は、前記一次光の強度の低減、及びとりわけデータ差込入射による、音響的及び/又は視覚的信号の生成を含む群から選択されること
を特徴とする請求項9又は10に記載の方法。
【請求項12】
第2のスペクトル強度分布を有する二次光を生成するために、第1の領域が第1のスペクトル強度分布を有する一次光によって照明され、第2の領域を保護するために、該第2のスペクトル強度分布とは異なる第3のスペクトル強度分布を有する二次光が生成され、閾値比較によって生成される信号が、前記第2の領域をさらなる照明から保護する保護機構(104;105;106)を作動させるために使用されること
を特徴とする請求項1〜11のいずれか1項に記載の方法の使用。
【請求項13】
前記二次光の前記第2のスペクトル強度分布及び前記第3のスペクトル強度分布に異なる最大強度(Intensitaetsmaxima)が存在し、該最大強度に割り当てられた波長が、強度の測定のために使用されること
を特徴とする請求項12に記載の使用。
【請求項14】
前記保護されるべき第2の領域からの前記二次光の前記第3のスペクトル強度分布の最大強度が、強度の測定のために使用され、所定の閾値を越えることにより、保護機構(104;105;106)を作動させるための信号が生成されること
を特徴とする請求項13に記載の使用。
【請求項15】
前記第1の領域からの前記二次光の前記第2のスペクトル強度分布の最大強度が、強度の測定のために使用され、所定の閾値を下回ることにより、保護機構(104;105;106)を作動させるための信号が生成されること
を特徴とする請求項13に記載の使用。
【請求項16】
前記保護されるべき第2の領域は眼の黄斑であり、前記第1の領域は残余の網膜であること
を特徴とする請求項12〜15のいずれか1項に記載の使用。
【請求項17】
結像されるべき対象物(16)を照明するための一次光のための照明装置(3)を有し、該対象物が更に該一次光の散乱から生じる二次光によって照明される手術顕微鏡において、
該手術顕微鏡(1)は、前記二次光の少なくとも1つの波長に関して光強度を測定するための測定装置(100、101)と、測定された光強度を閾値比較によって評価するための評価装置(102)とを有し、当該比較の結果に依存して前記二次光のスペクトル強度分布の変化を示す信号が生成可能に構成されること
を特徴とする手術顕微鏡。
【請求項18】
前記信号に応じて被照明領域のための保護機構(104;105;106)を作動させるための保護装置(103、104、105、106)を備えること
を特徴とする請求項17に記載の手術顕微鏡。
【請求項19】
前記保護機構は、レンズ及び/又はプリズムを調整するための及び/又は保護フィルタ又はシャッタを操作するためのコントロールユニット(104)を含むこと
を特徴とする請求項18に記載の手術顕微鏡。
【請求項20】
前記保護機構は、光源調整器及び/又は光源制御器(105)を含むこと
を特徴とする請求項18又は19に記載の手術顕微鏡。
【請求項21】
前記保護機構は、音響的及び/又は視覚的信号を生成するための保護信号装置(106)を含むこと
を特徴とする請求項18〜20のいずれか1項に記載の手術顕微鏡。
【請求項22】
前記光強度の測定するための前記測定装置(100、101)は、前記測定されるべき波長を選択するための前置フィルタを有する光強度用センサ(100)を含むこと
を特徴とする請求項17〜21のいずれか1項に記載の手術顕微鏡。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−240420(P2010−240420A)
【公開日】平成22年10月28日(2010.10.28)
【国際特許分類】
【出願番号】特願2010−81196(P2010−81196)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(500056219)ライカ ミクロジュステムス(シュヴァイツ)アーゲー (42)
【Fターム(参考)】