説明

平面アンテナ

【課題】従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができる平面アンテナを提供すること。
【解決手段】平面アンテナ10は、下層側から上層側に向かって、地導体11、誘電体12、放射素子13及び給電線路14が形成された受信側の基板である給電基板15、誘電体16、放射素子13の真上に位置するよう形成されたスロット開口17を有する地導体18、誘電体19、放射素子20及び給電線路21が形成された送信側の基板である給電基板22、誘電体23、放射素子20の真上に位置するよう形成されたスロット開口24を有する地導体25を備え、水平偏波方向とX軸方向とのなす角τが、40度≦|τ|≦50度である構成を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、赤道上空の静止軌道に配置される静止衛星を利用して、VSAT(Very Small Aperture Terminal)、SNG(Satellite News Gathering)、ESV(Earth Stations on board Vessels)等の、送受別々の直線偏波信号を用いて通信を行う衛星通信地球局装置用の平面アンテナに関する。
【背景技術】
【0002】
VSAT、SNG、ESV等の静止衛星を介して通信を行う衛星通信地球局では、送受信で、垂直偏波と水平偏波との切り替えが必要であり、1つのアンテナで、垂直偏波及び水平偏波を共用できる偏波共用の平面アンテナが開発されている(例えば、非特許文献1参照)。非特許文献1に示された偏波共用の平面アンテナを図4及び図5に示す。
【0003】
図4及び図5に示すように、従来の平面アンテナ30は、地導体31と、誘電体32と、放射素子33及び給電線路34が形成された受信側の基板である給電基板35と、誘電体36と、放射素子33の真上に位置するよう形成されたスロット開口37を有する地導体38とが順次積層されている。
【0004】
また、従来の平面アンテナ30は、地導体38上に積層される誘電体39と、放射素子40及び給電線路41が形成された送信側の基板である給電基板42と、誘電体43と、放射素子40の真上に位置するようスロット開口44が形成された地導体45とが順次積層されている。また、従来の平面アンテナ30において、送信側の各放射素子40への励振振幅分布は、励振振幅テーパのない一様な分布になっている。
【0005】
受信側の構成において、放射素子33に対する給電線路34の接続方向が、配列方向Y(図5参照)と平行になるよう放射素子33が配置されることにより、受信側の励振方向が配列方向Yと平行に設定されている。また、送信側の構成において、放射素子40に対する給電線路41の接続方向が、配列方向X(図4参照)と平行になるよう放射素子40が配置されることにより、送信側の励振方向が配列方向Xと平行に設定されている。
【0006】
この構成により、従来の平面アンテナ30は、送受信の偏波方向が互いに直交した別々の直線偏波信号を送受信できるようになっている。
【0007】
ところで、従来の平面アンテナ30を衛星通信地球局装置用の平面アンテナとして使用する場合、無線設備規則(第54条の3)やITU−R規格(ITU−R580、ITU−R465)等によって、サイドローブレベルが規定されており(以下「サイドローブ規格」という。)、衛星軌道面内においてサイドローブレベルがサイドローブ規格内に入っていなければならない。
【0008】
ところが、図4及び図5に示す従来の平面アンテナ30では、指向性を観測する観測面の角度φが0度又は90度に近づくにつれてサイドローブレベルが大きく劣化し、サイドローブ規格を外れる場合があった。
【0009】
具体的には、図6に示すように、従来の平面アンテナ30は、20度≦|φ|≦70度の観測面ではサイドローブ規格を満足しているが、0度≦|φ|<20度、又は、70度<|φ|≦90度の観測面ではサイドローブ規格を満足できない。一般的に、衛星通信用の平面アンテナは矩形形状であるため、配列方向X、Y近辺に、観測面があると極端にサイドローブレベルが劣化することとなる。なお、図6に示したグラフの横軸である角度θは、図4(b)に示すように、観測方向とZ軸とのなす角である。
【0010】
ところで、国内の衛星通信サービスで使用される静止衛星として、JCSAT(登録商標)−1B、−2A、−3A、−4A、−5A、−R、及び、Superbird(登録商標)−A、−B2、−Cが知られている。以下の説明では、これら9つの静止衛星を総称して「国内主要通信衛星」という。これらの国内主要通信衛星に備えられたKu帯(12GHz〜18GHz)のアンテナの衛星軌道面に対する偏波オフセット角αは、各衛星により異なり、−30度≦α≦30度の範囲内の様々な角度に設定されている。ここで、偏波オフセット角αとは、図7に示すように、衛星軌道面に対する水平偏波方向の傾斜角、又は、衛星軌道面と直交する軌道対角面に対する垂直偏波方向の傾斜角をいい、地球局から静止衛星を見たとき右回りを正とする。
【0011】
前述のように、従来の平面アンテナ30においてサイドローブ規格を満足するのは、観測面の角度φが20度≦|φ|≦70度のときであるので、従来の平面アンテナ30は、偏波オフセット角αが|α|≧20度の静止衛星に対してのみ使用可能で、それ以外の静止衛星(|α|<20度)に対しては使用することができないことになる。すなわち、従来の平面アンテナ30では、国内主要通信衛星のうち、20度≦|α|≦30度の範囲内にある一部の衛星にのみ対応可能なものであり、より広範な偏波オフセット角の直線偏波信号を送受信することができる平面アンテナが望まれていた。
【0012】
他方、サイドローブレベルの低減化を図ることを目的として、平面アンテナの偏波方向を所定角度だけ傾斜させたものが提案されている(例えば、特許文献1〜4参照)。
【0013】
しかしながら、特許文献1〜4に示された平面アンテナは、いずれも偏波オフセット角αを考慮したものではないので、前述の従来の平面アンテナ30と同様、国内主要通信衛星のうち、ある一部の衛星にのみ対応可能なものであった。
【先行技術文献】
【非特許文献】
【0014】
【非特許文献1】「ブリッジ付き開口を用いた偏波共用平面アンテナ」、2001年電子情報通信学会総合大会予稿集、B−1−175
【特許文献】
【0015】
【特許文献1】特開平05−243841号公報
【特許文献2】特開平05−243842号公報
【特許文献3】特開平05−275922号公報
【特許文献4】特開平06−132718号公報
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明は、前述のような事情に鑑みてなされたものであり、従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができる平面アンテナを提供することを目的とする。
【課題を解決するための手段】
【0017】
本発明の平面アンテナは、互いに直交する第1及び第2の偏波方向のうちいずれか一方の偏波方向の直線偏波信号を静止衛星に送信し、前記第1及び前記第2の偏波方向のうちいずれか他方の偏波方向の直線偏波信号を前記静止衛星から受信する平面アンテナにおいて、平面上で互いに直交するX軸及びY軸に沿ってマトリクス状に第1のアンテナ素子が配列され前記いずれか一方の偏波方向の直線偏波信号を前記静止衛星に送信する送信アンテナ部と、前記X軸及び前記Y軸に沿ってマトリクス状に第2のアンテナ素子が配列され前記いずれか他方の偏波方向の直線偏波信号を前記静止衛星から受信する受信アンテナ部とを備え、前記送信アンテナ部において、前記第1のアンテナ素子の偏波方向と前記X軸とのなす角の絶対値が、前記いずれか一方の偏波方向と前記静止衛星の衛星軌道面とのなす角を示す偏波オフセット角よりも予め定めた角度だけ大きい角度であり、励振振幅分布が、前記送信アンテナ部の中央部から端部に向かうに従って小さくなる分布となっており、前記受信アンテナ部において、前記第2のアンテナ素子の偏波方向が、前記第1のアンテナ素子の偏波方向と直交するものである構成を有している。
【0018】
この構成により、本発明の平面アンテナは、第1のアンテナ素子の偏波方向とX軸とのなす角の絶対値が、偏波オフセット角よりも所定角度だけ大きい角度となるので、衛星軌道面がサイドローブレベルが最も高くなるφ=0度面あるいは90度面に対して所定角度以上のクリアランスが得られ、衛星軌道面におけるサイドローブレベルの低減化を図ることができる。また、本発明の平面アンテナは、励振振幅分布が、送信アンテナ部の中央部から端部に向かうに従って小さくなる分布となっているので、サイドローブレベルをさらに低減化することができる。
【0019】
したがって、本発明の平面アンテナは、第1のアンテナ素子の偏波方向とX軸とのなす角の絶対値と、励振振幅分布との設定によってサイドローブレベルの低減化を図ることにより、従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができる。
【0020】
また、本発明の平面アンテナは、前記偏波オフセット角が、前記送信アンテナ部側から前記静止衛星を見て右回りを正とするとき前記静止衛星の衛星軌道面を基準として±30度の範囲内である場合、前記第1のアンテナ素子の偏波方向と前記X軸とのなす角の絶対値が40度から50度までの範囲である構成を有している。
【0021】
この構成により、本発明の平面アンテナは、偏波オフセット角が±30度の範囲内である場合において、第1のアンテナ素子の偏波方向とX軸とのなす角の絶対値が40度から50度までの範囲とし、励振振幅分布が、送信アンテナ部の中央部から端部に向かうに従って小さくなる分布とすることにより、全ての国内主要通信衛星と通信することができることとなる。
【発明の効果】
【0022】
本発明は、従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができるという効果を有する平面アンテナを提供することができるものである。
【図面の簡単な説明】
【0023】
【図1】本発明に係る平面アンテナの一実施形態における構成図
【図2】本発明に係る平面アンテナの一実施形態における斜視分解図
【図3】本発明に係る平面アンテナの一実施形態におけるサイドローブ特性を示す図
【図4】従来の平面アンテナの構成図
【図5】従来の平面アンテナの斜視分解図
【図6】従来の平面アンテナのサイドローブ特性を示す図
【図7】偏波オフセット角の説明図
【発明を実施するための形態】
【0024】
以下、本発明の実施形態について図面を用いて説明する。なお、実施形態では、全ての国内主要通信衛星に対して直線偏波信号を送受信可能な平面アンテナを例に挙げて説明する。
【0025】
まず、本発明に係る平面アンテナの一実施形態における構成について図1及び図2に基づき説明する。図1は、本実施形態における平面アンテナ10の一部下層が見えるようにした正面図である。図2は、図1に示した平面アンテナ10のZ軸方向における積層構造を斜視分解図で示したものである。
【0026】
図2に示すように、平面アンテナ10は、下層側から上層側に向かって、地導体11と、誘電体12と、放射素子13及び給電線路14が形成された給電基板15と、誘電体16と、放射素子13の真上に位置するよう形成されたスロット開口17を有する地導体18とを備えている。
【0027】
また、平面アンテナ10は、地導体18上に積層される誘電体19と、放射素子20及び給電線路21が形成された給電基板22と、誘電体23と、放射素子20の真上に位置するよう形成されたスロット開口24を有する地導体25とを備えている。
【0028】
なお、以下の説明において、本実施形態では、下層側の給電基板15を受信側の基板、上層側の給電基板22を送信側の基板とする。そして、放射素子13、給電線路14及び給電基板15を含む構成を総称して以下「受信アンテナ部」という。また、放射素子20、給電線路21及び給電基板22を含む構成を総称して以下「送信アンテナ部」という。また、送信アンテナ部は、水平偏波方向の直線偏波信号を国内主要通信衛星に向けて送信し、受信アンテナ部は、水平偏波方向と直交する垂直偏波方向の直線偏波信号を国内主要通信衛星から受信するものとする。ここで、本実施形態では、水平偏波方向及び垂直偏波方向のうち、衛星軌道面とのなす角が小さい方を水平偏波方向とする(図7参照)。
【0029】
地導体11、18及び25は、それぞれ、導電性を有する薄板、例えばアルミニウム板で構成される。誘電体12、16、19及び23は、それぞれ、例えば発泡ポリエチレンや発泡ポリプロピレン等の発泡シートで構成される。
【0030】
給電基板15及び22は、それぞれ、フィルム状の絶縁基板、例えばポリイミドフィルム基板や液晶ポリマーフィルム基板等で構成される。
【0031】
放射素子13及び給電線路14は、導電箔、例えば銅、アルミニウム、金等の金属箔により、給電基板15上に形成される。同様に、放射素子20及び給電線路21は、導電箔により、給電基板22上に形成される。放射素子13及び20は、それぞれ、方形に形成されており、X軸及びY軸に沿ってマトリクス状に配列されている。なお、放射素子20は、本発明に係る第1のアンテナ素子を構成し、放射素子13は、本発明に係る第2のアンテナ素子を構成する。
【0032】
スロット開口24は、地導体25の、放射素子20と対応する部分が方形に切除されて形成されている。これに対し、スロット開口17は、放射素子13と対応する地導体18の領域に、図示のように、2つの三角形の開口部とブリッジ部とで構成されている。このブリッジ部は、放射素子20に対する給電線路21の接続部分に対応する位置において、その接続部分と平行に形成されている。なお、このブリッジ部の構成については、特開2002−76767号公報に詳細に述べられているので、詳細な説明は省略する。
【0033】
受信アンテナ部においては、放射素子13に対する給電線路14の接続部分の向きに受信アンテナ部の励振方向が設定される。一方、送信アンテナ部においては、放射素子20に対する給電線路21の接続部分の向きに送信アンテナ部の励振方向が設定される。本実施形態における平面アンテナ10は、図2に示すように、受信側の励振方向は、Y軸に対して上層側(静止衛星側)から見て左回りに角度τだけ傾き、送信側の励振方向は、X軸に対して上層側から見て左回りに角度τだけ傾いた設定となっており、受信側と送信側とで励振方向が互いに直交する構成となっている。
【0034】
以下、角度τについて、図1を参照して具体的に説明する。なお、図1(a)においては送信アンテナ部の放射素子20のみの配置を部分断面図で示し、受信アンテナ部の図示は省略している。
【0035】
前述のように、受信アンテナ部の放射素子13及び送信アンテナ部の放射素子20は、それぞれ、X軸及びY軸に沿ってマトリクス状に配列されている。図1(a)において、送信アンテナ部が送信する直線偏波信号の偏波方向である水平偏波方向と、X軸方向とのなす角がτである。
【0036】
本発明者は、前述の従来の課題を解決するための検討を重ねた結果、衛星軌道面とX軸方向とのなす角の絶対値が10度以上となるよう角度τを設定することと、後述する励振振幅分布を設定することとを適切に組み合わせることに想到し、さらにシミュレーション計算及び試作検討により、実際にサイドローブレベルをサイドローブ規格内に収めることができるという効果を確認するに至った。以下、具体的に説明する。
【0037】
図1(a)において、衛星軌道面とX軸方向とのなす角をξで表している。τ及びξの符号を、静止衛星から平面アンテナ10を見て左回りを正とすると、ξ=τ−αとなる。すなわち、送信アンテナ部の放射素子20の偏波方向とX軸とのなす角τが、偏波オフセット角αよりも予め定めた角度ξだけ大きい角度となっている。
【0038】
前述の式より、−30度≦α≦+30度の全範囲において10度≦|ξ|≦80度とするためには、角度τとしては40度≦|τ|≦50度が好ましい。さらに、|τ|≒45度とするのが特に好ましい。図1(a)ではτ=+45度の状態を示している。
【0039】
具体的に、X軸方向と水平偏波方向とのなす角τが、τ=+45度、+40度及び+50度の場合について説明する。
【0040】
まず、τ=+45度のとき、国内主要通信衛星の全衛星(−30度≦α≦+30度)に対して、送信アンテナ部の指向性を観測する観測面とXZ面とのなす角φは、+15度≦φ≦+75度になり、サイドローブレベルが最も高くなるφ=0度面及びφ=90度面に対して15度以上のクリアランスが得られる。
【0041】
また、τ=+40度のとき、国内主要通信衛星の全衛星に対して、観測面とX軸とのなす角φは、+10度≦φ≦+70度になり、サイドローブレベルが最も高くなるφ=0度面及びφ=90度面に対して10度以上のクリアランスが得られる。
【0042】
また、τ=+50度のとき、国内主要通信衛星の全衛星に対して、観測面とX軸とのなす角φは、+20度≦φ≦+80度になり、サイドローブレベルが最も高くなるφ=0度面及びφ=90度面に対して10度以上のクリアランスが得られる。
【0043】
以上のように、平面アンテナ10は、40度≦|τ|≦50度とすることにより、サイドローブレベルが最も高くなるφ=0度面及びφ=90度面から10度以上のクリアランスを得ることができ、サイドローブレベルを従来のものよりも低減することができる。
【0044】
さらにサイドローブレベルを低減するため、平面アンテナ10は、図示を省略したが、送信アンテナ部において、各放射素子20への励振振幅分布が、X軸方向に対してのみ、5dBの励振振幅テーパの分布になっている。ここで、励振振幅テーパを有する分布とは、送信アンテナ部における励振振幅が、送信アンテナ部の給電基板22上で均一ではなく、給電基板22の中央部から端部に向かうに従って小さくなる分布をいう。本実施形態では、例えば余弦テーパにより、アンテナ中央部に対して端部の励振振幅が5dB低下するよう、T分岐による励振振幅テーパを設ける構成とした。なお、励振振幅テーパの傾きを大きくするに従って利得が低下するので、所望の利得が得られる範囲内で励振振幅分布を定めるのが好ましい。
【0045】
次に、本実施形態における平面アンテナ10の特性について図3に基づき説明する。図3は、図1及び図2に示した構成において、送信アンテナ部の放射素子20を、X軸方向に32素子、Y軸方向に24素子配置し、X軸方向にのみ5dBの余弦テーパを設けたときの各観測面における指向性計算結果を示したものである。なお、図3に示したグラフの横軸である角度θは、図1(b)に示すように、観測方向とZ軸とのなす角である。
【0046】
図3に示すように、本実施形態における平面アンテナ10は、観測面の角度φが、|φ|=10度〜80度の範囲においてサイドローブ規格を満足できるものであり、観測面の範囲を従来のものよりも広範化することができ、国内主要通信衛星の全衛星(−30度≦α≦+30度)に対して送受信が可能となる。
【0047】
以上のように、本実施形態における平面アンテナ10によれば、送信アンテナ部が送信する直線偏波信号の方向である水平偏波方向とX軸方向とのなす角τを40度≦|τ|≦50度とし、送信アンテナ部の励振振幅分布が、X軸方向に対してのみ、5dBの励振振幅テーパの分布としたので、全ての国内主要通信衛星と通信することができる。すなわち、本実施形態における平面アンテナ10は、従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができる。
【0048】
また、従来の平面アンテナでは、全ての国内主要通信衛星と通信することができないので、全ての国内主要通信衛星と通信するためには別のアンテナ(例えばパラボラアンテナ)を用意する必要があった。これに対して、本実施形態における平面アンテナ10は、全ての国内主要通信衛星と通信することができるので、別のアンテナを用意する必要がなく、従来のものよりも低コストで衛星通信システムを構築することができる。
【0049】
なお、前述の実施形態において、送信アンテナ部が水平偏波方向の直線偏波信号を送信し、受信アンテナ部が垂直偏波方向の直線偏波信号を受信する構成を例示して説明したが、本発明はこれに限定されるものではなく、送信アンテナ部が垂直偏波方向の直線偏波信号を送信し、受信アンテナ部が水平偏波方向の直線偏波信号を受信する構成としても同様の効果が得られる。
【0050】
また、前述の実施形態において、水平偏波方向及び垂直偏波方向をそれぞれX軸及びY軸を基準とした構成を例示して説明したが、本発明はこれに限定されるものではなく、水平偏波方向及び垂直偏波方向をそれぞれY軸及びX軸を基準とした構成であっても同様の効果が得られる。
【産業上の利用可能性】
【0051】
以上のように、本発明に係る平面アンテナは、従来のものよりも広範な偏波オフセット角の直線偏波信号を送受信することができるという効果を有し、赤道上空の静止軌道に配置される静止衛星を利用し、送受別々の直線偏波信号を用いて通信を行う衛星通信地球局装置用の平面アンテナ等として有用である。
【符号の説明】
【0052】
10 平面アンテナ
11、18、25 地導体
12、16、19、23 誘電体
13 放射素子(第2のアンテナ素子、受信アンテナ部)
14 給電線路(受信アンテナ部)
15 給電基板(受信アンテナ部)
17、24 スロット開口
20 放射素子(第1のアンテナ素子、送信アンテナ部)
21 給電線路(送信アンテナ部)
22 給電基板(送信アンテナ部)

【特許請求の範囲】
【請求項1】
互いに直交する第1及び第2の偏波方向のうちいずれか一方の偏波方向の直線偏波信号を静止衛星に送信し、前記第1及び前記第2の偏波方向のうちいずれか他方の偏波方向の直線偏波信号を前記静止衛星から受信する平面アンテナにおいて、
平面上で互いに直交するX軸及びY軸に沿ってマトリクス状に第1のアンテナ素子が配列され前記いずれか一方の偏波方向の直線偏波信号を前記静止衛星に送信する送信アンテナ部と、
前記X軸及び前記Y軸に沿ってマトリクス状に第2のアンテナ素子が配列され前記いずれか他方の偏波方向の直線偏波信号を前記静止衛星から受信する受信アンテナ部とを備え、
前記送信アンテナ部において、前記第1のアンテナ素子の偏波方向と前記X軸とのなす角の絶対値が、前記いずれか一方の偏波方向と前記静止衛星の衛星軌道面とのなす角を示す偏波オフセット角よりも予め定めた角度だけ大きい角度であり、励振振幅分布が、前記送信アンテナ部の中央部から端部に向かうに従って小さくなる分布となっており、
前記受信アンテナ部において、前記第2のアンテナ素子の偏波方向が、前記第1のアンテナ素子の偏波方向と直交するものであることを特徴とする平面アンテナ。
【請求項2】
前記偏波オフセット角が、前記送信アンテナ部側から前記静止衛星を見て右回りを正とするとき前記静止衛星の衛星軌道面を基準として±30度の範囲内である場合、前記第1のアンテナ素子の偏波方向と前記X軸とのなす角の絶対値が40度から50度までの範囲であることを特徴とする請求項1に記載の平面アンテナ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−206683(P2010−206683A)
【公開日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2009−51854(P2009−51854)
【出願日】平成21年3月5日(2009.3.5)
【出願人】(000004330)日本無線株式会社 (1,186)
【Fターム(参考)】