説明

流体噴射シミュレーション方法及びコンピュータプログラム及び被浴体及び槽及び槽製作システム並びにスプレーノズル

【課題】 スプレーノズルにより噴射される流体の物理軌道を反映できるようにして、スプレーノズルによる被浴体の被浴性を検証する流体噴射シミュレーション方法を得る。
【解決手段】 TINデータによる槽のモデルを作成し、この槽のモデルの各頂点をスプレーノズルからの距離及び重力軌道の数式に基づいて下方に移動させ、スプレーノズルの配置位置に配置された光源からの光により陰になる部分をレイトレーシング演算を行って、割り出し、その後、下方に移動させた槽のモデルの各頂点を元に戻して、可視化することにより、スプレーノズルから噴射される洗浄液の重力の影響を加味した物理軌道を反映した流体噴射シミュレーションを可能にしている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、スプレーノズルを用いて、様々な形状を有する三次元物体である被浴体に流体噴射する場合の被浴体の被浴状況を確認する流体噴射シミュレーション方法及び流体噴射シミュレーションを行うコンピュータプログラム及び被浴体及び被浴体の一つである槽及び槽製作システム並びに流体を噴射するスプレーノズルに関するものである。
【背景技術】
【0002】
図19において、槽の胴板1には、上鏡板2と、下鏡板3が取付けられ、上鏡板2には、配管接続ノズル5と配管接続ノズル6とスプレーノズル座7が設けられている。洗浄液を噴射するスプレーノズル4は、スプレーノズル座7に取付けられる。
通常、これらを製作して、槽や容器として納入するにあたって、各部分の製作は分業されており、鏡板は鏡板製作の専門メーカーに、パイプはパイプメーカーに、フランジ等はフランジメーカーによって製作され、これらを製缶業と呼称されるメーカーによって、溶接等により接合され、完成品として納入される。
【0003】
図20は、槽の洗浄に用いられるスプレーノズルの形状を示す図であり、図20(a)は、固定式のスプレーノズル、図20(b)は二次元回転式のスプレーノズルを示している。
図20(a)において、固定式洗浄ノズル12は、固定式スプレーノズル用洗浄液供給管11から、洗浄液が供給され、固定式洗浄ノズル12に設けられた洗浄液噴射穴13から洗浄液14を噴射する。
図20(b)において、二次元回転式スプレーノズル22は、二次元回転式スプレーノズル用洗浄液供給管21から、洗浄液が供給され、二次元回転式スプレーノズル22に設けられた洗浄液噴射スリット23から洗浄液24を噴射する。
なお、洗浄液噴射スリット23は、通常、鉛直方向に切られており、洗浄液24は、縦に広げられた扇のような形状で水平に回転しながら槽の内壁を洗浄して行く。
図21は、円錐噴出小形固定ノズルを複数個有するスプレーノズルを示す図である。
図21において、スプレーノズル4には、円錐噴出小形固定ノズル42が複数個設けられている。
図22は、三次元回転形スプレーノズルを示す図である。
図22において、スプレーノズル4は、軸部43と回転部44を有し、回転部44には、洗浄液31を広がらないように直線状に噴射するノズル部45が複数個設けられている。洗浄液31の回転軌道が、回転部44の回転によるノズル部45の回転毎に少しずつずれていき、最終的に槽の内壁の全面を洗浄する。
【0004】
図23は、スプレーノズルから洗浄液が噴射された状態を示す図である。
図23において、スプレーノズル4から洗浄液31が一定の初速と方向ベクトルを持って噴射されている。なお、この洗浄液31は、実際には直線ではなく、重力などにより下向きの曲線を描く。
図24は、スプレーノズルから噴射され、槽の内壁面で反射された洗浄液を示す図である。
図24において、スプレーノズルから噴射された洗浄液31が、槽の内壁面で反射された洗浄液61を示している。
【0005】
図25は、平面位置を変更されたスプレーノズルを示す図である。
図25において、スプレーノズル4は曲げられ、その平面位置が変更されている。
図26は、槽の死角部専用に設けられたスプレーノズルを示す図である。
図26において、通常のスプレーノズルとは別に死角部専用のスプレーノズル41が設けられ、このスプレーノズル41から洗浄液32が噴射されている。
【0006】
図27は、斜めに取り付けられ、テーパー管化された槽の凹凸部を示す図である。
図27において、配管接続ノズル5と配管接続ノズル6は、それぞれ垂直軸に対する傾斜角A、Cを有し、パイプ部を角度B、Dのテーパー管にしている。
【0007】
一般に、図19に示すような、産業プラントに用いられる槽・容器類の内部洗浄・殺菌には、図20に示すような、四方八方に液が噴射されるように工夫された固定式スプレーノズルまたは二次元回転式スプレーノズルや、三次元回転式・上下昇降式等のスプレーノズルが用いられ、このようなスプレーノズルは、市販されている。これらのスプレーノズル4から溶媒・殺菌液等を噴射することにより、槽・容器の内面を洗浄・殺菌する。槽・容器の内部洗浄では、経済的要求・正確度の要求により、人の手を経ることなく、自動的に運転され、洗浄・殺菌等を終えることが理想である。
スプレーノズル4から噴射された洗浄液は、重力・槽内部気体の抵抗を受けつつも、図23のように、槽内各部に噴射される。スプレーノズル4は、通常、槽1基あたり、1〜3個設置され、槽の大きさに合せて、実用上充分な速度で洗浄液を噴射できる能力を持つように選定される。
なお、このような洗浄装置は、例えば特許文献1にも示されている。特許文献1では、攪拌槽の内部に回転可能に支持された回転軸の外周面に、複数のスプレーノズルが取付けられ、この複数のスプレーノズルにより攪拌槽の内壁が洗浄されるものが、示されている。
【0008】
ところで、充分な能力を持つスプレーノズル4を用いても、槽・容器の各部には、マンホール・ハンドホール・覗窓・配管接続ノズル・攪拌機座等の凹凸があり、複数のスプレーノズルを用いたり、上下昇降式のスプレーノズルを用いても、影の部分ができる。このため、各スプレーノズル4からの直線に対して影の部分ができないよう、槽・容器そのものの形状設計を注意深く行う必要がある。
通常、スプレーノズルを用いて槽を洗浄する場合、スプレーノズルが平面的に移動することがないため、特に上鏡板に取付けられる各ノズル(凹凸部)に死角が発生し、洗浄できない部分ができてしまう。三次元回転や上下昇降するスプレーノズルにあっても、平面的にはほとんど移動することがなく、上下方向の移動が上鏡板の死角排除に寄与する効果は小さい。このため、槽に取付けられる各ノズルの形状そのものを死角のない、洗浄され易い形状にする必要があるが、スプレーノズルが平面的に大きく移動可能であれば、その必要はないことになる。
このため、マニピュレーターのような構造で、スプレーノズルを自由に移動できる方法が各種考案されているが、構造が複雑となり、経済性・信頼性の面で普及していない。
なお、上下昇降式以外のスプレーノズルでは、一般的に槽の内部液面との関係で、その取付位置を限りなく低くすることはできない。
【0009】
現状では、これらの槽・容器は、紙の図面や二次元CADにより設計されるのが一般的で、三次元CADなどの立体把握手法により設計されることは希であり、仮に三次元設計が行われるとしても、洗浄性が目的ではなく、応力などの構造解析が目的の場合が多い。
しかしながら、紙の図面や二次元CADによる形状設計(二次元設計)では、実際には三次元形状である槽等の形状を把握しきれず、どの部分がスプレーノズルから見て「かげ(死角)」となるかを特定することは難しい。仮に設計者が素晴らしいイマジネーションを働かせて、「かげ」のない形状設計を実現させたとしても、重力等により下向きの曲線を描く洗浄液の軌道を反映させることは、不可能に近い。
また、洗浄液は、スプレーノズルから一定の初速をもって噴射されるのであるが、槽壁の洗浄度は、洗浄液の到達時の速度と分布密度により変化する。スプレーノズルから遠いほど、またスプレーノズルより上方向に位置する場所ほど、重力等により初速が減速され、また洗浄液が広がることにより密度が低くなり、洗浄度が低下する。
【0010】
なお、実際の槽の設計において、槽の配管接続ノズルやマンホール等の凹凸部は、通常、洗浄性の追求のみのために理想的に配置できることは少ない。配管レイアウトや槽の大きさなどの制約により、「かげ(死角)」となる部分を無くすことができない場合も考えられる。
この場合、図24に示すような洗浄液の反射による洗浄を期待することになるが、洗浄液は、その軌道と被洗浄部との衝突角度、洗浄液の衝突時の速度などにより、新たな軌道を描いて反射される。また、実験データによれば、洗浄液は、衝突時に大きく減速されてしまい、かつ衝突面に沿って広がって流れてしまい、反射後に空中を飛翔する範囲と量は、わずかであるので、反射洗浄の有効域を特定するのは、非常に難しい上に、その有効性は低い。
なお、特許文献2には、 ノズルから高圧水を噴出して対象物の表面層を剥離すると共に、この噴出した高圧水の進行方法を変更する方向変更装置が設けられているものが、記載されている。
しかし、この特許文献2のものでは、対象物の表面層の形状に沿うように高圧水の進行方向を変更するものであり、このためには方向変更装置の設置を精度よく行う必要があり、人間の作業による調整ミスや操作不良の発生を排除することが難しかった。
【0011】
現在、市販されている三次元CAD系のソフトを用いても、これらの設計上の問題を解決する機能を持っているわけではなく、三次元CAD上で設計者自身が洗浄液の軌道を反映して設計を行う場合、設計時間が膨大となり、経済性の面で商業ベースに乗らない。
また、市販されているコンピューターグラフィック系のソフトを用いれば、レイトレーシングといわれる照明光源の照度・かげを表現する機能により、ある程度、自動での設計支援が可能であるが、重力等による軌道や槽壁衝突時の洗浄液の速度を反映することはできない。
なお、上記の洗浄の目的に特化し、一般の槽類設計技術者にも簡易に扱えるシミュレーションソフトは市販されていない。
例えば、特許文献3には、光を擬似的に飛翔する液体に置き換えてシミュレーションを行うものが記載されているが、重力等による物理軌道を反映させる方法は、発光源の位置を上下したり、ある方向における屈折を擬似的に飛翔物理軌道に置きかえるものであり、この方法では、槽・浴槽・建造物等の発光源から様々な距離を有する三次元物体である被浴体には、適用することが出来ない。
また、特許文献4の、液体の形状などの時間的変化をシミュレーションして表示を行うものや、特許文献5の、インク放出のような液体の流れをシミュレーションするものでは、液体の飛翔状態・被浴体への衝突状態等を把握することはできても、限られた距離にて、限られた被浴体形状(平面等)に対して、主に液体粒の状況等を把握するものであり、広範囲に噴射される液体に被浴される被浴体の被浴状況を把握するものではなかった。
この広範囲に噴射される液体に被浴される被浴体の被浴状況の把握のためには、一定面積に対する噴射密度や被浴体各部に対する距離が個別に定義されなければならない。したがって、特許文献4及び特許文献5は、被浴体の三次元モデルを用い、スプレーノズルの三次元モデルとの相関位置を定義することにより、様々な形状を有する被浴体に対する被浴状況を把握するものではなかった。
また、特許文献6には、シミュレーションにより塗装明度分布を演算するものが、記載されているが、様々な形状を有する三次元モデルに対するものではなかった。
【0012】
現状の一般的に行われている設計手法では、実際に製品ができて、スプレーノズルを実装して行われる試運転時に至ってはじめて、どこが死角になっているのかが判明することになる。つまり製品完成後に洗浄性の問題点が判明し、これを是正することになる。
ところで、 洗浄性を問われるような槽の主要材質は、ステンレスであることが多く、これは切断・溶接など熱の加わる加工時に大きな歪を生じやすく、完成後の改造は、大きなコストと時間を要する。槽の納期の遅れは、その槽を使用するプラント設備全体の建設計画に大きな影響を与える場合が多い。
なお、一般的にこれら産業プラント設備に用いられる槽等は、製作のたびに個別に一品一葉に設計され、同一のものを大量・中量生産されることは、非常に少ない。
【0013】
このように三次元設計手法を用いても、従来の二次元設計手法を用いても、様々な制約により完全に死角を無くせないケースがあることに変わりはない。しかし、適切な三次元設計を行えば、槽の設計段階にて、どの部分が死角になるかを把握しておくことができる。二次元設計の場合は、槽完成後の試運転時に初めて死角の位置が把握される。このことが、その槽が使用される装置全体の建設計画に大きく影響されるのであるが、何れの設計手法を用いたとしても、完全に死角を無くすことができない場合、何らかの対策が必要となる。
【0014】
これについて、 一般的に行われる対策は、以下の通りである。
(1)死角がなくなるようにマンホール等当該部分の形状を改造する対策手段
前述と重複するが、バフ研磨施工済の槽などの場合、完成後の改造は、困難であったり、不可能であったりする場合が多い。
三次元設計が充分に成されている場合は、製作時の寸法違いを除いて、改造の余地がない筈であり、この面での対策は行われない。
(2)当初選定した市販スプレーノズルを機種変更して、大きな吐出量のものに替えたり、三次元回転型や上下昇降型に変える対策手段
この場合、スプレーノズルそのものが大きくなる場合が多いため、より大きな取付座を必要とすることになる。従って、槽の改造となり、上述のように変更不可となる場合が多い。
また、必要供給洗浄液量が増大し、そのために洗浄液供給システム全体の見直しが必要になったり、回転駆動のための電気配線や空圧配管が必要となる場合もある。
(3)内部の洗浄スプレーに連結するパイプを曲げて、スプレー噴射位置を変更する
図25に示すようにスプレーノズルの平面位置を変更する。この場合、現在、死角となっている部分を洗浄できるようにスプレー位置を変更するのであるが、このために現在、死角となっていない部分が、死角になってしまう恐れがある。
(4)スプレーノズルの数を増やす
例えば、二次元回転ノズルを2個使用して死角が残ってしまう場合、これを3個にして死角を消してしまう方法である。この場合、洗浄液の必要量が単純に1.5倍となり、洗浄液供給量の見直しが必要となる場合がある。しかも、配管レイアウトや、洗浄ノズル以外の一般ノズルの取付数量によっては、スプレーノズルを増設する余地が無い場合も、大いにあり得る。
【0015】
(5)小型の固定型噴射ノズルを追加し、死角の位置にピンポイントに噴射することにより死角をなくす
図26に示すように、主たるスプレーノズルとは別に、死角部専用にノズルを追加する。
これが、一番一般的に施工される対策である。効果も確実で、追加されるスプレーも小型であるが故に洗浄液量も少なく、洗浄システム全体に対するインパクトも小さい。
しかし、小型といえども洗浄液配管の増設が必要であり、例えば数十基の槽が使用されるプラントにおいて、各1〜3個程度これを増設する場合、決してインパクトが小さいとは言えない。
洗浄性・殺菌性を問われることが多い食品や医薬プラントにおいては、槽内部をできるだけ洗浄性の高い凹凸のないスッキリした形状にすることが肝要であるが、追加小形ノズル自体が、槽内部の形状を複雑化し、雑菌発生等の原因となってしまいかねない。このため、追加小形ノズルは、最小限とすることが望ましい。
(6)完全洗浄をあきらめて、死角の部分は人間による手洗浄を行う
人間の手が加わることにより、洗浄性がその度毎に異なる可能性があるうえに、当初完全洗浄を予定して設備の全体計画を立てていた場合、生産計画・運転プログラムの変更も含めた大きな影響を与えかねない。第一、自動洗浄を指向する上で手洗浄工程を取り入れることは、本末転倒となる。
【0016】
完全に死角のない洗浄性の高い槽形状を目指す上で、設計手法の違いが大きく影響するのは、死角の有無・位置、その有効な対策方法が、槽設計段階にて把握できるか、または完成試運転後となるかである。その違いが槽の納期に大きく影響し、装置全体の設置計画にも大きく影響する。上述の(1)〜(6)に挙げた各死角対策で特筆すべきことは、例えば二次元設計のような三次元形状を把握できない設計手法を用いて槽を完成させた場合、その対策施工時にも対策効果が把握できないまま対策を施すことになり、トライ&エラーを繰返す問題解決を強いられてしまい、しかもそれを行う時期は、予定納期の直前となることである。
【0017】
洗浄性向上を要求される被洗浄物が、例えば製缶品(ステンレス等の鋼板を曲げたり溶接して製作される成形物の一般総称)であるとき、洗浄性を向上させるためにその形状を目的に向って最適化していった場合、マンホール・ハンドホール・覗窓・配管接続ノズル・攪拌機座等の凹凸部(業界呼称としてノズルと総称する。スプレーノズルとは異なる。)は、図27の配管接続ノズル5、6のように、垂直軸に対して斜めに取付けたり、本来、単純なパイプ形状であるネック部をテーパー管化したりして、通常のタンクとは異なる部分形状にしなければならなくなることは、必然である。
【0018】
通常の製缶品は、大量生産されず一品一葉の生産が多いことと、その使用目的から、一般的な工業製品に比べ、大きな製作誤差を許容され、また、その許容誤差を業界の常識としてコスト計算され、製作方法・検査方法を選定し、生産されている。例えば、槽の中心からノズル中心までの許容誤差は、一般的に採択されている日本石油学会の規格によれば、±6mmである。接続される配管を施工する上で支障のない許容差内であれば、問題が発生しないからである。
しかし、洗浄性向上を目的に槽の形状を最適化した場合、これらとは異なる理由で、寸法精度を要求されることになる。傾き等の誤差により、洗浄死角の有無・程度が大きく変わる可能性があるためである。
斜めに取付けられたり、テーパー化されたノズルは、一般的な直立したノズルに比べ、製作時に寸法精度を出すことも、その寸法精度を確認するために検査することも、煩雑で難しくなる。また、精度要求の目的が死角の排除であるため、一般製缶品のように、一律に何mmと規定してもあまり意味がない。しかし、製品の要求仕様が完全な死角のない洗浄を目的とする場合、目的の完遂度確認が製品完成時の噴射試験に拠らなければならないのであれば、製作者・発注者ともに工程全体に大きな不安を抱えての製作進行となる。
【0019】
前述のように、寸法精度を出すのが困難で、製作の難しい製品の場合は、製作者にある程度以上の熟練度や、充分に吟味され、取捨選択された製作方法の選定が必要となる。また、目的達成のために工夫された治具なども製作業者の独自ノウハウとして開発されることになる。
現状の製缶業界では、製缶業者は、企業規模が小さく、比較的企業規模の大きな会社から、競争見積により発注されるのが一般的である。膨大な製缶品全体の生産量に比べれば、洗浄性を要求され、スプレーノズル等が取付けられる製缶品の発注量は大きくない。各製缶業者は、様々な製缶品を複数の顧客から不定期に競争見積により受注する中で、一部を洗浄性が必要な機器の製作に当てることになり易い。
熟練度その他を鑑みれば、一定の限られた業者により製作された方が理想的ではあるが、それでは競争原理が働かず、洗浄性向上に最適化された製缶品の価格全体が高止りしてしまう危険性がある。また、大きなプラント建設が国内で重複し、その多くで洗浄性向上の要求があった場合など、一定の業者では、製作が追いつかない状況も考えられる。
【0020】
経験的にこのような槽内においてスプレーノズルによる洗浄性が問題となるのは、主に上鏡板に取付けられるマンホール等のノズル類である。これらは、洗浄液の噴射出発点であるスプレーノズルより上に位置し、しかもその水平距離に対して鉛直距離が短い。従って、ノズル内に洗浄液が進入する際の入射角が小さくなり、死角が発生しやすい。
これに対して、胴板や下鏡板に取付けられるノズルは、スプレーノズルより下に位置するため、重力による洗浄噴射速度の低下がなく、しかも洗浄部分に衝突した後は、洗浄液がその面に沿って流下していくので、洗浄されやすい。死角であるか否かに関わらず、洗浄される可能性が高いのである。
特許文献1は、上鏡板のノズルの洗浄には何ら配慮されていない。
【0021】
【特許文献1】特開平9−117654号公報(第3〜4頁、図1)
【特許文献2】特開2002−66471号公報(第2〜3頁、図1)
【特許文献3】特開平5−324798号公報(第4〜5頁、図1)
【特許文献4】特開平10−15479号公報(第4〜9頁、図1)
【特許文献5】特開2003−285428号公報(第4〜8頁、図4)
【特許文献6】特開平8−206553号公報(第3〜4頁、図1)
【発明の開示】
【発明が解決しようとする課題】
【0022】
前述のように槽の洗浄性を向上させるには、槽の設計段階において、凹凸部における死角を無くすことが肝要である。
また、例え死角を無くすことが出来たとしても、噴射流体と被浴体との距離や衝突角度によっては、当該被浴体に対して充分な被浴密度や被浴速度が得られるかどうかを検討しなくては、充分な設計とはいえない。
これは、現在の国内・国外の状況では、槽の被浴性を向上させるための設計手段として、三次元CADやコンピュータグラフィック系のソフトは、2〜3の例を除いてほとんど使用されておらず、また使用されたとしても、重力などによる洗浄液の軌道を反映させることはできない。さらには、噴射流体の密度・速度を反映して把握することもできない。このことは、噴射の目的を塗装スプレーや消火に置き換えても同様である。このため、何らかのこれに特化した設計手法が必要と考えられる。これには電算処理の技術が不可欠と思われる。
【0023】
現状の流体工学をもってすれば、閉じられた空間内や、一定条件下の屋外で展開される噴射液の動きをコンピュータによるフルシミュレーションで再現することも可能とされているが、その開発には莫大な開発費用と時間を要する。仮にこれを成し遂げてプログラムが完成したとしても、スーパーコンピュータなどの高価なハードウエア上でしか稼動しなかったり、パソコン上で稼動したとしても膨大なシミュレート時間を要するようでは、本件の需要に対して経済性があるとは言い難い。
このため、噴射状況モデルを簡素化・抽象化し、しかも並列演算処理が可能なプログラムを開発することにより、経済的なシミュレーションを行えるようにする必要がある。複数のコンピュータによる並列演算処理が可能なプログラム構造とすれば、昨今のパソコンの価格下落状況を鑑みれば、安価に稼動し、実用的な時間内でシミュレートできるシステムとなる。
なお、並列演算処理は必須のものではなく、並列演算処理を行わない場合でも、シミュレート時間が長くなるだけで、従来の手法では実現がむずかしい被浴状況の把握を行うことができる。
【0024】
上記において、槽の死角をなくす設計手法の必要性を述べたが、いかに設計手法によいものを導入したとしても、配管レイアウトその他の制約から死角を完全になくすことは不可能な場合が多い。
このため、すでに述べたように様々な対策手段がとられるのであるが、それぞれに問題点がある。完成後の改造を伴わず、洗浄液総量の増加の必要がなく、コンタミネーションの原因となりにくい死角排除対策が必要である。
【0025】
被洗浄物、特に製缶品の洗浄性向上目的で形状を最適化する場合、要求される寸法精度が上がることになる。このために、寸法精度を満足するような製作方法や発注手法が必要である。
【0026】
また、被洗浄物、特に製缶品の洗浄性向上目的で形状を最適化する場合、ノズルの傾斜取付けやテーパー管化により、従来のノギス・巻尺・直尺・角度ゲージ等を用いた寸法検査方法では、目的を達しているかを判断することが困難である。形状が複雑で測定しにくい上に、明確に単純な許容差を設定することが難しいからである。
このため、目的達成の可否を判定する、なんらかの検査方法を採択するか、または開発する必要がある。
例えば、接触センサー、レーザー光線、電磁波、CCD受光などにより、実体を立体的に形状把握し、これを三次元電子データ化するシステムが多種開発されているが、これらは現状、非常に高価であり、製缶業者が洗浄性向上を問われる製缶品の製作のためだけに、これを導入するのは、現実的ではない。
また、製品完成後に実際にスプレーノズルをセットしての噴射試験を行う場合にあっても、これを行うためにポンプ・流量計・圧力計・仮配管等を用意しなければならず、非常にコストがかかり、時間的にも工程を圧迫している。
【0027】
現状の製缶業においては、例えば自動車産業に代表されるような高度な生産管理手法は、ほとんど導入されておらず、非近代的で効率が悪く、生産性は良いとは言えない。
大多数の製缶業者は、中小企業である上に、受注に当っては競争見積を前提にしており、受注量の安定化のためには、熱交換器・攪拌機付機器・ジャケット付機器など様々に製作ノウハウを必要とする広汎な種類の製品を手がけなければならない。しかも、使用される材質も、一般炭素鋼・低合金鋼・ステンレス等の鋼合金鋼・非鉄金属と様々である。
さらにこれらは、原則的に一品一葉生産で、同じものを大量・中量生産することがないため、単純に大量生産品で培われた高度な生産管理システムを導入することが難しい状態にある。
【0028】
この発明は、上述のような課題を解決するためになされたものであり、スプレーノズルにより噴射される流体の物理軌道を反映できるようにして、スプレーノズルによる被浴体の被浴性を検証する流体噴射シミュレーション方法を得ることを第一の目的にしている。
また、噴射流体の被浴密度や噴射流体の被浴体への衝突速度を把握することができる流体噴射シミュレーション方法を得ることを第二に目的としている。
また、スプレーノズルから噴射された噴射流体の被浴体衝突時の反射および広がりを反映できるようにして、スプレーノズルによる被浴体の被浴性を検証する流体噴射シミュレーション方法を得ることを第三の目的にしている。
また、スプレーノズルから噴射された噴射流体の軌道を形状特化部により変化させて、この軌道を変化させた噴射流体により死角となりがちな凹凸部を被浴するようにした槽及び被浴体を得ることを第四の目的にしている。
また、スプレーノズルの噴射部を斜めに成形することにより、各噴射流体の槽及び被浴体への衝突に時間差を与え、衝突時の噴射流体同士の干渉を少なくして、噴射流体の形状特化部にて意図どおりの軌道変化を起こす槽及び被浴体を得ることを第五の目的にしている。
また、槽及び被浴体の製作中間段階や完成検査時に、実体形状を三次元計測器具で三次元モデル化し、これに被浴性の把握を行う流体噴射シミュレーションを行うことにより、製作歩留まりや出荷製品の信頼性を上げることができる槽及び被浴体を得ることを第六の目的にしている。
さらに、槽を構成する上鏡部の製作を専門の企業で行うようにし、 製作精度の点から製作難易度が高くなりがちな「洗浄性の高い槽」において、製作機会を増やし、製作ノウハウの集積度を上げ、集中的な設備投資を行うことで製品品質やコストパフォーマンスを向上する槽製作システムを得ることを第七の目的としている。
また、噴射部を斜めに成形したスプレーノズルを得ることを第八の目的にしている。
【課題を解決するための手段】
【0029】
この発明に係わるシミュレーション方法においては、スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、被浴体の三次元形状データ及び記スプレーノズルの位置及びスプレーノズルから噴射される流体の初速を入力するデータ入力ステップと、このデータ入力ステップで入力されたデータに基づいてスプレーノズルから各噴出し方向に噴射される流体の物理軌道を計算するステップと、求めた複数の流体の物理軌道と被浴体との交点を計算するステップとを含み、被浴体の流体による被浴箇所を表すデータを出力するものである。
また、スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、被浴体のモデルを作成するステップ、この被浴体のモデルの各部をスプレーノズルからの距離に基づいて下方に移動させるステップ、スプレーノズルの配置位置に光源を配置したときに形成される陰の部分を割り出すステップ、陰の部分を含むように下方に移動させた被浴体のモデルの各部を元に戻すステップ、及び陰の部分を把握するステップを含むものである。
また、この発明に係わる槽においては、洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽において、スプレーノズルから噴射された洗浄液の軌道を変化させるように形成された形状特化部を備えたものである。
さらに、この発明に係わるスプレーノズルにおいては、洗浄液を噴射するスリットを鉛直方向に対し斜めに形成したものである。
また、この発明に係わる槽製作システムにおいては、槽を構成する上鏡部の設計段階で、設計された上鏡部について、流体噴射シミュレーション方法における槽のモデルを作成する作業を実行し、この実行により作成された第一の槽のモデルについて流体噴射シミュレーション方法による洗浄性を検証すると共に、設計された上鏡部を製作した後に、製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、流体噴射シミュレーション方法による洗浄性を検証するものである。
また、槽を構成する上鏡部を設計する第一の企業に配置され、上鏡部の設計を行う第一の計算機、及びこの第一の計算機とネットワークを介して接続されると共に上鏡部の製作を専門的に行う第二の企業に配置された第二の計算機を備え、
第一の計算機は、第一の計算機により設計された上鏡部について、流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第一の槽のモデルについて流体噴射シミュレーション方法による洗浄性を検証すると共に、
第二の企業による上鏡部の製作後に、第二の計算機は、製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、流体噴射シミュレーション方法による洗浄性を検証するものである。
【発明の効果】
【0030】
この発明は、以上説明したように、スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、被浴体の三次元形状データ及び記スプレーノズルの位置及びスプレーノズルから噴射される流体の初速を入力するデータ入力ステップと、このデータ入力ステップで入力されたデータに基づいてスプレーノズルから各噴出し方向に噴射される流体の物理軌道を計算するステップと、求めた複数の流体の物理軌道と被浴体との交点を計算するステップとを含み、被浴体の流体による被浴箇所を表すデータを出力するので、被浴体の被浴状況を現実に近い形で把握することができる。
また、スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、被浴体のモデルを作成するステップ、この被浴体のモデルの各部をスプレーノズルからの距離に基づいて下方に移動させるステップ、スプレーノズルの配置位置に光源を配置したときに形成される陰の部分を割り出すステップ、陰の部分を含むように下方に移動させた被浴体のモデルの各部を元に戻すステップ、及び陰の部分を把握するステップを含むので、スプレーノズルから噴射される流体の重力の影響を考慮した物理軌道を反映させた被浴性把握のシミュレーションを行うことができる。
また、洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽において、スプレーノズルから噴射された洗浄液の軌道を変化させるように形成された形状特化部を備えたので、槽の洗浄性を向上させることができる。
さらに、スプレーノズルを、洗浄液を噴射するスリットを鉛直方向に対し斜めに形成したので、噴射流体の被浴体形状特化部への到達に時間差を与え、これにより噴射流体同士の干渉を少なくし、形状特化部での意図した方向への反射を効率的にすることで、排除できない被浴体の凹凸による被浴死角部をも、被浴させることができる。
また、槽を構成する上鏡部の設計段階で、設計された上鏡部について、流体噴射シミュレーション方法における槽のモデルを作成する作業を実行し、この実行により作成された第一の槽のモデルについて流体噴射シミュレーション方法による洗浄性を検証すると共に、設計された上鏡部を製作した後に、製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、流体噴射シミュレーション方法による洗浄性を検証するので、槽製作の歩留まり向上を行うことができる。
また、槽を構成する上鏡部を設計する第一の企業に配置され、上鏡部の設計を行う第一の計算機、及びこの第一の計算機とネットワークを介して接続されると共に上鏡部の製作を専門的に行う第二の企業に配置された第二の計算機を備え、
第一の計算機は、第一の計算機により設計された上鏡部について、流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第一の槽のモデルについて流体噴射シミュレーション方法による洗浄性を検証すると共に、
第二の企業による上鏡部の製作後に、第二の計算機は、製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、流体噴射シミュレーション方法による洗浄性を検証するので、洗浄性の問題が集中する槽の上鏡板を特定の専門メーカーである第二の企業により製作させることで、洗浄性向上に必要な製作/検査資材を第二の企業に集中し、設備投資費用を少なくすると共に、製作の熟練化や、高度な生産管理手法導入の容易化により、製作コスト低減と品質向上を図ることができる。
【発明を実施するための最良の形態】
【0031】
実施の形態1.
実施の形態1は、本発明によるシミュレーション方法を用いて、洗浄液の物理軌道を反映して、直接に洗浄液が到達する部分を明らかにすることにより、槽の洗浄性を検証するものである。
図1は、この発明の実施の形態1による洗浄液のシミュレーション方法の流れを示す図である。
【0032】
以下、被洗浄物を槽として、図1に沿って説明する。
まず、槽の電子データ上のサーフェースモデル(厚みのない殻だけのモデル)を作成する(ステップS1)。データ形式は、微少な三角形とその各頂点座標で構成されるTINデータとする。次いで、マシン語、フォートラン、C++などの汎用言語で作成されたプログラムにこのTINデータを取り込み、スプレーノズルから各三角形の頂点までの距離を演算する(ステップS2)。当該プログラムは、一定の数式(重力軌道等)とスプレーノズルからの距離に基づいて、各三角形の頂点をわずかに下に下げる(ステップS3)。この結果、サーフェースモデルは、当初の形状と異なり、スプレーから遠い部分ほど下に垂れ下がった形状となる。
【0033】
当該プログラムにより変形されたサーフェースモデルを三次元CADやコンピューターグラフィック系のソフトなど、レイトレーシング(光源とモデル面での反射を一定の演算に基づいて把握する機能)機能を持つ市販ソフトに取り込む(ステップS4)。次に、スプレーノズルの位置を光源として、レイトレーシング演算を行い、死角(かげ)となる部分を割り出す(ステップS5)。
レイトレーシング実施後の、死角を陰として明示されたデータを、再び当該プログラムに取り込み(ステップS6)、レイトレーシングされた部分も含めて、数式と距離により下に下げたデータをもとに戻す(ステップS7)。
このデータを市販ソフトにもう一度取り込み、可視化して、スプレーノズルにより直接洗浄された部分が、重力等の物理軌道を反映した形で、確認できるようにする(ステップS8)。これにより、シミュレーション方法を用いて、洗浄液の噴射による洗浄部分を把握することができる。
【0034】
実施の形態1によれば、安価なハードシステム上で稼動し、短時間のシミュレート時間で演算を終えるシミュレーション方法を用いて、非常に安価に簡便に物理軌道を反映した洗浄シミュレーションを実現することができ、経済的に被洗浄物の形状設計を行うことができる。
【0035】
実施の形態2.
実施の形態1では、洗浄液の反射・速度・密度は、考慮していないが、実施の形態2は、これらを考慮して洗浄液のシミュレーションを行うものである。
図2は、この発明の実施の形態2による洗浄液のシミュレーション方法における洗浄液の代表的な軌道を示す図である。
図2において、2、4、6は図23におけるものと同一のものである。スプレーノズル4から噴射された洗浄液31は、実線のような軌道を描いて、槽の内壁面に衝突し、この槽の内壁面で反射され、反射された洗浄液61として、点線で示される軌道を描く。この洗浄液31の軌道は、例えば400万本ある。
【0036】
図3は、この発明の実施の形態2によるスプレーノズルの吹き出し方向と吹き出し範囲を示す図であり、図3(a)は、槽の水平切断面を示す図、図3(b)は、槽の垂直切断面を示す図である。
図3において、槽の胴板1には、上鏡板2と、下鏡板3が取り付けられ、上鏡板2には、配管接続ノズル5と配管接続ノズル6とスプレーノズル座7が設けられている。洗浄液を噴射するスプレーノズル4は、スプレーノズル座7に取り付けられている。図3には、洗浄液の吹出し方向と吹出し範囲角度が示されている。吹出し範囲角度は例えば360°とすることもできる。360°の場合は、全方向へ噴出していることになる。
【0037】
図4は、この発明の実施の形態2による槽壁衝突時の洗浄液の広がりを示す図である。
図4において、槽壁に入射角θ1(鉛直方向)θ2(水平方向)で衝突した洗浄液は、反射角θ1’(鉛直方向)θ2’(水平方向)で少量が反射され、大部分は、広がった洗浄液71のように槽壁面に沿って流れる。
図5は、この発明の実施の形態2による洗浄液のシミュレーション方法の流れを示すフローチャートである。
【0038】
次に、動作について説明する。
以下、実施の形態2のシミュレーション方法の概略の流れを説明する。
(1)(ステップS1、第一のステップ)まず、槽のモデルを作成する。これはサーフェースモデルであってもよいし、応力解析プログラム等に用いるために予め作成されたソリッドモデル(物質としての厚みを持ったモデル)であってもよい。また、データ形式は、TINデータであってもよいし、球体や円筒などの面としてのデータを持つ面データであってもよい。TINデータであれば、シミュレーション精度と演算時間で、少し劣り、面データであれば、面の各形状ごとの反射角度設定の幾何方程式が必要となり、プログラムが煩雑化するが、演算速度は速くなる。
(2)マシン語、フォートラン、C++、VBA、LISPなどの言語で作成されるプログラムにこのデータを取り込む。
(3)(ステップS2、第二のステップ)洗浄液は、スプレーノズルから一定のベクトルと初速を持つ点として概念化されている。この点が0.1度間隔などの任意の間隔にて、各方向に一定の数式軌道をもって発射される。例えば0.1度間隔で全球方向に発射された場合、洗浄液は約400万本となる。
プログラムは、この400万回を、順次、以下の流れで洗浄液の軌道を再現していく。
尚、このプログラムにおいては、「0.1度などの任意の間隔」は、「噴射流体の噴射密度」と同義である。
洗浄液をこのように概念化し、これら順次行う軌道計算を、複数のハードに分担させることで、演算の並列処理が簡易に可能となる。
(4)発射された洗浄液は、数式に応じた軌道を描いて槽壁に衝突することになる。
(5)(第三のステップ)衝突位置とそのスプレーノズルからの距離により、衝突時の洗浄液の速度を演算する。
(6)(第四のステップ)衝突時の洗浄液軌道と衝突部位の入射角を演算する。
入射角には単数または複数の閾値を設け、その角度により、その後の洗浄液の振る舞いが設定されている。ある閾値以下の洗浄液は、槽壁面に沿って流れたり、ある閾値以上の洗浄液は、槽壁で反射され、入射角に応じて一定の数式による角度で、再び空中に一定の物理軌道を描いて飛び出す。
いずれの場合でも、衝突時には、入射角と衝突速度に応じて速度が減速される。槽壁面に沿って流れる場合でも、そのベクトルに応じて重力や摩擦などの条件を反映した数式に基づいて減速されていく。
(7)槽壁面に沿って流れる洗浄液は、槽壁面の変化角に応じて、一定の閾値以上の変化角をもつ箇所から、その時に洗浄液の持っているベクトルで、再び空中に飛び出す場合がある。その時点で充分な速度を持っていれば、別の槽壁に衝突し、その部分を洗浄しつつ、最初の衝突と同じルールで軌道を描いていく。
(8)洗浄液は、最終的には徐々に速度を失い、槽下部に降下していき、重力により加速され、再度、反射されたりする。速度が、ゼロまたは一定の閾値を下回る時点で、洗浄液の軌道演算は終わり、次の洗浄液の軌道演算を行う。(9)重複するが、0.1度間隔でこれを全球方向に行う場合は、約400万回これを繰返すことになる。
ここで、演算される洗浄液の物理軌道は、実験値により補正することができる。また、この洗浄液の物理軌道は、洗浄液の噴射時に通過する気体の影響による減速や方向変化についても、実験値により補正することができる。この補正により、より正確な物理軌道の演算結果が得られる。
【0039】
次に、図5に基づき、実施の形態2の洗浄液のシミュレーション方法の流れについて説明する。
まず、槽のモデルを作成し、当該プログラムに取りこむ(ステップS1)。次いで、スプレーノズルの位置、吹出し方向、吹出し範囲角度、洗浄液の初速を入力する(データ入力ステップ)。これにより、スプレーノズル位置から、一定の軌道数式に基づいて洗浄液が発射される(ステップS2)。
やがて、洗浄液は、槽壁に衝突する。この衝突時の洗浄液の速度を演算する(ステップS3、第五のステップ)。衝突点は、その速度に応じたスペクトル色にて表示される。次いで、衝突時の洗浄軌道により、衝突部位(槽内壁)への入射角度を演算する(ステップS4)。この入射角によって、洗浄液のその後の振舞いが変わる。
閾値A以上の速度では、入射角・速度に基づいて演算された反射角・反射速度により槽壁から反射される。以後は、ステップS2と同じ軌道数式により以後が繰り返される(ステップS5)。閾値A未満の速度では、入射角・速度に基づいて演算されたベクトルにより、槽壁面に沿って流れる(第五のステップ)。この際、連続する面の角度が閾値B以上の場合は、ふたたび空中に飛び出し、ステップS2と同じ軌道数式により、以後が繰り返される(ステップS6)。
なお、速度が、ゼロまたは閾値Cを下回った時点で、その洗浄液の軌道演算は終了し、次の洗浄液の軌道演算に移る。
全球方向に噴射される回転ノズルの場合、例えばこれを0.1度間隔でスプレーノズルから発射される点として概念化し、この点の数だけ演算を行う。全球方向で0.1度間隔の場合は、約400万本分の演算を行うことになる。
【0040】
洗浄性の可視化については、一般的にシミュレーションで使用されているように、洗浄液の槽壁面との衝突点における衝突速度を太陽スペクトラムの各色に置き換えて遅速を表す。密度については、例えば400万個の衝突ポイント(交点)の疎密そのものが、密度を表すことになる。槽壁面に沿って流れる場合は、その軌道が線として表現され、流れる速度は色で表現される。この場合、営業用のデモンストレーションの用途を除いては、空中での飛翔軌道を可視化する必要はない。
なお、この密度は、槽(被浴体)各部の一定表面積あたりの洗浄液(流体)との交点の数を算出することにより、スプレーノズルの噴出し総量と槽一定面積あたりの交点の数との関係から、槽各部の洗浄液の被浴密度を把握することができる。槽(被浴体)の各部の一定面積あたりの衝突点の平均速度と衝突点の数を算出すれば、その部分の洗浄強度を数値的に把握することができる。
また、例えば、二次元回転形のスプレーノズルが、槽に複数個設置される場合は、スプレーノズルの数だけシミュレーションを行い、全てのシミュレーション結果を合成することにより、あたかも複数個の二次元回転ノズルが同時に個別の場所から噴出されたかのような状態を可視化できる。
洗浄液を運動する点の概念に置きかえることにより、洗浄液の速度と密度が可視化され、洗浄強度が簡易に可視化される。
【0041】
また、合成前に個別のモデルにレイヤと呼ばれるモデル毎の識別データを与えて合成することにより、任意のスプレーノズルからの噴射のみを画面表示したり、画面から排除したりして、どの部分がどのスプレーノズルにより洗浄されているかを可視化することも可能である。
【0042】
実施の形態2では、図3に示すように、スプレーノズル4からの洗浄液の噴出方向、吹出し範囲角度をシミュレーション開始前に数値入力にて設定することにより、様々なタイプのスプレーノズルに対応することが可能である。
例えば、円錐噴出小形固定ノズルを複数個組込んで市販されている図21のようなタイプのスプレーノズルについても、対応が可能である。この場合、小型固定ノズルの数だけシミュレーションを行い、全てのシミュレーション結果を合成して一つのモデルを完成させることにより、複数個のノズルがあたかも同時に噴出して、槽を洗浄したかのような状態を可視化できる。
また、実施の形態2では、吹出し範囲角度を狭くしてレーザービームのような直線に近い噴出形態をとり、さらに噴出開始位置と吹出し方向を予め設定された軌道で移動させるようにすれば、図22のような三次元回転形スプレーノズルや、上下昇降形スプレーノズルに対応することも可能である。
【0043】
槽壁面に衝突した洗浄液は、図4のように、その一部が反射して再度空中を飛翔するとともに、大部分は槽壁面に沿って、衝突時の速度、ベクトルと入射角及び重力方向に応じて、広がるように流れる。
実施の形態2では、洗浄液を移動する点として概念化しているので、衝突時のこれらの諸条件を演算して、広がりにより洗浄効果のある部分を点や面として可視化することができる。どのように広がるかの条件として、衝突面の表面粗さや硬度といったものも厳密には影響するが、これらは本プログラムの目的からして無視できるものである。
【0044】
空気中を飛翔する洗浄液が、一定以上の入射角で固体に衝突した場合、その大部分は反射せず、槽壁面に沿って広がる性質を示す。実施の形態2では、その性質も前述の入射角閾値とその後の軌道規則をプログラムに設定しておくことにより、このような軌道も、図4に示すように、シミュレーションすることができる。
【0045】
なお、実施の形態2のシミュレーション方法は、完全シミュレーションを目的とせず、経済的に使用できるハード上で、実用的なシミュレーション時間にて演算を終えるように概念化・抽象化するものであるから、前述の機能をすべて盛り込む必要はない。
パソコン単独かパソコン並列か、または並列台数及び各ハードの処理能力とシミュレーション時間とのバランスを考えて、例えば衝突時に洗浄液が、槽壁面に沿って広がる演算等は省略してもかまわない。また、逆に、槽壁面に沿って広がる演算のみを行うものであってもかまわない。これらは、槽の洗浄性向上という目的を達成するためのツールとして、必要機能が判断されることとなる。
このように、実施の形態2では実現の難しい反射・速度・密度をもシミュレーションすることができ、洗浄性をより明確に表現することができる。但し、このためのプログラムは、大きなものとなるため、シミュレーション時間は、実施の形態1よりもかかることになる。
【0046】
実施の形態2によれば、洗浄液の槽壁への衝突後の反射、衝突時の洗浄液飛翔速度、衝突時の洗浄液分布密度を把握できる流体噴射シミュレーション方法を用いるので、被洗浄物の洗浄性最適化を高いレベルで実現することができる。
【0047】
実施の形態3.
実施の形態3は、槽壁の一部の形状を変形し特化させた形状特化部で、洗浄液の軌道を変えて、被洗浄部に洗浄液を供給することにより、スプレーノズルによる槽の洗浄性を高めるようにしたものである。
図6は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた槽を示す図であり、図6(a)は、槽の水平切断面を示す図、図6(b)は、槽の垂直切断面を示す図である。
図6において、2、6、31は図23におけるものと同一のものである。配管接続ノズル6には、形状特化され、洗浄液の軌道を変えて、被洗浄部に洗浄液を供給するように形成されたディンプル10(形状特化部)が設けられている。
図7は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射された洗浄液を示す図である。
図7において、2、6、10、31は図6におけるものと同一のものである。槽の壁面で反射された洗浄液61の軌道を点線で示している。
【0048】
図8は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で、反射された洗浄液を示す図である。
図8において、2、6、10、31は図6におけるものと同一のものである。洗浄液31がディンプル10で反射された洗浄液61により、配管接続ノズル6の死角部分が洗浄される。
図9は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分を示す拡大図である。
図9において、ディンプル10は、直線区間101と曲線区間102から構成されている。
図10は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射される洗浄液の挙動を示す拡大図である。
図10において、2、6、10、31は図6におけるものと同一のものである。衝突速度が速いときに、ディンプル10で反射された洗浄液61が示されている。
図11は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射される洗浄液の別の挙動を示す拡大図である。
図11において、2、6、10、31は図6におけるものと同一のものである。衝突速度が遅いときに、ディンプル10で反射された洗浄液61が示されている。
図12は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分に設けられたスリットを示す図である。
図12において、ディンプル10に溝103が設けられている。
図13は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分に設けられたフィンを示す図である。
図13において、ディンプル10にフィン104が設けられている。
【0049】
図14は、この発明の実施の形態3による槽壁の一部の形状を洗浄液の軌道を変えるように変形し特化させた部分を示す図である。
図14において、2、6は図6におけるものと同一のものである。凸状曲面部11(形状特化部)は、洗浄液31の軌道を変えるように設けられている。
図15は、この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で、洗浄液が広かる様子を示す図である。
図15において、6、10、31は図6におけるものと同一のものである。
【0050】
次に、動作について説明する。
スプレーノズルから噴射され、飛翔する洗浄液は、相当に大きな速度を持たない限り、平面・円筒面・円錐面等の単純な形状に対して、例えばゴムボールのように充分には反射されず、衝突面に沿って広がってしまい、少量反射された洗浄液も衝突時にその速度を大きく減衰する。
しかしながら、洗浄液が反射面に対して正対せず、小さな入射角をもって斜めに衝突する場合には、衝突前のベクトルに応じて、大きな速度減衰なしに衝突面に沿って流れていく。この性質を利用して、洗浄液が小さな入射角で衝突し、さらに曲面を流すことでそのベクトルを変え、任意の部分に向けて再度空中に放つことが可能である。注意深く反射部分の形状をこのために特化すれば、これを利用して死角部分を洗浄することができる。
実施の形態3は、このように反射部分の形状を特化したものである。
【0051】
この形状特化部(凹型曲面のディンプル、または凸状曲面部)は、例えばスプーンの内側や、料理に使われる「おたま」の内側のように単純な形状にても、特化しない単純な円錐面に比べれば、反射を増大させる効果を大きく持つ。
【0052】
図9に示すようにディンプル10の断面のうち、目標に近い部分を、直線区間101のように直線状とすれば、ディンプル10による反射の方向を特定し易くし、さらに曲線上での速度減衰を軽減することができる。
図10及び図11は、洗浄液31の衝突時の速度により、反射された洗浄液61の挙動を示している。衝突時の速度が遅いほど、図11のように反射された洗浄液61は下降気味になる。
【0053】
また、 図12、図13に示すように、ディンプル10の形状を洗浄目標に近づくにつれて、流路を狭くなるように溝103やフィン104を設ければ、反射効果をさらに大きくするとともに、反射方向についても整合性が高くなる。
【0054】
図14に示すような軌道を示す液反射の性質を利用して、凸状曲面部11のように、凸型部分の形状を、目的に特化して洗浄液の軌道を変え、洗浄性を向上させることができる。(このような現象を反射と称することは適当でないかもしれないが、便宜上反射と総称する。)
例えば、マンホール取付の角部の仕上げR(角を丸めるときの半径)を、通常1〜2mm程度であるところを、5mmとして大きな凸状曲面とし、洗浄軌道を変えて死角を少なくしたり、排除することに寄与させることができる。
【0055】
実施の形態3は、単独にても洗浄性の向上に有効であるが、実施の形態1、2におけるシミュレーション方法を併用することにより、より一層の効果と正確性を高めることが可能となる。すなわち、シミュレーション方法を用いて洗浄性の検証をした結果を反映して槽を設計し、この槽について、さらにシミュレーション方法を用いて洗浄性を検証することができる。
【0056】
次に、実施の形態3において、図20(b)に示されるスリットを設けた二次元回転スプレーノズルを用いて、図9、図12、図13に示されるディンプル10の反射を利用する場合についての、最良の形態を述べる。
通常、スリット式二次元回転スプレーノズルのスリットは、鉛直方向に切られており、立てた扇が水平回転するような形で槽内の洗浄を行う。スリットではなく、専用のスプレー噴射口を用いて扇形に噴射する形式のスプレーノズルもあるが、この場合も扇の向きは鉛直方向である。この場合も同様であるが、以下スリットにて説明する。
鉛直方向にスリットが切られている場合、水平回転して噴出される洗浄液は、ディンプル断面の上部と下部にほぼ同時に達する。上部に衝突した洗浄液は、衝突面に沿って上下左右に広がる。
ディンプル断面下部に当った洗浄液は、ディンプルの形状の意図に従って面に沿って流れ、移動方向を上に、さらには目的の方向に変えながら進む。ディンプル断面上部に当った洗浄液は、面に対して正対に近いベクトルで衝突するため、上下左右に面に沿って流れようとする。このうち、下向きの流れがディンプル断面下部に当って上向きに流れようとする洗浄液と衝突し、進行を阻害する。(図15参照)
【0057】
これを防ぐには、スリットを鉛直方向ではなく斜めに切ることにより、常に一定量の洗浄液がディンプル下部に先に当り、遅れて水平回転してきた洗浄液がディンプル上部に当ることになり、ディンプルの上下で洗浄液衝突の時間差ができる。この時間差により、ディンプル下部に当った洗浄液は、阻害されることなく、目標に向って進行していくことができ、目標に向う洗浄液の量が増え、ディンプルの効果が高まる。
ディンプルを利用しない場合でも、スリットを斜めにすることにより、洗浄液をお互い阻害することなく、自由に反射させたり、面に沿って広がったりすることで、死角部分の洗浄を期待する場合に効果がある。しかし、ディンプルを使って積極的に液反射を利用することで、スリットを斜めにする効用が高まる。また、二次元スプレーノズルのスリットを斜めに切る場合、スプレーノズルの水平回転速度が遅いものほど、その効用は高い。
【0058】
実施の形態3によれば、槽に設けられた形状特化部により洗浄液の軌道を変え、この軌道が変化された洗浄液により、槽の死角部分を洗浄することができる。
このように、槽内の一部形状を変形特化することで、積極的に既定のノズルの洗浄液反射を利用し、洗浄の死角部をなくすので、小形スプレーノズルの追加などコンタミネーション発生源を増加させることなく、また新たな洗浄液配管等の追加を必要とせず、衛生的で洗浄性の高い槽の製作を実現することができる。
【0059】
実施の形態4.
実施の形態4は、攪拌軸により回転する反射板により洗浄液を反射させて被洗浄部を洗浄するようにしたものである。
図16は、この発明の実施の形態4による中空攪拌軸と反射板を利用した槽の洗浄を示す図であり、図16(a)は、槽の水平切断面を示す図、図16(b)は、槽の垂直切断面を示す図である。
図16において、2、6、31は図2におけるものと同一のものである。中空の攪拌軸12には、反射板13が連結され、反射板13の上方に攪拌軸12に連結された小形固定噴射スプレーノズル47が、反射板13と対をなすように設けられている。
【0060】
実施の形態4による洗浄方法は、槽が攪拌機を有する場合にのみ採用することが可能である。
市販のロータリージョイント(メカニカルシール等を用いて、回転する軸の中空部に圧力を持つ流体を送り込める機構を持った装置)等を用いて、攪拌軸12に注入された洗浄液31は、槽内攪拌軸12上部に設けられた小型固定噴射スプレーノズル47から槽内に噴射される。
噴射された洗浄液31は、攪拌軸12に連結され、攪拌軸12と同位相にて回転する反射板13に衝突し、衝突時に洗浄液31の持つ速度・ベクトル・衝突入射角に応じて、反射板13によりベクトル・速度を変えて再び中空に進行する。
【0061】
前述のように扇形や円錐形に広角に広がる噴射形態では、洗浄液31は、密度・速度とも距離に比例して減衰しやすく、充分な反射を得ることは難しいが、直線状や狭角の円錐形噴射では、減衰も少なく、充分な反射を得られる。
反射板13は、図16に示すように、前述の形状特化部と同様に、目的に特化した面形状をもち、効率よく、目標に向って洗浄液31を反射するように設計されている。また、反射板13の位置・形状・傾き等は、机上の類推及び実験によっても決定することができるが、実施の形態2に示すシミュレーション方法を用いれば、経済的に正確にその形状を決定することができる。
【0062】
実施の形態4においては、攪拌軸12の回転モーメントのバランスを取るため、最低2個が攪拌軸12に連結された小型固定噴射スプレーノズル47から中空に噴射される。
噴射された洗浄液31は、攪拌軸12に連結され、攪拌軸12と同位相にて回転する反射板13で反射され、被洗浄部に供給される。この小型固定噴射スプレーノズル47と反射板13とは、最低2対の組み合わせで、用いる必要がある。
【0063】
また、この場合、一対に反射板を1個とする必要はなく、目標箇所に応じて、複数の反射板と小型固定噴射スプレーノズルとを対にすることができる。
【0064】
この実施の形態4の小型固定噴射スプレーノズル47と反射板13の組み合わせのみでは、槽内全体の洗浄を完結することはなく、あくまで上鏡板に取付けられる死角のでき易い各ノズルを洗浄することを目的とする。
槽内全体の洗浄を期するには、別途二次元回転形などのスプレーを取付けるか、または特許文献1に示されているように、攪拌軸下端までを中空化し、各部に小型固定スプレーノズルを設ける必要がある。
【0065】
しかしながら、特許文献1のように攪拌軸をすべて中空化するのは、経済的にも強度的にも得策とは言えず、小形固定スプレーノズルの増加は、コンタミネーション発生源の増加につながり、衛生的とも言えない。従って、二次元回転形スプレーノズル等との組み合わせが、最良の形態といえる。
【0066】
実施の形態4によれば、攪拌軸に設けられた小形固定噴射スプレーノズルと、反射板を用いることにより、槽内のノズル(凹凸部)を洗浄することができる。
したがって、攪拌機を有する槽においては、上鏡板の各ノズルをテーパー管化などの複雑な形状としてコストをかけることなく、死角をなくし、洗浄性を向上させることが可能である。
【0067】
実施の形態5.
図17は、製缶品における一般的な発注形態を示す図である。
図17において、プラント設備保有者のエンドユーザー14が、エンジニアリング会社15にプラントを発注する。これを受けてエンジニアリング会社15は、製缶メーカー16に槽を発注する。製缶メーカー16は、鏡板メーカー17に鏡板を発注し、鏡板メーカー17から鏡板を納品される。あるいは、エンドユーザー14から直接、製缶メーカー16に槽が発注される。
【0068】
図18は、この発明の実施の形態5による製缶品の発注形態を示す図である。
図18において、14〜17は図17と同一のものである。図18では、エンドユーザー14やエンジニアリング会社15または製缶メーカー16からの発注を受けて、槽全体の設計や上鏡板のみの設計を行い、製缶メーカー16または鏡板メーカー17に発注を行う実施権者18が示されている。
実施権者18(第一の企業)には、計算機A19(第一の計算機)が配置されて、上鏡部(上鏡板とこれに取付けられる各ノズル一式)の設計を行い、この設計された上鏡部について実体モデル(第一の槽のモデル)を作成し、これを実施の形態1,2で述べた洗浄シミュレーション方法で洗浄性の検証を行う。
鏡板メーカー17(第二の企業)には、計算機A19とネットワーク21を介して接続された計算機B20(第二の計算機)が配置され、計算機A19から実体モデルをデータ転送して、これから上鏡部製作用のNCデータを作成して、このNCデータを用いて上鏡部を製作する。この製作した上鏡部について、計算機B20により、実体立体把握を行い、この立体把握に基づき、実体モデル(第二の槽のモデル)を作成して、実施の形態1,2で述べた洗浄シミュレーション方法により洗浄性を検証する。
【0069】
以下、図中の各企業の形態をさらに詳しく説明する。なお、中間代理店等は省略している。
図17中、エンドユーザー14とは、プラント設備の保有者を示し、各種製品を製造する。製薬会社、食品製造会社、化粧品製造会社、化学品製造会社などがこれにあたる。一般的には生産設備に関する専門部署を抱える大企業である場合が多い。槽などの必要機器は、エンドユーザー14が直接、製缶メーカー16に発注する場合や、プラント建設一括でエンジニアリング会社15に発注する場合がある。
エンジニアリング会社15とは、各種プラントの設計・必要機器調達・建設のノウハウを有し、原則的に製造工場を持たず、各種プラントの建設や改造・保守を請け負う企業の総称である。プラント建設を一括受注したエンジニアリング会社15が、さらにこれを各パートごとに分割して他のエンジニアリング会社に下請発注する場合もある。一括受注するエンジニアリング会社は、一般的に上場されている大企業である場合が多い。また、化学品製造会社の子会社として成立している場合や、造船重機大手の一部門として成立している例も多い。
【0070】
製缶メーカー16とは、槽など製造設備に必要な製缶品(ステンレス等の鋼板を曲げたり溶接して製作される成形物の一般総称)を製作する業者である。国内には数万の業者が存在するが、概してその規模は小さく、ほとんどが従業員30人以下の小資本の企業である。その業態と小資本であることから、他の機械製造業に比して、NC工作機械(数値演算制御工作機械)の導入率や、ISO9000シリーズ取得などの品質管理システム導入率は、非常に低い。通常、製缶メーカー16は、鏡板メーカー17から鏡板を購入し、これに必要な穴をあけ、各ノズルを溶接接合し、バフ研磨等の必要仕上を施し、胴板に溶接接合し、製品を完成させ、必要な検査・試運転を施行して槽の完成品として納入する。
【0071】
鏡板メーカー17とは、製缶品に使用される機械要素としての鏡板をプレスやスピニング工法により製作する専門メーカーである。国内には10社以下の代表的メーカーがあり、これにより、国内生産のほとんどを占める。鏡板は、戦前は各製缶メーカーにて内製されていたが、戦後に専門メーカーが現れ、現在では製缶メーカーにて内製する例はほとんど見られない。企業規模的には、従業員数十人から1000人までの中規模企業がほとんどである。鏡板製品はJISにても規格化されており、各鏡板メーカー内でも標準化が進んでいる。規格外寸法の特注品もあるが、出荷量は、標準品が圧倒的に多い。このため、製缶メーカー16に比べれば、その生産体制は,高度な品質管理システムが導入されており、製作手法も標準化が進んでいる。鏡板の納入先は、大半が製缶メーカー16となっている。
なお、一部の数社の鏡板メーカー17では、プラズマ切断やレーザー切断のNC工作機械を導入して、発注者側の設計に基づいてノズル取付用の穴あけを施工し、製缶メーカーの穴あけ作業(製缶メーカーにおいては、穴あけはほとんど自動化されていない。)を省く有償サービスを実施している。また、素材鋼板の大きさの限界から、大径の鏡板については,一枚板ではなく,溶接により接合された板を成形して製作することになる関係から、自社内に溶接技術者と溶接設備を擁する鏡板メーカーが多い。自社内または子会社に製缶部門を持ち、槽の製造そのものに乗り出している事例も見受けられる。
【0072】
図18の実施権者18とは、洗浄性向上のために複雑な形状となる槽の上鏡板と、これに取付けられる各ノズル全般の設計能力を有し、実施の形態5における生産体制の中枢をなし、マネージメントを行う企業であり、ここでは仮に実施権者と呼ぶ。
【0073】
実施の形態5における、受注・製作・納入の流れは、例えば以下のとおりである。
(1)実施権者18は、エンドユーザー14やエンジニアリング会社15及び製缶メーカー16から、高い洗浄性を要求される機器の上鏡板とこれに取付けられる各ノズル一式(以下、上鏡部と称する。)を槽のパーツとして受注する。
(2)実施権者は、発注者とよく協議し、例えば本発明における実施の形態1〜3のような技術を駆使して、洗浄製の高い上鏡部を設計し、鏡板メーカー17にこの製作を発注する。
(3)鏡板メーカー17は、実施権者18の設計に基づいて、自社製作の鏡板とパイプ・フランジ等のパーツを購入してこれを溶接接合等により製作する。
(4)鏡板メーカー17は、接触センサー、レーザー光線、電磁波、CCD受光等による立体形状把握システムを実施権者18から無償または有償貸与され、あるいは自社購入し、溶接仮付時等の中間工程や完成時にこれを用いて実体を測定しての電子データモデルを作成する。
(5)鏡板メーカー17は、作成された実体モデルに対して、実施の形態1、2のようなシミュレーションを行い、上鏡部実体の洗浄性を確認する。
(6)これにより、中間段階や完成時に製作寸法精度を簡易に確認することができ、鏡板メーカー17は、安心して実施権者18やエンドユーザー14の立会検査に望むことができる。中間で不具合があった場合は、予め改善を施すことが可能である。
(7)鏡板メーカー17は、上鏡部をパーツとして、槽全体を製作する製缶メーカー16に引き渡す。
(8)上鏡部を受け取った製缶メーカー16は、これを自社製品に組込み、槽を完成させる。
【0074】
鏡板の穴あけに関しては、例えばNC切断機をすでに有し、穴あけサービスを行っている鏡板メーカー17であれば、実施権者18がすでに作成済の三次元モデルデータを支給され、ネットワーク21を介してダウンロードして、これに基づきNC加工データを作成し、短時間かつ安価に正確な穴あけを施工することができる。
洗浄性を要求される上鏡部は、複雑な形状になることが多く、このためその穴も単純な円形とはならない。人間によるケガキ等の寸法出し手法では、精度を出すことは非常に難しい。
穴あけが正確であれば、上鏡部全体の寸法精度は飛躍的に向上する。三次元モデルデータとNC加工データのデータ交換には相性があり、不特定多数の組合せでは、効率が悪かったり、実質的に変換不可能な場合もあり得る。いざ、データ交換を行う段になっての不具合は、工期に重大な影響を与えかねない。
実施の形態5のように、モデル作成者と製作メーカーの組合せが常に同じであれば、このような問題は起こらない。
【0075】
立体把握システムは技術発展の途上にあり、現状安価に導入できるとは言えない。実用性のあるシミュレーション方法も安価に開発することは難しい。さらにNC切断機についても同様である。製缶品全体の生産量に比して、洗浄性向上の必要のある槽の需要はそれほど大きいとは言えない。このため、比較的企業規模の大きい製缶メーカー16であっても、同業他社との競争で大きくシェアを占めることができない状況下にあっては、これらの資本投資は負担が大きすぎる。しかし、これらを組合せれば、大きな意味での洗浄性が向上することは明白である。
【0076】
仮に多数の関連特許取得や優れた技術ノウハウにより、奇跡的に洗浄性の高い槽のシェアを特定の製缶メーカー16が独占できた場合、競争原理が働かず、槽の価格が高止まりする危険性がある。上鏡部だけを特定の業者で独占する場合には、槽全体に占める上鏡部の価格は、通常半分以下でその弊害は少ない。また、鏡板メーカー17を単独とする必要もない。
2〜3社での多すぎない体制とすれば、競争原理も作用する。
【0077】
例えば鏡板メーカー等の業者が、実施の形態5にて上鏡部の製作を担当する場合、コストダウンに努力すれば、ある程度のシュアの独占が期待でき、このために施工機会が多くなり、製作習熟度が増す。また、本件に関する製作管理対象が上鏡部のみであるため、広汎な技術を要求される一般製缶と違い、必要作業を限定できるため、業界の懸案ともいえる高度な生産管理システムの導入が容易となる。
【0078】
鏡板メーカー17による、自社鏡板にノズル類を取付けての納入は、これまでにも検討・実行されてきたが、単なる槽では付加価値が低く、製缶メーカー16で製作する場合と比して、経済的利得を見出すことが困難なため、成功しているとは言えない。
実施の形態5においては、洗浄性の要求とシミュレーション及び立体把握システムを組合せることにより、経済的利得を見出し、さらには品質の向上を実現することができる。
【0079】
発注者の要求度合いによっては、前述の(4)(5)における実体モデルの作成と、この実体モデルに対する洗浄シミュレーションの施行により、洗浄性の検証を満足したとすることもできる。
通常は、実際にスプレーノズルを槽にセットして、実噴射試験(洗浄試運転)が施行される。これは、現在、各製缶メーカーにて納入前に行われているが、ポンプ・仮配管その他、準備及び施行に大きなコストを要する。最大のコスト要因は、一般の製缶メーカー16の場合、このような試運転の頻度が少なく、必要となるたび毎にこれらの用意をゼロから行う必要があるからである。また、これを施行する時期は、納入の直前であり、問題が発生した場合は、各方面に大きな影響を与える。
例えば、鏡板メーカー17にて上鏡部に特化して製作を施工する場合に、専用のエリアを設けて試運転装置を定置し、大きなコストをかけずに試運転を施工することができる。
また、中間段階にて実体モデルの作成とこれに対するシミュレーションを施行しておれば、完成検査の試運転時に問題の発生する可能性は低い。
【0080】
実施の形態5においては、実際の実施権者18は、エンジニアリング会社15であってもよく、鏡板メーカー17がこれを兼ねてもよい。また、商社が設計会社と組んでこれに当ってもよい。槽の洗浄性向上のために複雑な形状となる上鏡部の設計能力を有し、生産体制の中枢をなしてマネージメントできる能力を有する企業であればよい。これは、例えばプラント施設全体の設計管理能力を要求されるものではない。
また、上鏡部を製作する業者は、鏡板メーカー17である必要はなく、特定の少数の製缶メーカーであってもよい。初期投資に耐え、ある程度の市場独占を見込め、充分な施工技術を持ち、生産能力の全部または一部を上鏡部の製作に特化することにより、その部門に高度な生産管理システムの導入を期待できる体制にある企業であればよい。
【0081】
実施の形態5によれば、作成された上鏡部について立体把握と洗浄シミュレーションを組合せて、洗浄性の高い上鏡部を製作する体制を作ることができる。
このため、その体制下の企業で、ある程度のシェア独占を期待し、生産コスト低減と品質向上をはかり、最終的に業界全体の槽の洗浄性を向上させることができる。
また、洗浄シミュレーション方法と、例えば市販の実体形状把握システムの組合せにより、簡便で安価な中間検査の施行を可能にし、場合によっては実噴射試験を省略してコストを低減することが可能である。
また、洗浄性の問題が集中する上鏡板を特定の専門メーカーにより製作させることで、洗浄性向上に必要な製作/検査資材を集中し、設備投資費用を少なくすると共に、製作の熟練化や、高度な生産管理手法導入の容易化により、製作コスト低減と品質向上をさせることができる。
【0082】
なお、上述の実施の形態1〜実施の形態5では、洗浄シミュレーション及び槽について述べたが、洗浄シミュレーションは、一般の流体を噴射する流体噴射シミュレーションであってもよく、また、槽は、三次元形状を有する一般の被浴体であっても同様の効果を奏する。
【0083】
また、本明細書において、「スプレーノズル」とは、例えばスプリンクラーのように、液体を噴射させて消火液や植物生育用の水を散布したり、槽内部を洗浄・滅菌する為の洗浄液・殺菌液を噴射したり、塗装の為に液体や粉体の塗料を噴霧したり、あるいは、印刷のためのインクを噴射したりするものの総称であるものとする。
また、本明細書において「液体」とは、散布・噴霧・噴射される液相の物質を表し、例えば水においては可視できるミストはこれを含むが、完全に気化しているスチームはこれを含まない。例え微少な粒径であっても、液相にて噴出すものを表すものとする。
本明細書において「粉体」とは、散布・噴霧・噴射される粉状物質を表し、静電粉体塗装の塗料や、粉末状の消火剤などがこれに含まれる。
本明細書において「噴射流体」とは、スプレーノズルから噴射される物質で、前記の「液体」「粉体」「液体と気体の混合体」「紛体と気体の混合体」ならびに「粉体と液体が混合したスラリー状の物体」「前記スラリー状の物体に気体が混入したもの」を表す。
また、本明細書において「被浴体」とは、「噴射流体」を被浴する必要性を持つ三次元立体を示し、槽内部や外部、飲料水のビンの内部や外部、自動洗浄される浴槽・浴室、スプリンクラーにて消火又は延焼防止される建造物、水散布されるゴルフ場の芝生等を表すものとする。
さらに、本明細書において「槽 」とは、各種産業プラントに使用されるタンクや攪拌槽、浴槽及び浴室、タンカーの荷室などの閉鎖された内部を持つ容器状のものを示すものとする。
図19は、噴射される液体とこれを被浴する被浴体との関係において、代表的な事例であるスプレーノズルにより洗浄される槽を示す図である。
【産業上の利用可能性】
【0084】
上記に述べてきた槽の洗浄の他に、本発明は、自動洗浄される遠心分離器、タンカー内部、浴室内、ボトル容器、半導体関係部品などの洗浄に対する形状の最適化や製作歩留まり向上、スプレー塗装や静電粉体塗装における被塗装物の形状最適化や噴射ノズルの位置決め、ゴルフ場での自動散水装置の配置計画、建物内でのスプリンクラーの設置位置計画と建物形状の被浴向上化設計、医薬プラントや食品プラント等の滅菌及び殺菌液が各部にくまなく散布されることを必要とする機器の形状設計や製作歩留まりの向上など、「噴射流体を適切な状態で被浴されること」を必要とする被浴体全般に対して、有効な利用が可能である。
【図面の簡単な説明】
【0085】
【図1】この発明の実施の形態1による洗浄液のシミュレーション方法の流れを示す図である。
【図2】この発明の実施の形態2による洗浄液のシミュレーション方法における洗浄液の代表的な軌道を示す図である。
【図3】この発明の実施の形態2によるスプレーノズルの吹き出し方向と吹き出し範囲を示す図である。
【図4】この発明の実施の形態2による槽壁衝突時の洗浄液の広がりを示す図である。
【図5】この発明の実施の形態2による洗浄液のシミュレーション方法の流れを示すフローチャートである。
【図6】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた槽を示す図である。
【図7】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射された洗浄液を示す図である。
【図8】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で、反射された洗浄液を示す図である。
【図9】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分を示す拡大図である。
【図10】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射される洗浄液の挙動を示す拡大図である。
【図11】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で反射される洗浄液の別の挙動を示す拡大図である。
【図12】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分に設けられたスリットを示す図である。
【図13】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分に設けられたフィンを示す図である。
【図14】この発明の実施の形態3による槽壁の一部の形状を洗浄液の軌道を変えるように変形し特化させた部分を示す図である。
【図15】この発明の実施の形態3による槽壁の一部の形状を変形し特化させた部分で、洗浄液が広かる様子を示す図である。
【図16】この発明の実施の形態4による中空攪拌軸と反射板を利用した槽の洗浄を示す図である。
【図17】製缶品における一般的な発注形態を示す図である。
【図18】この発明の実施の形態5による製缶品の発注形態を示す図である。
【図19】スプレーノズルにより洗浄される槽を示す図である。
【図20】槽の洗浄に用いられるスプレーノズルの形状を示す図である。
【図21】円錐噴出小形固定ノズルを複数個有するスプレーノズルを示す図である。
【図22】三次元回転形スプレーノズルを示す図である。
【図23】スプレーノズルから洗浄液が噴射された状態を示す図である。
【図24】スプレーノズルから噴射され、槽の内壁面で反射された洗浄液を示す図である。
【図25】平面位置を変更されたスプレーノズルを示す図である。
【図26】槽の死角部専用に設けられたスプレーノズルを示す図である。
【図27】斜めに取り付けられ、テーパー管化された槽の凹凸部を示す図である。
【符号の説明】
【0086】
1 胴板
2 上鏡板
3 下鏡板
4 スプレーノズル
5 配管接続ノズル
6 配管接続ノズル
7 スプレーノズル座
10 ディンプル
11 凸状曲面部
12 攪拌軸
13 反射板
14 エンドユーザー
15 エンジニアリング会社
16 製缶メーカー
17 鏡板メーカー
18 実施権者
19 計算機A
20 計算機B
21 ネットワーク
31 洗浄液
47 小形固定噴射スプレーノズル
61 反射された洗浄液
71 広かった洗浄液
101 直線区間
102 曲線区間
103 溝
104 フィン

【特許請求の範囲】
【請求項1】
スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、上記被浴体の三次元形状データ及び上記スプレーノズルの位置及び上記スプレーノズルから噴射される流体の初速を入力するデータ入力ステップと、このデータ入力ステップで入力されたデータに基づいて上記スプレーノズルから各噴出し方向に噴射される流体の物理軌道を計算するステップと、求めた複数の流体の物理軌道と被浴体との交点を計算するステップとを含み、上記被浴体の上記流体による被浴箇所を表すデータを出力することを特徴とする流体噴射シミュレーション方法。
【請求項2】
上記流体の物理軌道と上記被浴体の交点における上記流体の速度を計算するステップを含むことを特徴とする請求項1記載の流体噴射シミュレーション方法。
【請求項3】
上記流体の物理軌道を実験値により補正することを特徴とする請求項1または請求項2記載の流体噴射シミュレーション方法。
【請求項4】
上記流体の噴射時に通過する気体の影響による上記流体の速度及び方向変化を実験値により補正することを特徴とする請求項1〜請求項3のいずれかに記載の流体噴射シミュレーション方法。
【請求項5】
上記流体が上記被浴体に衝突する際の被浴面に対する入射角を算出することを特徴とする請求項1〜請求項4のいずれかに記載の流体噴射シミュレーション方法。
【請求項6】
上記流体の上記被浴体表面での反射と反射後の第二回目の上記被浴体との交点を算出することを特徴とする請求項1〜請求項5のいずれかに記載の流体噴射シミュレーション方法。
【請求項7】
上記流体の重力方向及び上記被浴体への入射角及び上記被浴体との衝突速度により、上記被浴体の面に沿った上記流体の広がりベクトルを算出することを特徴とする請求項5記載の流体噴射シミュレーション方法。
【請求項8】
上記データ入力ステップは、上記流体の噴出し密度の入力を含むことを特徴とする請求項1〜請求項7のいずれかに記載の流体噴射シミュレーション方法。
【請求項9】
上記被浴体各部の一定表面積あたりの上記流体との交点の数を算出することにより、上記スプレーノズルの噴出し総量と上記被浴体一定面積あたりの交点の数との関係から、上記被浴体各部の流体被浴密度を把握することを特徴とする請求項8記載の流体噴射シミュレーション方法。
【請求項10】
上記被浴体の三次元形状データは、実体の形状を測定して得ることを特徴とする請求項1〜請求項9のいずれかに記載の流体噴射シミュレーション方法。
【請求項11】
上記流体は、液体であることを特徴とする請求項1〜請求項10のいずれかに記載の流体噴射シミュレーション方法。
【請求項12】
上記各ステップを並列処理することを特徴とする請求項1〜請求項11のいずれかに記載の流体噴射シミュレーション方法。
【請求項13】
上記スプレーノズルの噴射流体噴出し部の形状が斜めに形成されていることを特徴とする請求項6または請求項7記載の流体噴射シミュレーション方法。
【請求項14】
上記被浴体の上記流体による被浴個所を表すデータは、可視化されることを特徴とする請求項1〜請求項13のいずれかに記載の流体噴射シミュレーション方法。
【請求項15】
スプレーノズルを用いて異なる距離の複数箇所に流体を噴射する装置で、三次元空間を形成する被浴体の被浴状態を把握するための流体噴射シミュレーション方法において、上記被浴体のモデルを作成するステップ、この被浴体のモデルの各部をスプレーノズルからの距離に基づいて下方に移動させるステップ、上記スプレーノズルの配置位置に光源を配置したときに形成される陰の部分を割り出すステップ、上記陰の部分を含むように上記下方に移動させた被浴体のモデルの各部を元に戻すステップ、及び上記陰の部分を把握するステップを含むことを特徴とする流体噴射シミュレーション方法。
【請求項16】
洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽の洗浄性を検証する流体噴射シミュレーション方法において、槽のモデルを作成する第一のステップ、洗浄液を数式に基づく軌道により移動する点として概念化し、この洗浄液を各点毎に発射する第二のステップ、この発射された洗浄液が上記槽のモデルの槽壁に衝突したときの上記洗浄液の速度を演算する第三のステップ、及び上記演算された洗浄液の速度に応じて、上記槽壁への洗浄液の衝突速度を演算する第五のステップを含むことを特徴とする流体噴射シミュレーション方法。
【請求項17】
洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽の洗浄性を検証する流体噴射シミュレーション方法において、槽のモデルを作成する第一のステップ、洗浄液を数式に基づく軌道により移動する点として概念化し、この洗浄液を各点毎に発射する第二のステップ、上記洗浄液の上記槽壁への衝突時の入射角を演算する第四のステップ、及び上記演算された入射角に応じて、上記槽壁への洗浄液の広がりを演算する第五のステップを含むことを特徴とする流体噴射シミュレーション方法。
【請求項18】
洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽の洗浄性を検証する流体噴射シミュレーション方法において、槽のモデルを作成する第一のステップ、洗浄液を数式に基づく軌道により移動する点として概念化し、この洗浄液を各点毎に発射する第二のステップ、この発射された洗浄液が上記槽のモデルの槽壁に衝突したときの上記洗浄液の速度を演算する第三のステップ、上記洗浄液の上記槽壁への衝突時の入射角を演算する第四のステップ、及び上記洗浄液の上記衝突時の速度及び入射角に応じて、上記槽壁による洗浄液の反射または槽壁への洗浄液の広がりを演算する第五のステップを含むことを特徴とする流体噴射シミュレーション方法。
【請求項19】
上記洗浄液の各点毎に実行される上記第二のステップ〜第五のステップは、並列処理されることを特徴とする請求項16〜請求項18のいずれかに記載の流体噴射シミュレーション方法。
【請求項20】
請求項1〜19のいずれかに記載の流体噴射シミュレーション方法を実行するように記述されたことを特徴とするコンピュータプログラム。
【請求項21】
請求項1〜19のいずれかに記載の流体噴射シミュレーション方法を用いて形状が決定され、この決定された形状に製作または建造されたことを特徴とする被浴体。
【請求項22】
請求項1〜19のいずれかに記載の流体噴射シミュレーション方法を用いて形状が決定され、この決定された形状に製作するときの製作途中段階及び製作終了段階のいずれか一方または両方の段階で、実体立体把握を行い、この実体立体把握に基づき三次元モデル化を行い、その三次元モデルに対して請求項1〜19のいずれかに記載の流体噴射シミュレーション方法を用いて被浴性が検証された後に製作されたことを特徴とする被浴体。
【請求項23】
洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽において、上記スプレーノズルから噴射された洗浄液の軌道を変化させるように形成された形状特化部を備えたことを特徴とする槽。
【請求項24】
請求項16〜請求項19のいずれかに記載の流体噴射シミュレーション方法を用いた槽の洗浄性の検証結果に応じて、上記スプレーノズルから噴射された洗浄液の軌道を変化させるように形成された形状特化部を備えたことを特徴とする槽。
【請求項25】
上記形状特化部は、ディンプルまたは凸状曲面部であることを特徴とする請求項23または請求項24記載の槽。
【請求項26】
上記形状特化部には、洗浄液の流路を形成する溝またはフィンが設けられていることを特徴とする請求項25記載の槽。
【請求項27】
上記スプレーノズルの洗浄液を噴射するスリットを鉛直方向に対し斜めに形成したことを特徴とする請求項23〜請求項26のいずれかに記載の槽。
【請求項28】
洗浄液を噴射するスリットを鉛直方向に対し斜めに形成したことを特徴とするスプレーノズル。
【請求項29】
洗浄液をスプレーノズルから噴射して内部を洗浄するように設計された槽において、上記洗浄液を供給する中空部を有する攪拌軸、この攪拌軸に取付けられ、上記攪拌軸と共に回転し、上記攪拌軸により供給された洗浄液を噴射するスプレーノズル、上記攪拌軸に取付けられ、上記攪拌軸と共に回転し、上記スプレーノズルから噴射された洗浄液を反射する反射板、及びこの反射板により反射された洗浄液により洗浄される凹凸部を備えたことを特徴とする槽。
【請求項30】
上記スプレーノズル及び反射板は、複数対設けられていることを特徴とする請求項29記載の槽。
【請求項31】
槽を構成する上鏡部の設計段階で、上記設計された上鏡部について、請求項16〜請求項19のいずれかに記載の流体噴射シミュレーション方法における槽のモデルを作成する作業を実行し、この実行により作成された第一の槽のモデルについて上記流体噴射シミュレーション方法による洗浄性を検証すると共に、上記設計された上鏡部を製作した後に、上記製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして請求項16〜請求項19のいずれかに記載の流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、上記流体噴射シミュレーション方法による洗浄性を検証することを特徴とする槽製作システム。
【請求項32】
槽を構成する上鏡部を設計する第一の企業に配置され、上記上鏡部の設計を行う第一の計算機、及びこの第一の計算機とネットワークを介して接続されると共に上記上鏡部の製作を専門的に行う第二の企業に配置された第二の計算機を備え、
上記第一の計算機は、上記第一の計算機により設計された上鏡部について、請求項16〜請求項19のいずれかに記載の流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第一の槽のモデルについて上記流体噴射シミュレーション方法による洗浄性を検証すると共に、
上記第二の企業による上記上鏡部の製作後に、上記第二の計算機は、上記製作された上鏡部の実体立体把握を行い、この実体立体把握を元にして請求項16〜請求項19のいずれかに記載の流体噴射シミュレーション方法における槽のモデルを作成するステップを実行し、この実行により作成された第二の槽のモデルについて、上記流体噴射シミュレーション方法による洗浄性を検証することを特徴とする槽製作システム。
【請求項33】
上記第二の計算機は、上記第一の計算機により作成された第一の槽のモデルを上記ネットワークを介してデータ転送し、このデータ転送した第一の槽のモデルに基づき、上記上鏡部の製作に用いられるNCデータを作成することを特徴とする請求項32記載の槽製作システム。
【請求項34】
ネットワークを用いて第一の計算機と第二の計算機を共通化したことを特徴とする請求項32または請求項33記載の槽製作システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2006−61901(P2006−61901A)
【公開日】平成18年3月9日(2006.3.9)
【国際特許分類】
【出願番号】特願2005−65429(P2005−65429)
【出願日】平成17年3月9日(2005.3.9)
【出願人】(504194708)プラントエンジニアリング株式会社 (1)
【Fターム(参考)】