説明

炭素繊維及びそれを用いた成形体

【課題】放熱性と表面特性が適切な範囲にある放熱材料を得ることができる炭素繊維を提供する。
【解決手段】光学的異方性ピッチを用い、導入角α、吐出口長さLと吐出口の径Dの比L/D、該光学的異方性ピッチの紡糸温度における粘度を制御してピッチ繊維を得、該ピッチ繊維を不融化、炭化、黒鉛化してなる、黒鉛結晶子の層面方向の広がりLa、電気比抵抗、熱伝導率、端面及び表面平滑性が適切な範囲にあるピッチ系炭素繊維を作成し、それを用いて組成物及び成形体を作製する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱伝導材として用いるのに好適な、高い熱伝導率を有しかつ表面平滑性に優れる炭素繊維に関する。更には、ピッチ系炭素繊維を用いた熱伝導性成形体に関わるものである。
【背景技術】
【0002】
高性能の炭素繊維はポリアクリロニトリル(PAN)を原料とするPAN系炭素繊維と、一連のピッチ類を原料とするピッチ系炭素繊維に分類できる。そして炭素繊維は強度・弾性率が通常の合成高分子に比較して著しく高いという特徴を利用し、航空・宇宙用途、建築・土木用途、スポーツ・レジャー用途などに広く用いられている。
【0003】
炭素繊維は、通常の合成高分子に比較して熱伝導率が高く、放熱性に優れていると言われている。炭素繊維など炭素材料は、フォノンの移動により高い熱伝導率を達成すると言われている。フォノンは、結晶格子が発達している材料において良く伝達する。市販のPAN系炭素繊維は結晶格子が十分に発達しているとは言えず、その熱伝導率は通常200W/(m・K)よりも小さく、サーマルマネジメントの観点からは必ずしも好適であるとは言い難い。これに対して、ピッチ系炭素繊維は黒鉛化性が高いために結晶格子が良く発達し、PAN系炭素繊維に比べて高熱伝導率を達成しやすいと認識されている。
【0004】
近年、発熱性電子部品の高密度化や、携帯用パソコンをはじめとする電子機器の小型、薄型、軽量化に伴い、それらに用いられる放熱部材の低熱抵抗化の要求が益々高まっており、放熱特性の更なる向上が要求されている。放熱部材としては、熱伝導性フィラーが充填された硬化物からなる熱伝導性シート、ゲル状物質に熱伝導性フィラーが充填され、柔軟性を有する硬化物からなる熱伝導性スペーサー、液状マトリックスに熱伝導性フィラーが充填された流動性のある熱伝導性ペースト、熱伝導性ペーストを溶剤で希釈し更に流動性を高めた熱伝導性塗料、硬化性物質に熱伝導性フィラーが充填された熱伝導性接着剤、樹脂の相変化を利用したフェーズチェンジ型放熱部材等が例示される。
【0005】
これら放熱部材の熱伝導率を向上させるには、ここに使用される熱伝導材の更なる高熱伝導性が必要となる。特許文献1には、1100W/m・Kを超える熱伝導率を示すピッチ系炭素繊維が紹介されている。
【特許文献1】特許第2985455号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1に記載の手法は高い熱伝導率を発揮させるため、ピッチの配向を強めている。そのため、2500℃以上の温度で黒鉛化すると、炭素繊維が割れやすくなる。割れなどにより炭素繊維の表面平滑性が低下すると、マトリックスと炭素繊維を混合した時の粘度が高くなり、成形性が低下するという問題が発生する。そこで、熱伝導性に優れ、かつ成形性に優れる熱伝導材が求められているという観点から、熱伝導材として用いるのに好適な、高い熱伝導率を有しかつ表面平滑性に優れる炭素繊維を提供することを本発明の目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、熱伝導性に優れかつ成形性に優れた放熱材料を作成するための優れた熱伝導材を提供することを鑑み、特定の製造条件で製造したピッチ系炭素繊維が、上記の目的を満足することを見出し本発明に到達した。
【0008】
即ち、本発明の目的は高い熱伝導率を有しかつ表面平滑性に優れる炭素繊維を提供することであって、光学的異方性ピッチをその粘度が30〜250ポイズ(3〜25Pa・S)の範囲にある温度条件にて、導入角αが10〜55°の範囲にあり、吐出口長さLと吐出口の径Dの比L/Dが6〜20の範囲にあるノズルを用いメルトブロー法により紡糸してピッチ繊維を得て、得られたピッチ繊維を不融化した後、炭化及び/もしくは黒鉛化してなるピッチ系炭素繊維であって、黒鉛結晶子の層面方向の広がりLaが30〜200nmの範囲にあり、電気比抵抗が1.1より大きく4.0μΩm未満の範囲にあり、熱伝導率が250〜1100W/m・Kの範囲にあるピッチ系炭素繊維により達成できる。
【0009】
また本発明は、透過型電子顕微鏡で観察した透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じており、走査型電子顕微鏡での観察表面が実質的に平滑であること、平均平均繊維径が2〜20μm、平均繊維径に対する繊維径分散の百分率(CV値)が5〜20の範囲にあるピッチ系炭素繊維によって達成できる。
【0010】
更に本発明は、ピッチ系炭素繊維と熱可塑性樹脂及び/又は熱硬化性樹脂とからなり、樹脂100体積部に対して3〜200体積部の前記炭素繊維を含有する組成物、熱可塑性樹脂が、ポリカーボネート類、ポリエステル類、脂肪族ポリアミド類、芳香族ポリアミド、ポリオレフィン類、ポリエーテルケトン類、ポリエーテルスルホン類、ポリフェニレンスルフィド類、およびアクリロニトリル/ブタジエン/スチレン系共重合樹脂からなる群より選ばれる少なくとも一種の樹脂である組成物、熱硬化性樹脂が、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類からなる群より選ばれる少なくとも一種の樹脂である組成物、平板状に成形した状態における熱伝導率が2W/(m・K)以上である組成物、前述の組成物を、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法、およびブロー成形法からなる群より選ばれる少なくとも一種の方法により成形して得られる成形体により達成できる。
【発明の効果】
【0011】
本発明のピッチ系炭素繊維は、電気比抵抗を適切な範囲に制御し、かつ放熱材料の高性能化を可能にせしめている。本発明のピッチ系炭素繊維は、優れた高熱伝導率と表面平滑性に優れることによる成形性向上を併せ持つものであって、電子部品等の放熱用材料に好適に使用される。
【発明を実施するための最良の形態】
【0012】
次に、本発明の実施の形態について順次説明していく。
本発明のピッチ系炭素繊維の電気比抵抗は1.1より大きく4.0μΩm未満の範囲にある。電気比抵抗が4.0μΩmより小さい時、高い熱伝導性を示す。また、電気比抵抗が1.1μΩmより大きくなる様な条件で紡糸した場合、炭素繊維の表面平滑性が維持される。ピッチ系炭素繊維の電気比抵抗はピッチ系炭素繊維の両端を銀ペーストなどの導電ペーストで固定し、端子間の電気抵抗を測定し、端子間の距離及びピッチ系炭素繊維の繊維径を求め、そこから計算することで求めることができる。
【0013】
ピッチ系炭素繊維の熱伝導率は250〜1100W/m・Kの範囲にある。ここに示す熱伝導率は、電気比抵抗から熱伝導率と電気抵抗の下記の関係式(特許第3648865号参考)から計算により求めることができ
K=1272.4/ER−49.4
(Kは炭素繊維の熱伝導率、ERは炭素繊維の電気比抵抗)
実質的に電気比抵抗と同義である。
【0014】
本発明のピッチ系炭素繊維は、好ましくは透過型電子顕微鏡でフィラー端面の形状を観察すると、グラフェンシートが閉じた構造になっている。フィラーの端面がグラフェンシートとして閉じている場合には、余分な官能基の発生や、形状に起因する電子の局在化が起こらないので、水のような不純物の濃度を低減することができ、例えば、縮合系ポリマーの様に加水分解の影響を受ける様な樹脂と複合化する際に、耐加水分解性が向上するという点から好ましい。また、黒鉛化の際炭素繊維の収縮により縦割れが発生しやすくなるが、端面が閉じているとこれを抑制するため、複合成形体としたとき機械強度が低下するのを抑制する。特に、本発明のように、繊維長が1mmよりも短いフィラーにおいては、フィラー表面積に占める端面の割合が高くなることより、グラフェンシートが閉じている構造が特に好ましい。
【0015】
なお、グラフェンシートが閉じているとは、炭素繊維を構成するグラフェンシートそのものの端部が炭素繊維端部に露出することなく、グラファイト層が略U字上に湾曲し、湾曲部分が炭素繊維端部に露出している状態である。
【0016】
本発明のピッチ系炭素繊維は、好ましくは走査型電子顕微鏡での観察表面が実質的に平滑である。ここで平滑であるとは、走査型電子顕微鏡による観察において、表面の凹凸が観察されないこと、表面の亀裂が確認されないこと、炭素繊維の割れが確認されないことを意味する。ここで実質的に平滑であるとは、電子顕微鏡での観察において、視野中(倍率1000)に上記欠陥部が炭素繊維1本当たり10箇所以内であることをいう。
【0017】
走査型電子顕微鏡での観察表面が実質的に平滑であると、ピッチ系炭素繊維とマトリックスを混合して熱伝導性成形体を作成する場合、ピッチ系炭素繊維とマトリックスの相互作用が小さくなり、その結果、ピッチ系炭素繊維とマトリックスの混合物の粘度が小さくなり、成形性が向上する。逆に、ピッチ系炭素繊維の表面が平滑でないと、ピッチ系炭素繊維とマトリックスの相互作用が大きくなり、その結果、ピッチ系炭素繊維とマトリックスの混合物の粘度が大きくなり、成形性が低下する。
【0018】
透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じていたり、観察表面を平滑なピッチ系炭素繊維は、後で詳述するが炭素繊維フィラーを粉砕後に黒鉛化することにより得ることができる。黒鉛後に粉砕すると、黒鉛化により一度閉じた端面が再び開いたり、ピッチ系炭素繊維の凹凸が多くなり、走査型電子顕微鏡での観察表面に凹凸が観察される。
【0019】
本発明のピッチ系炭素繊維の平均繊維径は2〜20μmの範囲にあることが望ましい。2μm以下の場合には、原料となるマットの形状が保持できなくなることがあり生産性が悪い。繊維径が20μmを超えると、不融化工程でのムラが大きくなり部分的に融着が起こったりするところが発生する。より好ましくは5〜15μmである。ピッチ系炭素繊維の平均繊維径はJIS R7607に示すように光学顕微鏡で観察し、スケールで測定することで求められる。
【0020】
なお、平均繊維径に対する繊維径分散の百分率として求められるCV値は、5〜20であることが必要である。CV値が5を下回ることは工程上あり得ない。また、CV値が20を超えると不融化でトラブルを起こす、直径が20μm以上の繊維が増える可能性が高くなり、生産性の観点から好ましくない。
【0021】
本発明のピッチ系炭素繊維は、六角網面の成長方向に由来する黒鉛結晶子の層面方向の広がりLaが30〜200nmの範囲にある。Laがこの範囲にある時、ピッチ系炭素繊維の黒鉛化度が適切であることを意味し、適切な電気比抵抗及び熱伝導率を示す。黒鉛結晶子の層面芳香の広がりが重要になるのは、熱伝導が主としてフォノンによって担われており、フォノンを発生するのが結晶であることに由来している。Laが30nm未満であるときは黒鉛化度が不十分であり、逆にLaが200nmを超える場合黒鉛化が進みすぎていることを意味する。六角網面の成長方向に由来する黒鉛結晶子の層面方向の広がりLaは公知の方法によって求めることができ、X線回折法にて得られる炭素結晶の(110)面からの回折線によって求めることができる。
【0022】
上記のピッチ系炭素繊維を得るには、光学異方性ピッチにかかるせん断力を制御し、芳香環が適度に配列するような、紡糸条件にする必要がある。以下、本発明のピッチ系炭素繊維の好適な製造法について、メルトブロー法を例にとって、各工程について説明する。
【0023】
本発明のピッチ系炭素繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特に光学的異方性ピッチ、すなわちメソフェーズピッチが好ましい。メソフェーズピッチは、黒鉛化処理を行った際に黒鉛化度が向上しやすため、炭素繊維の熱伝導性を向上させる上で特に好ましいためである。
【0024】
原料ピッチとなる光学異方性ピッチの軟化点はメトラー法により求めることができ、250℃以上350℃以下が好ましい。軟化点が250℃より低いと、不融化の際に繊維同士の融着や大きな熱収縮が発生する。また、350℃より高いとピッチの熱分解が生じ糸状になりにくくなる。
【0025】
光学異方性ピッチは溶融後、ノズルより吐出しこれを冷却することによる溶融紡糸によって繊維化できる。紡糸方法としては、具体的には口金から吐出したピッチをワインダーで引き取る通常の紡糸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用してピッチを引き取る遠心紡糸法などが挙げられる。中でも、曲率半径の制御、生産性の高さなどの理由からメルトブロー法を用いるのが好ましい。
【0026】
光学異方性ピッチは溶融紡糸された後、不融化、焼成、必要に応じて粉砕を経て最後に黒鉛化することによってピッチ系炭素繊維とする。本発明のピッチ系炭素繊維は透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じていることを好ましい特徴とするが、このようなピッチ系炭素短繊維は、ミリングを行った後に黒鉛化処理を実施することによって、好ましく得ることができる。以下、メルトブロー法を例にとって、各工程の好ましい態様について説明する。
【0027】
紡糸時の温度は、光学異方性ピッチの粘度が30〜250ポイズ(3〜25Pa・S)の範囲にある温度である。更に好ましくは50〜200ポイズ(5〜20Pa・S)の範囲にある温度である。紡糸ノズルは、導入角αが10〜55°であり、吐出口長さLと吐出口の径Dの比L/Dが6〜20の範囲にあるノズルが好ましく用いられる。紡糸条件がこの範囲にある時、光学異方性ピッチにかかるせん断力が、芳香環をある程度配列させることできる。紡糸条件がこの条件から外れる時、例えば、粘度がより大きい、もしくは導入角がより小さい、もしくはL/Dがより大きい時などせん断力がより強くかかる条件では、配列が進みすぎて黒鉛化した際に、炭素繊維が割れやすくなり、ピッチ系炭素繊維の表面平滑性が悪くなる。逆に粘度がより小さい、もしくは導入角がより大きい、もしくはL/Dがより小さいなどせん断力がより小さいなどせん断力が小さくかかる条件では、芳香環があまり配列しないため、黒鉛化処理しても黒鉛化度がそれほど向上せず、高い熱伝導性が得られない。
【0028】
ノズル孔から出糸されたピッチ繊維は、100〜350℃に加温された毎分100〜10000mの線速度のガスを細化点近傍に吹き付けることによって短繊維化される。吹き付けるガスは空気、窒素、アルゴンを用いることができるが、コストパフォーマンスの点から空気が好ましい。
【0029】
ピッチ繊維は、金網ベルト上に捕集され連続的なマット状になり、さらにクロスラップされることで3次元ランダムマットとなる。
3次元ランダムマットとは、クロスラップされていることに加え、ピッチ繊維が三次元的に交絡しているマットをいう。この交絡は、ノズルから、金網ベルトに到達する間にチムニと呼ばれる筒において達成される。線状の繊維が立体的に交絡するために、通常一次元的な挙動しか示さない繊維の特性が立体においても反映されるようになる。
【0030】
このようにして得られたピッチ繊維よりなる3次元ランダムマットは、公知の方法で不融化する。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いて200〜350℃で達成される。安全性、利便性を考慮すると空気中で実施することが好ましい。また、不融化したピッチ繊維は、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガス中で600〜1500℃で焼成され、次いで2000〜3500℃で黒鉛化されるが、焼成は常圧で、且つコストの安い窒素中で実施される場合が多く、黒鉛化は使用する炉の形式に応じて、不活性ガスの種類を変更する事が一般的である。
【0031】
不融化後或いは焼成後、得られた繊維を粉砕する。粉砕は公知の方法によって行うことができる。具体的には、カッター、ボールミル、ジェットミル、クラッシャーなどを用いることができる。ミリングを効率よく行うためには、ブレードを取付けたロータを高速に回転させることにより、繊維軸に対して直角方向に繊維を寸断する方法が適切である。
【0032】
上記のミリング処理、篩分けを終えた繊維を2300〜3500℃に加熱し黒鉛化して最終的なピッチ系炭素短繊維とする。黒鉛化は、アチソン炉等にて外部からの物理的、化学的作用を遮断できる雰囲気下で実施される。黒鉛化温度は、炭素繊維としての熱伝導率を高くするためには、2000〜3500℃にすることが好ましい。より好ましくは2300〜3500℃である。黒鉛化の際に黒鉛性のルツボに入れ処理すると、外部からの物理的、化学的作用を遮断でき好ましい。黒鉛製のルツボは上記の炭素繊維を、所望の量入れることが出来るものであるならば大きさ、形状に制約はないが、黒鉛化処理中または冷却中に炉内の酸化性のガス、または水蒸気との反応による当該炭素繊維の損傷を防ぐために、フタ付きの気密性の高いものが好適に利用できる。
【0033】
本発明においてピッチ系炭素繊維は、表面処理したのちサイジング剤をフィラー100重量部に対し0.01〜10重量部、好ましくは0.1〜2.5重量部添着させてもよい。サイジング剤としては通常用いられる任意のものが使用でき、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和ポリエステル、不飽和ポリエステル、酢酸ビニル、水、アルコール、グリコールを単独又はこれらの混合物で用いることができる。このような表面処理は、嵩真密度を高くすることを鑑みると有効である。ただ、過剰のサイジング剤の添着は、熱抵抗となるため、必要とされる物性に応じてこれを実施することができる。
【0034】
ピッチ系炭素繊維と熱可塑性樹脂及び/又は熱硬化性樹脂とを混合した組成物も包含する。この際、ピッチ系炭素繊維は、樹脂100体積部に対して3〜200体積部を添加させる。3体積部より少ない添加量では、熱伝導性を十分に確保することが難しい。一方、200体積部より多いピッチ系炭素繊維の樹脂への添加は困難であることが多い。
【0035】
樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれか一つ以上を含有し、さらに複合成形体に所望の物性を発現させるために熱可塑性樹脂と熱硬化性樹脂を適宜混合して用いることもできる。
【0036】
マトリクスに用いることができる熱可塑性樹脂としてポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等のエチレン−α−オレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニルアルコール、ポリアセタール、フッ素樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン−アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸類(ポリメタクリル酸メチル等のポリメタクリル酸エステル)、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリケトン、液晶ポリマー、アイオノマー等が挙げられる。
【0037】
なかでも熱可塑性樹脂として、ポリカーボネート類、ポリエチレンテレフタレート類、ポリブチレンテレフタレート類、ポリエチレン2,6ナフタレート類、ナイロン類、ポリプロピレン類、ポリエチレン類、ポリエーテルケトン類、ポリフェニレンスルフィド類、およびアクリロニトリル-ブタジエン-スチレン系共重合樹脂類からなる群より選ばれる少なくとも一種の樹脂が好ましく挙げられる。
【0038】
また、熱硬化性樹脂としては、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、熱硬化型PPE類等が挙げられ、これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。
【0039】
本発明の複合材料及び複合成形体は、ピッチ系炭素繊維と樹脂とを混合して作製するが、混合の際には、ニーダー、ミキサー、ブレンダー、ロール、押出機、ミリング機、自公転式の撹拌機などの混合装置又は混練装置が好適に用いられる。そして、複合成形体は、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法、ブロー成形法等の成形方法にて、成形することが可能である。成形条件は、手法とマトリクスに強く依存し、熱可塑性樹脂の場合は、当該樹脂の溶融粘度より温度を上げた状態で成形を実施する。マトリクスが熱硬化性樹脂の場合は、適切な型において、当該樹脂の硬化温度を付与するといった方法を挙げることができる。
【0040】
また、本発明の複合材料及び複合成形体において炭素繊維以外の熱伝導性フィラーも必要に応じて使用する事もできる。具体的にはシリカ、酸化アルミニウム、酸化マグネシウム、酸化亜鉛などの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化ホウ素、窒化アルミニウムなどの金属窒化物、銀、金、銅、アルミニウムなどの金属もしくは合金、グラファイト、膨張黒鉛、ダイヤモンドなどの炭素材料などが挙げられる。
【0041】
本発明の組成物には、本発明の効果を損なわない範囲で、ガラス繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスビーズ、ガラスフレーク、セラミックビーズ、炭化珪素およびシリカなどの非繊維状充填材が挙げられ、これらは中空であってもよく、さらにはこれらを2種類以上併用することも可能である。
【0042】
本発明の組成物を平板状に成形し、熱伝導率を測定すると2W/(m・K)以上の熱伝導率を示す。2W/(m・K)の熱伝導率は、マトリクスとして用いている樹脂に比較すると約一桁高い熱伝導率である。
【0043】
本発明の組成物は、その熱伝導率の高さを利用することで、電子部品用放熱板として用いることができる。また、ピッチ系炭素繊維の添加量を多くすることで、高い熱伝導度が得られるため、電子部品においても、比較的耐熱性が要求される自動車や大電流を必要とする産業用パワーモジュールのコネクタ等に好適に用いることができる。より具体的には、放熱板、半導体パッケージ用部品、ヒートシンク、ヒートスプレッダー、ダイパッド、プリント配線基板、冷却ファン用部品、筐体等に用いることができる。また、熱交換器の部品として用いることもできる。ヒートパイプに用いることができる。さらに、ピッチ系炭素繊維の電波遮蔽性を利用し、特にGHz帯の電波遮蔽用部材として好適に用いることができる。
【実施例】
【0044】
以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、本実施例における各値は、以下の方法に従って求めた。
(1)光学異方性ピッチの粘度は、光学異方性ピッチの吐出量及び吐出口の形状からせん断速度を算出し、この条件において東洋精機製作所製キャピログラフ1Dを用いて測定した。
(2)ピッチ系炭素繊維の平均繊維径は、黒鉛化を経たピッチ系炭素繊維をJIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
(3)ピッチ系炭素繊維の層面方向の広がりLaは、X線回折に現れる(110)面からの反射を測定し、学振法にて求めた。
(4)ピッチ系炭素繊維の電気比抵抗は、炭素繊維の両端の距離が1cmになるように銀ペーストを用いて固定し、両端の電気抵抗をテスターで20本測定し、ピッチ系炭素繊維の半径を用いて計算して求めた。
(5)ピッチ系炭素繊維の熱伝導率は、(4)で求めた電気比抵抗から熱伝導率と電気抵抗の下記関係式(特許第3648865号参考)から計算により求めた。
K=1272.4/ER−49.4
(Kは炭素繊維の熱伝導率、ERは炭素繊維の電気比抵抗)
(6)ピッチ系炭素繊維の表面は走査型電子顕微鏡(倍率1000)で炭素繊維100本観察し、割れや亀裂を観察した。
(7)ピッチ系炭素短繊維の端面は、透過型電子顕微鏡で100万倍の倍率で観察し、400万倍に写真上で拡大し、グラフェンシートを確認した。
(8)平板状成形体の熱伝導率は、京都電子製QTM−500で測定した。
【0045】
[実施例1]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。導入角α35℃、吐出口の径D0.2mm、吐出口長さL2mm(L/D=10)のキャップを使用し、吐出口における光学異方性のピッチ温度325℃で、スリットから350℃の加熱空気を毎分5500mの線速度で噴出させて、溶融ピッチを牽引して平均繊維径11.0μmのピッチ系繊維を作製した。325℃における光学異方性ピッチの粘度は185ポイズ(18.5Pa・S)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付320g/mのピッチ系短繊維からなる3次元ランダムマットとした。
【0046】
この3次元ランダムマットを空気中で170℃から285℃まで平均昇温速度2℃/分で昇温して不融化、更に800℃で焼成を行った。この3次元ランダムマットをカッター(ターボ工業製)で800rpmで粉砕し、3000℃で黒鉛化した。
黒鉛化後のピッチ系炭素繊維の糸径は平均で8.8μmであった。黒鉛結晶子の層間方向の広がりLaは90nmであった。電気比抵抗は2.2μΩm、熱伝導率は500W/m・Kであった。
【0047】
ピッチ系炭素繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は4個であり実質的に平滑であった。
【0048】
上述のピッチ系炭素繊維40重量部、シリコーン樹脂(東レ・ダウシリコーン製、SE1740)60重量部を自公転攪拌器(シンキー製あわとり錬太郎AR−250)にて混練し、複合スラリーとした。このスラリーを1辺300mmの正方形の金枠に設置し、真空プレス機(北川精機製)で、プレス加工し130℃で熱硬化処理することで、厚み0.5mmの平板状の炭素繊維/シリコーン複合物を得た。作製した炭素繊維/シリコーン複合物の熱伝導率を測定したところ、5.0W/(m・K)であった。
【0049】
上述のピッチ系炭素繊維40重量部、ポリカーボネート樹脂(帝人化成製、L−1225WP)60重量部を二軸混練機(栗本鉄工所製)にて混練し、マスターチップとした。このチップを射出成形機(名機製作所製M−50B)で、厚み2mmの平板の複合成形体を得た混合し、炭素繊維/ポリカーボネート複合物を得た。作製した炭素繊維/ポリカーボネート複合物の熱伝導率を測定したところ、2.9W/(m・K)であった。
【0050】
上述のピッチ系炭素繊維40重量部、ポリフェニレンスルフィド樹脂((ポリプラスチックス製、0220A9)60重量部を二軸混練機(栗本鉄工所製)にて混練し、マスターチップとした。このチップを射出成形機(名機製作所製M−50B)で、厚み2mmの平板の複合成形体を得た混合し、炭素繊維/ポリフェニレンスルフィド複合物を得た。作製した炭素繊維/ポリフェニレンスルフィド複合物の熱伝導率を測定したところ、3.3W/(m・K)であった。
【0051】
[実施例2]
実施例1において、吐出口におけるピッチ温度を335℃にした以外は同じ条件でピッチ系炭素繊維フィラーを作製した。335℃における光学異方性ピッチの粘度は90ポイズ(9Pa・S)であった。
黒鉛化後のピッチ系炭素繊維の糸径は平均で8.0μmであった。黒鉛結晶子の層間方向の広がりLaは80nmであった。電気比抵抗は2.8μΩm、熱伝導率は440W/m・Kであった。
【0052】
ピッチ系炭素繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は4個であり実質的に平滑であった。
上述のピッチ系炭素繊維40重量部、シリコーン樹脂(東レ・ダウシリコーン製、SE1740)60重量部を自公転攪拌器(シンキー製あわとり錬太郎AR−250)にて混練し、複合スラリーとした。このスラリーを1辺300mmの正方形の金枠に設置し、真空プレス機(北川精機製)で、プレス加工し130℃で熱硬化処理することで、厚み0.5mmの平板状の炭素繊維/シリコーン複合物を得た。作製した炭素繊維/シリコーン複合物の熱伝導率を測定したところ、4.8W/(m・K)であった。
【0053】
[比較例1]
実施例1において、吐出口長さを1mm(L/D=5)にした以外は同様の方法で、ピッチ系炭素繊維を作製した。
黒鉛化後のピッチ系炭素繊維の糸径は平均で8.3μmであった。黒鉛結晶子の層間方向の広がりLaは160nmであった。電気比抵抗は1.0μΩm、熱伝導率は1200W/m・Kであった。
【0054】
ピッチ系炭素繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は19個であり実質的に平滑でなかった。
上述のピッチ系炭素繊維40重量部、シリコーン樹脂(東レ・ダウシリコーン製、SE1740)60重量部を自公転攪拌器(シンキー製あわとり錬太郎AR−250)にて混練したが、粘度が高く均一に練る事ができなかった。
【0055】
[比較例2]
実施例1において、吐出口におけるピッチの溶融温度を345℃にした以外は同様の方法で、ピッチ系炭素繊維を作製した。345℃における光学異方性ピッチの粘度は20ポイズ(2Pa・S)であった。
黒鉛化後のピッチ系炭素繊維フィラーの糸径は平均で8.1μmであった。黒鉛結晶子の層間方向の広がりLaは140nmであった。電気比抵抗は1.0μΩm、熱伝導率は1200W/m・Kであった。
【0056】
ピッチ系炭素繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は16個であり実質的に平滑でなかった。
上述のピッチ系炭素繊維40重量部、シリコーン樹脂(東レ・ダウシリコーン製、SE1740)60重量部を自公転攪拌器(シンキー製あわとり錬太郎AR−250)にて混練したが、粘度が高く均一に練る事ができなかった。
【産業上の利用可能性】
【0057】
本発明のピッチ系炭素繊維は、ピッチ繊維を紡糸するときの条件を制御することで、熱伝導率と表面特性を優れたものとし、これを用いた複合材が高い熱伝導性と成形性を有することを可能にせしめている。これにより、高い放熱特性が要求される場所に用いることが可能になり、サーマルマネージメントを確実なものとする。
【図面の簡単な説明】
【0058】
【図1】本発明のピッチ系炭素繊維の製造に用いる紡糸ノズルの断面説明図である。

【特許請求の範囲】
【請求項1】
光学的異方性ピッチをその粘度が30〜250ポイズ(3〜25Pa・S)の範囲にある温度条件にて、導入角αが10〜55°の範囲にあり、吐出口長さLと吐出口の径Dの比L/Dが6〜20の範囲にあるノズルを用いメルトブロー法により紡糸してピッチ繊維を得て、得られたピッチ繊維を不融化した後、炭化及び/もしくは黒鉛化してなるピッチ系炭素繊維であって、黒鉛結晶子の層面方向の広がりLaが30〜200nmの範囲にあり、電気比抵抗が1.1より大きく4.0μΩm未満の範囲にあり、熱伝導率が250〜1100W/m・Kの範囲にあるピッチ系炭素繊維。
【請求項2】
透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じており、走査型電子顕微鏡での観察表面が実質的に平滑である請求項1に記載のピッチ系炭素繊維。
【請求項3】
平均繊維径が2〜20μm、平均繊維径に対する繊維径分散の百分率(CV値)が5〜20の範囲にあることを特徴とする請求項1〜2のいずれか1項に記載のピッチ系炭素繊維。
【請求項4】
請求項1〜3のいずれかに1項に記載のピッチ系炭素繊維と熱可塑性樹脂及び/又は熱硬化性樹脂とからなり、樹脂100体積部に対して3〜200体積部の前記炭素繊維を含有する組成物。
【請求項5】
熱可塑性樹脂が、ポリカーボネート類、ポリエチレンテレフタレート類、ポリブチレンテレフタレート類、ポリエチレン2,6ナフタレート類、ナイロン類、ポリプロピレン類、ポリエチレン類、ポリエーテルケトン類、ポリフェニレンスルフィド類、およびアクリロニトリル-ブタジエン-スチレン系共重合樹脂類からなる群より選ばれる少なくとも一種の樹脂である請求項4に記載の組成物。
【請求項6】
熱硬化性樹脂が、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類からなる群より選ばれる少なくとも一種の樹脂である請求項4記載の組成物。
【請求項7】
平板状に成形した状態における熱伝導率が2W/(m・K)以上である、請求項4〜6のいずれかに記載の組成物。
【請求項8】
請求項4〜7のいずれかに記載の組成物を、射出成形法、プレス成形法、カレンダー成形法、ロール成形法、押出成形法、注型成形法、およびブロー成形法からなる群より選ばれる少なくとも一種の方法により成形して得られる成形体。

【図1】
image rotate


【公開番号】特開2009−30215(P2009−30215A)
【公開日】平成21年2月12日(2009.2.12)
【国際特許分類】
【出願番号】特願2007−278803(P2007−278803)
【出願日】平成19年10月26日(2007.10.26)
【出願人】(000003001)帝人株式会社 (1,209)
【Fターム(参考)】