説明

物体を前処理及びコーテイングするための装置及び方法

金属壁26を有する真空チャンバに、スパッタターゲットを備えたマグネトロンが複数配されており、少なくともそのうちの一つは、HPPMSマグネトロンで、スイッチング素子5を介して容量素子6をHPPMSマグネトロンのスパッタターゲットに接続することで、電気パルスが供給される。効率的な基板の前処理及びコーテイングを達成するために、スイッチング素子がチャンバ壁に配されている。電極対がもけられており、その第1電極はHPPMSマグネトロンとなり、第1及び第2電極を適切に配することで、基板テーブル4に保持された物体11は、電極対の両能動面の間に位置するか、あるいは両能動面の間の空間を通って移動する。エッチング工程で、負のバイアス電圧が物体に印加され、物体は金属イオン照射によってエッチングされ、その後バイアス電圧を連続的に下げることによって、スパッタターゲットからスパッタされた物質は物体に積もり層になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マグネトロンスパッタリングによって、物体を前処理及びコーテイングするための装置及び方法に関する。
【背景技術】
【0002】
機械的な特性を改善するために表面コーテイングを全体的若しくは部分的に施した物体を提供することが知られている。特に、アーク蒸着やマグネトロンスパッタリングのようなプラズマベースのPVD方法が有用であることがわかっているが、ここでコーテイング物質はプラズマ動作によりいわゆるターゲットから離れ、ついで基板に堆積する。
【0003】
マグネトロンは、ターゲット、冷却手段、電気遮蔽手段などに加えて、特に磁場を発生する手段を含んでおり、これはターゲットの前でプラズマ濃度を増大させる。マグネトロンの動作中、ターゲットは陰極として、チャンバ側壁及び/又はマグネトロンのシールド又は陽極として動作する離れた電極に対して、接続している。
【0004】
アーク蒸着に比べ、マグネトロンスパッタリングは、液相を避けられる点で有利である。これにより、ほとんど無制限の範囲の合金層が可能であり、これらの層はいわゆる飛沫と呼ばれる成長欠陥が無い。
【0005】
しかしながら、コーテイング粒子のイオン化程度は、在来型のマグネトロンスパッタリングでは、数%を超えることが無い。イオン化はターゲットの正面で最大となるが、コーテイングチャンバの中にはほとんど広がらない。これは、非均衡マグネトロン(UBM)と呼ばれる、マグネトロン背後の非対称磁場によって若干改善可能である。しかしながら、これは特に商業的な設備では普通の大きなコーテイング容積の場合に不十分である。しかも、イオン化は大部分が作用ガスのイオンで占められ、ターゲットのイオン化物質の割合は非常に小さい。
【0006】
金属イオンは、とりわけ、コーテイング物質の一部を構成するように選択できる点及び層を汚染しないという点で、有益である。さらに、金属イオンは通常のプロセスガスに比べてイオン化エネルギーが小さくてすむ。
【0007】
この欠点を避けるために改変された方法が、高電力パルスマグネトロンスパッタリング(略してHPPMS)と呼ばれる。ここでは、電気的プラズマ発生器から短くしかし高いエネルギーのパルスを用いて、ターゲットの正面でほとんど100%に達するコーテイング粒子の高いイオン化密度を達成できる。十分なエネルギーを有するパルスは、電流が相当な率で高められ、グロー放電と高電流アーク放電(アーク)が急速に過ぎる中で、非常に高い荷電粒子密度を伴った安定プラズマがマグネトロンの正面で形成される。パルスによって最大限に注入される電力は、メガワットレンジであり、このためにパルス幅はマグネトロンを損傷しないように相当程度短く選ばなければならない。
【0008】
HPPMSは多くの利点を有している。電場及び磁場により、通常はイオンであるイオン化コーテイング粒子の方向及び軌跡を規定できる。マグネトロンスパッタリングで通常基板に印加される負電位(バイアス)により、凹部や視線から外れた基板面にもコーテイング粒子が達することができる。このバイアスは、又種々の層特性が依存しているイオンのエネルギーも規定している。マグネトロン側では、コーテイング物質又はターゲットの実質的により良好な利用が強力なイオン照射により達成できる。更に反応ガスとの反応によるいわゆるターゲット毒も防止できる。反応ガス中における在来型のマグネトロンスパッタリングでは、孤立した反応層がマグネトロンに形成され、これが効率的な金属の蒸発を妨げ、結果孤立層や荷電、アークをもたらす。これを反応ガス圧を下げることで避けようとすると、逆に層中の金属含量が高くなり過ぎ層の硬度が減じる。しかしながら、特に硬質物質層は通常金属と非金属の固定された化学量論的な比率を有する化合物からなる。層形成速度と反応ガス流量との間の比較考量を常に図る必要がある。これはプロセス中精密に注視する必要がある。ターゲットイオン特に金属イオンの割合が高いHPPMSでは、金属イオンの一部がターゲットに向かって逆加速され、しかしてターゲット毒を防ぐことができる。したがって精密な作用点はそれほどきわどくは無く、従来のスパッタリングと同様の層形成速度で反応プロセスによりコーテイングを行うことができる。
【0009】
ターゲット毒が問題とならない、純粋の金属層では、従来のマグネトロンスパッタリングよりも、HPPMSでの層形成速度はむしろ短くできる。
【0010】
高度のイオン化はチャンバに存在するスパッタガス及び反応ガスに影響するだけでなく、HPPMSターゲット例えば金属ターゲットのイオンにも影響を与える。その結果、HPPMS電極はほとんど独占的に金属イオンの供給源としての役割を果たす。金属イオンはコーテイングに用いられるばかりでなく、基板の前処理にも用いられ、エッチングとも呼ばれる。前処理は、汚染物質のスパッタ除去若しくは基板に対する金属イオンの打ち込みである。これを実現するため、高いバイアス電圧が基板に印加される。
【0011】
HPPMSの基本はKouznetsov、特にPCT出願WO98/040532(特許文献1)に見出される。特殊な電力供給源の実装は、US6,296,742(特許文献2)に見出される。EP1609882(特許文献3)は、パルスの後イオンを基板に指向させる様々な方策を開示している。D.J.Christie,in”Target material pathways model for high power pulsed magnetron sputtering”J.Vac.Sci.Tec.A,23(2)(2005)330(非特許文献1)は、HPPMSにおける成膜速度損失に帰結する効果を説明している。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】国際公開WO98/040532
【特許文献2】米国特許US6,296,742
【特許文献3】ヨーロッパ特許EP1609882
【非特許文献】
【0013】
【非特許文献1】D.J.Christie,in”Target material pathways model for high power pulsed magnetron sputtering”J.Vac.Sci.Tec.A,23(2)(2005)330
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明の目的は、基板の効率的なエッチング及びコーテイングを可能にする方法及び装置を提供することである。
【課題を解決するための手段】
【0015】
この目的は、請求項1に記載された装置、あるいは請求項7に記載された他の装置、及び請求項17に記載された方法によって達成される。従属請求項は本発明の有益な実施形態に関連している。ここで、周知の方法の提案された改良は、上述した各面に個々に対応しているものの、これらはどのような態様にても各面の間で組み合わせることができる。
【0016】
基本的に、本発明にかかる装置及び方法によって、どの様な物体でも前処理でき又欲する層を堆積できる。好ましいのは、部品又は工具、特に加工用の工具の堅牢で及び/又は硬い保護膜である。特に好ましい例示的な実施形態では、特に基板に対して、中間層、遷移層及び接着層有り若しくは無しで、硬質物質層を堆積することが好ましい。硬質物質層とは、例えば比較的高い硬度を有するTi−Al−N層又はAl層などである。
【0017】
請求項1及び請求項7に規定するように本発明によって提案された装置は、各々マグネトロンスパッタリングで物体を前処理及びコーテイング処理するために提供される。これらは、金属のチャンバ壁を有する真空チャンバからなる。この真空チャンバには、スパッタターゲット、好ましくは金属ターゲットを具備したマグネトロンが配される。
【0018】
少なくとも一つのマグネトロンは、HPPMSマグネトロンとして構成される。即ち、これは高電力パルスのマグネトロンスパッタリングプロセスにより駆動される。このために、それはHPPMS電源に接続される。
【0019】
追加的には、在来型のマグネトロンも真空チャンバに配することもできる。在来型のマグネトロンとは、HPPMSマグネトロンではない種類のものである。現技術水準により、さまざまな種類が知られている。例えばこれらは、直流駆動型、高周波駆動型、中間周波駆動型、単極パルス駆動型、二極パルス駆動型などがある。二極パルスマグネトロンの場合、パルス周波数は、好ましくは1−500kHz、より好ましくは2−200kHz、特に好ましくは4−100kHzである。
【0020】
HPPMSモードで駆動される場合に、即ち適切なHPPMS電源に接続される場合に、マグネトロンはいわゆるHPPMSマグネトロンとして参照される。HPPMSは、WO98/040532においてKouznetsovによって記述されたイオン化状態に到達したことを意味する。このイオン化状態は電圧と電流密度によって規定される。
【0021】
さらには、パルス幅とパルス間隔との比が0.1未満で低いことが、HPPMS動作の特徴になっている。即ち、パルス間隔がパルス幅の10倍より長い場合である。典型的なパルス幅は例えば100μsである。
【0022】
追加的に、HPPMS動作の補足的要件として、電力密度がターゲットに沿って比較的一様に分布していることがある。
【0023】
文献がしばしば言及するところでは、HPPMSのターゲット上における電力密度は、1000W/cmより大きなパルスとなっている(ターゲットの電力をターゲットの面積で割って計算)。しかしながらテストでは、このような電力密度はしばしば達成できないことが示されている。特に酸化アルミニウムのような絶縁層に適用した場合などである。しかしながらHPPMS駆動の特別な効果は、低めの電力密度でも既に発現している。この効果は、600W/cm程度の低い電力密度ばかりでなく、さらに低い300W/cmでも発現している。
【0024】
全てのマグネトロンは好ましくはターゲットの後ろの三磁極により動作する。好ましくは中央の極は外側の極よりも強い磁場を有する。このようなマグネトロンは、不均衡マグネトロン(UBM)として参照される。
【0025】
本発明により供されるHPPMSマグネトロンは、マグネトロン自体の構成に関する限り在来型であってもよい。ただし、所望の構成手段を用いてこのモードに特に適応したHPPMSで駆動するマグネトロンの場合を除外するものではない。
【0026】
請求項1による装置において、スイッチング素子を用いてHPPMSマグネトロンのターゲットに容量素子を接続することにより、電気パルスをHPPMSマグネトロンに印加できる。本発明によれば、スイッチング素子はチャンバ壁に配される。
【0027】
請求項1で請求された発明によれば、HPPMSパルス用のスイッチング素子をできるだけ対応するHPPMS電極の近くに搭載することを意図している。HPPMS容量を充電するための電流は緩やかである一方、容量素子を放電するとき極端に高くて短い電力パルスが対応する強い広帯域の干渉を伴って発生する。本発明によれば、スイッチング素子はチャンバ壁の外側に直接搭載され、好ましくはマグネトロンの接続に使われる真空通路の近傍に搭載される。
【0028】
HPPMSにおける極端に高いパルスエネルギーのために、高い電気的及び電磁気的な干渉が発生するが、これは近代的な産業施設にある複雑な調整回路に、かなり干渉する可能性がある。この問題は、この後説明する動作態様にあるように、複数の陰極システムや電極間の大きな距離のために悪化する。絶縁層を堆積するとき、複数の電極がしばしばパルスモードで駆動するので、問題はさらに悪化する。電荷とアーク放電の発生が増大する電磁気的な発生を生じる一方、これらが回路を制御するために増大する負荷の原因となる。特に、ここではアークの迅速な検出及び抑制のための電子回路が挙げられる。
【0029】
本発明の請求項によるスイッチング素子の配置によれば、切り替わる電流の配線長、特にチャンバ外における配線長が実質的に短縮化できる。本発明の配置によれば、実質的に電磁的な干渉の発生の低下が見られる。
【0030】
請求項1により提供されるHPPMS電源の重要な要素は、パルスとパルスとの間で好ましくは連続的に再充電される容量素子と、パルスを発生するために充電された容量素子を放電するスイッチング素子である。パルス幅及びパルスの順次タイミングは制御装置により規定できる。基本的にスイッチング素子はメカニカルスイッチでできるが、好ましくはIGBT(絶縁ゲートバイポーラトランジスタ)パワーセミコンダクタで構成する。
【0031】
容量素子は、高電圧と高電流を供給する必要がある。本発明の好ましい実施形態によれば、高い耐圧(好ましくは1000Vより大きく、特に好ましくは2000V若しくはこれより大きな耐圧)を有する個々の容量を狭い実装密度で電気的に並列接続して、容量バンクを形成する。好ましくは、容量バンクは並列接続した5個より多くの容量、特に好ましくは10個より多くの容量からなる。容量バンクの総容量値は、好ましくは20−100μF、さらに好ましくは30μFより大きく、特に好ましくは40μFより大きい。
【0032】
スイッチング素子及び/又は容量バンクは、真空通路とともにユニットを形成する。このユニットは、例えば共通のハウジングに配される。
【0033】
さらに、管路又はチャンバ壁に既に配設されている冷却手段を、スイッチング素子回りに利用できる。同様の方策が二重マグネトロンモードにおけるスイッチング素子にも又有効である。
【0034】
各電極が比較的大きな距離で配された電極対を伴った好ましい実施形態では、対応する長い配線のために電磁的な干渉の危険性が増す。好ましい実施態様では、かくして配線は、金属のコーテイングチャンバ内に配され、これにより周囲の空間で電磁的な干渉を減じる。さらに好ましい実施形態では、対向電極または陽極の配線が、電極の配線自体となる同じ真空通路を通ってチャンバに通される。
【0035】
本発明の請求項7による装置は、周知の装置及び方法により高いイオン密度がマグネトロンの前面で達成できる一方、これらのイオン密度はコーテイング容積の中では、即ちコーティングすべき基板の位置では、連続的に利用できないという点に基づいている。このことは、特にHPPMSに当てはまり、又大きなコーテイング容積と基板−マグネトロン間の拡大した距離とを伴う商業的な設備に当てはまる。本発明は、マグネトロンスパッタリングによって基板の前処理及びコーテイングを可能とするもので、高い金属イオン密度と、高い気体イオン密度の両方をコーテイング容積全体で達成できる。好ましくは一方で在来型の例えば直流マグネトロンを配し他方ではHPPMSマグネトロンを真空チャンバに配し、それぞれのマグネトロンの電力を適切に選択することで、一方では金属イオンの量をあらかじめ決定し他方では気体イオンの量をあらかじめ決定することができる。
【0036】
高いイオン密度は、電極の特別な接続によって達成される。少なくとも一つのプラズマ生成電極対が真空チャンバに配される。この電極対は、第1の電極としてHPPMSマグネトロンからなる。以下に説明するように、第2の電極は第2のHPPMSマグネトロン、在来型のマグネトロン又は陽極である。
【0037】
本発明によれば、第1及び第2の電極を配することで、基板テーブルに支持された物体が電極対の能動面の間に位置するか、若しくは電極対の能動面の間の空間を移動する。
【0038】
これらの手段により、好ましくは一つ又はこれ以上のマグネトロンの対向極を適当に配することで、動作中の電極表面を結ぶ線が、少なくとも部分的若しくは一時的に処理すべき基板を横切る。これは通常、電極対の対応する二つの電極の間を結ぶ電界線が少なくとも部分的及び一時的に基板を横切り、且つ基板表面が特に金属イオン及び気体イオンなどの荷電粒子で処理されることを意味する。これは、もっとも単純な場合、基板を電極対の間に挿入するか、又は電極対の間の空間に基板を通すことによって、達成される。
【0039】
ここで、マグネトロンは通常のマグネトロン又はHPPMSマグネトロンとして動作できる。
【0040】
本明細書において電極対は、二つの電極と電力供給源とからなり、ここで電極はこの電力供給源により互いに接続されている。この接続は必ずしも直接的である必要は無い。それは、干渉抑制又は適応ネットワーク、スイッチング素子、又は他の電気素子によって達成できる。電極に流れる電気エネルギーは基本的に対応する電源から供給されるということが、肝要である。一つの電極が、複数の電極対の一部ともなりうる。マグネトロン電極対は、少なくとも一つの電極がマグネトロン電極になる。
【0041】
電極対の一方の電極が、二番目の電極に対して基本的に正電位にあるとき、それは陽極して参照される。逆に、電極対の一方の電極が、二番目の電極に対して基本的に負電位にあるとき、それは陰極として参照される。
【0042】
電極対が二重マグネトロンとして参照される場合もある。これは、二つのマグネトロンが電極として使われ、互いに交代する極性(バイポーラ)を有し、その結果各電極は陽極と陰極とが切り替わる。
【0043】
チャンバは、好ましくは作用ガスや反応ガスのための制御された気体流入口と、真空ポンプガス流出口などを供えた通常のスパッタ設備を有する。適切なテーブルが好ましくは設備の中央に配される。電極、特にマグネトロンは、好ましくは壁の近傍におかれ、基板テーブルの周りに好ましくは均等に配される。ここで、ターゲットは、基板に向かう方向に面する。テーブルは、好ましくは回転し、以って一つ又は複数の基板が回転する中で全ての側からコーテイングされる。基板が前処理され且つコーテイングされる空間は、コーテイング容積として参照される。全ての基板及び対応する保持具の集合はバッチとして参照される。少なくとも一つのマグネトロン電極対により、動作中の電極表面の間でこれらを望む一本の視線が一又は複数の基板を少なくとも部分的に又一時的に横切る。
【0044】
この比較的大きな距離により、電子が陰極から陽極に移動し、その全体的な行路に沿って追加的なイオン化が生じるので、高いイオン化がチャンバの全体で生じる。チャンバが作用ガス及び/又は反応ガスで満たされた場合、このようにして気体の高イオン化が達成される。
【0045】
本発明によって実装されたHPPMSマグネトロンは、基本的に高い金属イオン濃度を達成する。チャンバ壁に対してあらかじめ規定された正電位に保持される陽極を用意した場合、イオン化が増大しさらにはコーテイング容積まで到達する。この目的で、好ましくは電圧制御された電源が、好ましくは陽極とチャンバ壁の間に接続している。
【0046】
請求項17による方法は、エッチングとコーテイングとの間の遷移の特別な態様を提供している。
【0047】
基板の前処理と同じくコーテイング処理の間、通常負電位が基板に印加される。この電位はしばしば、バイアス電位として参照され、イオンを基板表面にひきつける。この結果とりわけコーテイング処理の間、層の緻密化と引張応力の現象をもたらし、以って層の品質と層の密着性の改善をもたらす。エッチングは、基板の一部除去若しくは汚染物質の除去として定義される。コーテイングとは対照的に、それは物質の除去に用いられる。イオンエッチングの間、バイアス電位は通常強い負電位である。この集中的な照射により、基板表面は清浄化され且つ活性化される。もし金属イオンによる照射がHPPMSモードで且つ高バイアス電位で行われた場合、金属イオンは表面から近くに打ち込まれる。これにより、後続する層の堆積が改善する。バイアス電圧を変えることにより、エッチングとコーテイングの間即ち基板と層との間の連続的な遷移を達成する。
【0048】
金属ターゲット好ましくはHPPMS金属ターゲットを自由に選択することで、基板と層との間の遷移を可変的に調整できる。エッチングとコーテイングを同じ物質で行えるので、最初にエッチング工程で基板に例えば1000Vの高い負電圧を印加し、次いで連続的にこのバイアス電圧を減じることで、連続的に変化する界面と良好な接着性を達成できる。
【0049】
本発明にかかる方法の好適な実施形態では、HPPMSターゲットが動作している間、例えば−1200Vの高い負基板バイアスで、金属イオンを基板に加速することで、第1の金属イオンが基板に打ち込まれる。ついで、バイアス電圧を減じることにより、同じ物質で薄い金属中間層が生成される。続いて、同じ物質を利用し且つ反応ガスを加えることで、同様に薄い硬質物質中間層を堆積できる。最後に、実際の硬質物質層が堆積する。三つの場合分けができる。第1は、中間層の金属が硬質物質層の金属と異なる場合である。次は、中間層の少なくとも一つの金属が硬質物質層にも見出される場合で、第3は中間層と硬質物質層とで金属が基本的に同じ場合である。硬質物質層の無数にある応用の中で、最も有益な群は、各場合で試行錯誤により決定できる。しかしながら、TiとCrが中間層の元素として特に有益であることが明かにされている。
【0050】
好ましくは、中間層及び硬質物質中間層共に、1−200nmの厚み、特に好ましくは10−100nmの厚みを有する。
【0051】
気体イオン濃度及び金属イオン濃度を適切に調整することで、界面部分に最適化された遷移を追加的に生成できる。ここで、HPPMSエッチングの間、同時に気体イオンによる十分な照射が起きることが特に有益である。さらに、HPPMSに先立って純粋気体によるエッチングがさらに密着性を高めることが認められた。
【0052】
バイアス電圧は、基板テーブルとチャンバとの間にも印加できる。しかしながら、バイアスは基板テーブルと陽極との間に印加することが好ましい。好ましくは、チャンバのみがただ一つの陽極電位を持ち、これは基板の処理及びコーテイングに必要とされる全ての電極の中で最も正の電位である。
【0053】
ガスイオンと金属イオンの好ましい調節により、さらに層品質、層形成速度、層組成、層構成及び層張力など様々の特性の最適化を可能にしている。又、多層構成に関し、多数の変形が可能である。
【0054】
好ましい変形例では、複数のHPPMSマグネトロンが離れた陽極に対し接続されている。基板がHPPMSターゲットと対応する対向電極との間の線を横切る場合、基板の近傍で高い金属イオン密度とガスイオン密度が達成できる。電子は、対向電極に向かう経路で気体のイオン化をもたらし、さらにはスパッタされた若しくは再結合した金属イオンが新しくイオン化され、あるいは単価でイオン化した金属が、多価にイオン化される。
【0055】
驚くべきことに本方法は、絶縁層、好ましくは酸化層、特に好ましくは酸化アルミニウム層をコーテイングする場合にも有用であることがわかった。この場合、荷電とアークは頻繁でないので、プロセスがより安定化する。ただし、HPPMSマグネトロンを駆動すると同時に、在来型のマグネトロン対を二重マグネトロンモードで駆動した場合にも同じことが当てはまる。これらの場合には、在来型のマグネトロンのみを使った場合よりも、層形成速度が速い。
【0056】
本発明の実施形態は、図面を参照して以下さらに説明される。
【図面の簡単な説明】
【0057】
【図1】図1は、二つのHPPMSマグネトロンと二つの在来型マグネトロンとを有するコーテイング装置の第1実施形態の水平断面を示す模式図である。
【図2】図2は、図1に示すコーテイング装置の電源の接続関係を示す模式図である。
【図3】図3は、四つのHPPMSマグネトロンを有するコーテイング装置の第2実施形態の水平断面を示す模式図である。
【図4】図4は、図3に示すコーテイング装置の電源の接続関係を示す模式図である。
【図5】図5は、二つのHPPMSマグネトロンと二重マグネトロンモードで動作する二つの在来型マグネトロンとを有するコーテイング装置の第3実施形態の水平断面を示す模式図である。
【図6】図6は、二つのHPPMSマグネトロンと二つの在来型マグネトロンとを有し、全てのマグネトロンが共通の陽極に対して接続されているコーテイング装置の第4実施形態の水平断面を示す模式図である。
【図7】図7は、共通の陽極に対して接続されている四つのHPPMSマグネトロンを有するコーテイング装置の第5実施形態の水平断面を示す模式図である。
【図8】図8は、二つのHPPMSマグネトロンがバイポーラ方式で互いにパルス駆動される接続を備えたコーテイング装置の第6実施形態の水平断面を示す模式図である。
【図9】図9は、HPPMSマグネトロンを駆動するためのスイッチング素子を示す回路図である。
【図10】図10は、チャンバ壁とそれに搭載されたHPPMS電源の垂直断面を示す模式図である。
【発明を実施するための形態】
【0058】
図1-8は各々四つのマグネトロンと回転可能な基板テーブル4とを有するPVDスパッタリング装置のコーテイング用チャンバを示す。マグネトロンは、遮蔽手段と冷却装置と磁石系とを備え、覆われた後部と、スパッタされる物質からなり覆われていないターゲットとで構成されている。図示の例では、それぞれのターゲットは、長方形の板として形成され、その前部は基板テーブル4に面している。
【0059】
図示の実施例において、少なくとも一つのマグネトロンは、各々の場合においてHPPMSマグネトロンとして形成されており、図面ではターゲットの上に”H”を付して識別されている。「HPPMSマグネトロン」の指定は、主としてその接続方式に関連している。すなわち、HPPMSマグネトロンはHPPMS電源に接続される一方、在来型のUBMマグネトロンは在来型の直流電源若しくは、従来エネルギーの電圧パルスを出力する従来のパルス電源に接続される。図示の例では、マグネトロン自体はみな構造、即ちターゲットの形状及び寸法、磁石系、冷却機構などが同じである。あるいは、例えば磁場の強度若しくは形状、冷却機構の規模に関し、各応用形態にしたがって、HPPMSマグネトロンや在来型のUBMマグネトロンなどのマグネトロンを適応化することも可能である。
【0060】
HPPMSマグネトロンのターゲットはそれぞれ、別個のHPPMS電源で駆動される。個々の実施例の各々に示すように、同電位にあるターゲットのシールディング及び/又はチャンバ壁、あるいは離れたアノードが、それぞれ陽極として機能する。HPPMSマグネトロンのターゲットは、スパッタリング動作において金属イオンを生成する。この金属イオンは、基板テーブルによって近くを移動する基板の前処理若しくはコーテイングに供される。離れたアノードの場合、コーテイングの間電源によってチャンバ壁に対し正の電位Vに保持される。
【0061】
第1の実施例(図1)では、二つのHPPMSマグネトロン1と二つの在来型のUBMマグネトロン2が、約0.7mの容積を有する金属コーティング用チャンバのチャンバ壁近傍に配置してある。これらの間に、回転する基板テーブル4がある。基板テーブル4は回転板3からなり、その上のラックに基板11が固定されているとともに、導電状態で接続されている。基板はコーティングの対象となる物体で、その形状は例えば工具のようにそれぞれの応用に対応した形状となっている。基板は、変化する距離関係で自転する回転板の上で、マグネトロンの前を移動していく。アノード3に対して基板バイアス電圧Vが基板に導電接続している基板テーブル4に印加される。
【0062】
在来型マグネトロン2がコーテイングの間アノードに対して駆動されるが、これらのマグネトロン2は基板テーブル4に対して互いに反対側に位置する。この目的で、マグネトロン2に応じた個々の電源ユニットが電圧VM1及びVM2を発生する。これらの電圧により、各マグネトロン2はカソードとして、アノード3に対し負の電位におかれる。マグネトロン2とアノード3との間の大きな距離により、陰極2及び空間で生成された電子は、チャンバを通って長い距離を移動し、更なるイオン化を生じさせる。このようにして、基板11を含む全コーテイング容積に対し高い気体イオン密度を供給できる。
【0063】
HPPMSマグネトロン1のターゲットは、主として金属イオンを同時に供給する。本例では、これらはマグネトロンの接地された遮蔽手段に対して駆動される。前処理及びコーテイング処理の間、遮蔽手段は陽極の役割を果たす。純粋に在来型のマグネトロンの駆動に比較すると、HPPMSマグネトロン1の動作により、金属イオンの量が増加するので、実質的な膜品質及び密着性の改善をもたらす。
【0064】
図2は、コーテイング装置のHPPMS電源14を示す模式図である。HPPMS電源14は、左下にあるHPPMSマグネトロン1用のものをただ例示的に示しており、他のHPPMSマグネトロンはさらに同一のHPPMS電源(図示せず)を備えている。HPPMS電源14は、スイッチング素子5と、容量素子6、と直流電源ユニット7とからなる。
【0065】
図9は、スイッチング素子5の模式図である。スイッチング素子5は、IGBTとして構成されたパワートランジスタからなり、容量素子6とHPPMSマグネトロン1との間に直列に配置している。IGBT16は制御ユニット20により駆動される。制御ユニット20はさらに駆動インターフェース24を含み、これによりスイッチング素子の状態が決められる。パルスの幅及びタイミングを規定する外部の制御コンピュータが、適切な態様で制御ユニット20を制御する。
【0066】
容量素子6は容量バンク、即ち個々の容量の並列接続として提供されている。好適な例では、個々の容量は、各々2000Vを超える耐圧で用いられる。この好適な実施例では、必要な数だけ多くの個々の容量を並列接続して、容量バンク6の適切な総容量、例えば30μF又は50μFを達成している。
【0067】
図2に示すように、最初の抽象的な表現では、スイッチング素子5と容量素子6は、チャンバ壁の外側で関連する電気−真空通路8にある陰極の直近にある。スイッチング素子の冷却は、チャンバ壁の冷却回路によって行われる。あるいは空冷も可能である。
【0068】
パルスの休止期間中に容量バンク6の容量を充電するためのDC電源7は、パルス電力に対する要求に比べると、低い電力要求ですみ、離れたスイッチキャビネットに置かれている。
【0069】
図10において、チャンバ壁26に配置した容量バンク6とスイッチング素子5が、模式的に示されている。これらはハウジング28に配されており、チャンバ壁26に直接搭載されている。
【0070】
チャンバに配されたHPPMSマグネトロン1のために、水冷機構が設けてあり、冷却媒体の入口30aと出口30bからなる。冷却媒体源は、最初ホースを介してハウジング28に供給される。続いて、チャンバ壁26の真空絶縁体32を挿通した銅管36,38により、HPPMSマグネトロン1に対する冷却媒体の供給及び排出を行う。
【0071】
銅管36,38は又スイッチング素子5からマグネトロン1に対してHPPMS電流パルスを導くための導電体として用いられる。この目的で、スイッチング素子5の電気出力はスリーブクランプ34により二つの管36,38に電気的に接続している。絶縁体32がチャンバ壁26に対する電気的な絶縁を提供している。
【0072】
この結果、一方では真空通路8の構造が非常に単純になる。他方では、管36,38が非常に高い電流を導くために比較的大きな断面積を有する導体として優れて用いられる。管36,38自体が冷却媒体を導くため、追加の負荷なしに、導電体の冷却を行うことができる。
【0073】
容量バンク6とスイッチング素子5はかくして互いにすぐ近くに配置できる。即ち、お互いから80cmより少ない距離に置かれ、好ましくは20cm未満におかれ、電流パルスをが流れる導体の距離を可能な限り短く保持できる。容量バンク6とスイッチング素子5は又、チャンバ壁26の反対側に配置されたHPPMSマグネトロン1の近傍に搭載できるので、これによっても電流路を短く保つことができ、好ましくはスイッチング素子5からHPPMSマグネトロン1まで50cm未満、特に好ましくは30cm未満に保持できる。
【0074】
さらには、配置をこのように構成することで、HPPMSパルスの電流をを導く導体を最小の長さで真空チャンバの外側に配置することができる。金属の真空チャンバは、ファラディ遮蔽として働くので、設備の外側に対する電磁的な干渉を最小限にでき、又高い動作安全性を達成できる。
【0075】
第1の実施形態のコーテイング装置の例示的な構成では、チタンだけからなる第1のHPPMSターゲットを除く総てのターゲットがアルミニウムを挿入して組み込んだチタン板(Ti−Alターゲット)からなる。
【0076】
第1の実施形態によるコーテイング装置の動作を以下に説明する。これは、基板テーブル4に配された工具などの物体(基板)11を前処理し且つコーテイングする例示形態である。
【0077】
基板はまず約500℃まで加熱される。第1のエッチング工程で、アルゴンガスがチャンバに導入され、且つ在来型の二つのマグネトロン2がスイッチングの間、陰極として動作する電極3に対して約45cmの距離で、各マグネトロン2は共通に陽極として動作する。ここで、基板は負の電位に維持される。このようにして基板の近傍に生成された高密度の気体イオンは、第1のエッチング工程で初期的な清浄化と基板表面の活性化をもたらす。
【0078】
第2の工程で、第1のエッチング工程と動作を同じにしたうえで、さらにターゲットがチタンのみからなる第1のHPPMSマグネトロン1を低いアルゴン圧で駆動する。電圧V及びVを適切に調節して、チャンバ壁を基準にして−1100vのより高い新しい負電位を基板に印加する。金属イオンが基板表面を清浄にし且つエッチングする。小さい比率でイオンが基板表面近傍に打ち込まれる。前と同様にアルゴン圧が依然としてあるので、アルゴンイオンによる照射も同時に起きている。
【0079】
数分間、例えば一例で5分間の遷移期間の間に、基板バイアスは連続的に−1100Vから−100Vまで(絶対値で)減少する。これにより、薄いTiの界面が得られる。
【0080】
続いて、数分の間窒素が導入される。TiNからなる薄い硬質金属層が形成される。続いて、アルゴンガス及び反応ガスの流量を増やし、且つ(Ti−Alターゲットを備えた)第2のHPPMSマグネトロンが追加的に駆動される。さらに、在来型のマグネトロン2がこの時陽極として働く電極3に対して陰極として直流駆動される。
【0081】
三つの追加したマグネトロンは、Al及びTiイオンに加えて、Al及びTi原子を放出する。個々のマグネトロンの出力を調整することで、硬質層の化学量論的な組成を調整する。
【0082】
マグネトロン2の正面で生成された電子は、電場の中で陽極3に向かって移動し、かくして更なる荷電粒子を基板の近傍で生成する。この電場は、図1及び後続する図面では、破線で象徴的に示されている。この線は、大略電極対を構成する二つの電極の間に進入する電界線に対応している。チャンバ内の他の電極は、この電場ラインのゆがみをもたらしている。
【0083】
基板が回転するため特に、経時的にかなりの変動が生じうる。しかし経時的な平均でとると、電場ラインは大略図示の軌跡となる。能動電極表面間の視線は、長い距離にわたって電場ラインからほとんどずれることが無い。回転する基板は、少なくとも部分的且つ一時的にこれらの視線を横切る。かくして生成された気体イオンは、高い密度を伴って基板の上で利用可能になる。イオンは、コーテイング処理の間基板バイアス電圧Vによって、基板に向かって加速される。スパッタガスのイオンは、かくして層を緻密化する一方、反応ガスのイオンはスパッタされた金属イオンや原子と反応して所望のコーテイング物質TiAlNをもたらす。金属原子は、主として在来型のUBMマグネトロンから発する一方、金属イオンは主としてHPPMSマグネトロンからもたらされる。この組み合わせにより、特に硬く密着性の層が良好な層形成速度で得られる。
【0084】
一方もし、層が同じ実験構成でただ在来型のUBMマグネトロンのみを使って生成した場合、結果はより低い高度と密着性で且つ高い粗度の層になる。
【0085】
X38CrMoV51の鋼鉄板を処理すると、1400MPaまで硬くなり、半径10mmのミルの工具寿命を21%程度伸ばせる。
【0086】
比較例では、HPPMSマグネトロンがUBMマグネトロンとともに使われたが、全てのマグネトロンが接地された遮蔽に対して駆動された。この比較例では、在来型のUBMマグネトロンのみで得られたコーテイングに比べると、部分的に密着性及び硬度が改善している一方、基板全体にわたって層特性は均一にならなかった。
【0087】
図3の第2実施形態は、四つのHPPMSマグネトロンを設けた他は、第1実施形態と同じである。二つのHPPMSマグネトロンは、離れた陽極に対して駆動され、その結果電子は長い距離を移動し、コーテイング容積全体で、高い気体イオン化をもたらす。
【0088】
図4は、図3を参照しつつ、第2の実施形態におけるHPPMSマグネトロンと対応する対向電極との接続の例示態様を示す。基板テーブルの反対側にある陽極3用の電気配線9は、遮蔽シート(図示せず)の背後にあるチャンバ壁に沿って真空チャンバの内側に延設されている。この構成により、コーテイング装置の外側からの電磁干渉を最小にし、高い動作安全性が得られる。
【0089】
第2実施形態による配置で基板のコーテイング処理の間、より大きな硬度と一方では高い張力とを備えた層が生成された他、同じ構成と同じ処理工程が行われた。これらの層は、特に超硬加工に有利であり、好ましくは小さな層厚に限って適用される。第1実施形態の応用例に比べると、工具寿命はさらに16%延びており、換言すると従来のコーテイングに比べてトータルで37%の改善になっている。
【0090】
図5は、コーテイング装置の第3実施形態を示しており、好ましくは、基板の前処理及び/又は例えば酸化アルミニウムなど酸化層などの非導体層による基板のコーテイングに用いられる。コーテイング装置は、以下に述べる接続関係を除いて、上述した実施形態と同じであり、二つのHPPMSマグネトロンと二つの在来型マグネトロンとからなる。HPPMSマグネトロンの一つは、クロムのターゲットを装着しており、前処理と中間層の形成のみに使われる。他のマグネトロンのターゲットはアルミニウムからなる。二つの在来型のUBMマグネトロンは、コーテイングのために二重マグネトロンモードで動作する。
【0091】
酸化層を生成するための例示態様として、以下に第3実施形態にかかるコーテイング装置の動作を説明する。
【0092】
まず、第1実施形態の例示態様動作に類似したエッチング処理が行われる。ただしここでは、HPPMSチタンターゲットの代わりにHPPMSクロムターゲットが用いられる。第1の例と同じく、最初にターゲット物質の金属層を堆積し、続いて反応ガスを導入することにより、硬質物質の中間層を生成する。第3実施形態の例示動作では、最初にクロム層を堆積し、続いて反応ガスとして窒素を導入することで、CrN硬質物質の中間層を生成する。
【0093】
更なるコーテイング動作で、窒素の反応ガスを酸素で置き換えて、まず非常に薄いCr−N−O遷移層を形成し、ついでCrの硬質物質中間層を形成する。
【0094】
続いてCrマグネトロンの電力を下げる一方、AlHPPMSマグネトロン及び二つの在来型Alマグネトロンに傾斜的に増大する電力を供給して、実際のAl硬質物質層を生成する。
【0095】
ここで、AlHPPMSマグネトロンはチャンバ壁に対して駆動される。二つの在来型マグネトロンは45cmの距離で50kHzの二重マグネトロンモードにより駆動される。
【0096】
Alターゲットを装着した二つの在来型マグネトロンとともにHPPMSマグネトロンを用いることで、高い層品質を達成できる。さらに、処理の安定性及び層の均一性が非常に良好で、荷電やアークもまれであることが示された。
【0097】
図6は、コーテイング装置の第4実施形態を示す。第4実施形態は、コーテイング装置が二つのHPPMSマグネトロンと二つの在来型マグネトロンを含み、これらが全て共通の陽極に接続して、全コーテイング容積で金属及び気体のイオンの高密度化を達成する他は、上述した実施形態と同じである。
【0098】
図7は、コーテイング装置の第5実施形態を示す。第5実施形態は、コーテイング装置が四つのHPPMSマグネトロンを含み、これらが全て共通の陽極に接続して、全コーテイング容積で金属イオンの高密度化を達成する他は、上述した実施形態と同じである。
【0099】
第5実施形態にかかるコーテイング装置の動作では、金属イオンで事前にエッチングすることで、特に接着性に優れた層が得られる。層品質もまた大変良好である。さらに、高い均一性を有する層厚を凹形状で実現できる。ただし、他の例と比較すると、層形成速度はある程減じる。HPPMSマグネトロンに対する電源供給は先の例と同様に構成される。
【0100】
さらに、図8に示すコーテイング装置の第6実施形態では、二つのHPPMSマグネトロンが互いに二極モードでパルス駆動されるほか、上述した実施形態と同じである。
【0101】
第6実施形態では、二つのHPPMSマグネトロンが共通のHPPMS電源40に接続されている。電源40は、二つの電源ユニット7,7aからなり、これらは中央のタップ42に対して対称的に接続している。DC電源供給ユニット7,7aと平行に、容量素子6,6aが接続しており、これらは好ましくは第1実施形態を参照して説明したように両方とも容量バンクとして構成されている。各容量素子6,6aの各負極は、直列接続したスイッチング素子5,5aを介して、各マグネトロン1,1aのターゲットに接続している。
【0102】
HPPMS電源40の二つの対称的な部分の各々は、制御ユニット12によって制御される二つの追加的なスイッチ10,10aによって短絡される。各々のターゲットが陽極と陰極との間で交代するマグネトロン1,1aの二極パルス駆動において、スイッチ10,10aは次のパルスで陽極となるべき各ターゲットを、対応するHPPMS電源の正極に接続する。他のスイッチは、開いた状態に置かれる。かくして各パルスごとに、二つのHPPMSマグネトロンの一方が陽極として動作し、他方が対応する陰極として動作する。
【0103】
スイッチ10,10aは電流が流れている間ではなく、パルスとパルスとの間で切り替えられるので、スイッチ10,10aに求められる条件はむしろ穏やかである。制御ユニット12は、スイッチ素子5,5a,10,10aを同期化するために設けてある。先と同様、スイッチング素子は共通にチャンバ背後壁に搭載され、共通の真空通路8を介してチャンバに挿通している電気配線により、HPPMSマグネトロンに接続している。可能な限り、電気配線はチャンバの内部に延設されており、好ましくはHPPMSパルスを導く全線船のうち、大部分がチャンバの内部にある。
【0104】
代替の実施形態(図示せず)では、充電装置が配されており、パルスとパルスとの間で両方の容量バンク6,6aを充電するように構成されている。
【0105】
図8に示した実施例の配置に拠れば、動作中充電が少なくなり、層は平滑になる。他の二つのマグネトロンもHPPMSマグネトロンでよく、同様に駆動される。これらを接地もしくは共通の対向電極3に対して駆動することも可能である。あるいは他の二つのマグネトロンは在来型のマグネトロンであってもよい。これらは例えば二重マグネトロンモードで若しくは接地及び共通電極に対して駆動することができる。

【特許請求の範囲】
【請求項1】
マグネトロンスパッタリングにより物体を前処理及びコーテイングするための装置であって、
金属製のチャンバ壁(26)と、スパッタターゲットを有するマグネトロン(1,2)とを備えた真空チャンバからなり、
少なくとも一つのマグネトロンは、高電力パルスのマグネトロンスパッタリングプロセスで動作するHPPMSマグネトロン(1)として配されており、
スイッチング素子(5)を介して該HPPMSマグネトロン(1)のスパッタターゲットに容量素子(6)を接続することによって、電気パルスが該HPPMSマグネトロンに供給され、
該スイッチング素子(5)が、該チャンバ壁(26)の上に配されていることを特徴とする装置。
【請求項2】
該容量素子(6)は、並列接続したキャパシタからなる容量バンクとして構成され、
該スイッチング素子(5)と該容量素子(6)は、該チャンバ壁(26)の上に配されている
請求項1記載の装置。
【請求項3】
該HPPMSマグネトロンに対する電源供給のために、真空通路(8)が該チャンバ壁(26)に配されており、
該容量素子(6)、該スイッチング素子(5)及び該真空通路(8)はユニットを形成している
先行する請求項のいずれかに記載の装置。
【請求項4】
冷却手段が該HPPMSマグネトロンのために設けられており、
冷却媒体が導管(36,38)を通って該HPPMSマグネトロン(1)に流入し、
該導管(36,38)は、真空通路(8)を介して該チャンバ壁(26)を貫通しており、
該導管(36,38)が導電体として用いられ、該導電体により電流が該スイッチング素子(5)から該HPPMSマグネトロン(1)に導かれている
先行する請求項のいずれかに記載の装置。
【請求項5】
冷却手段が該チャンバ壁及び/又は該チャンバ壁に取り付けられた真空通路のために設けられており、
該冷却手段が該スイッチング素子の冷却にも用いられる
先行する請求項のいずれかに記載の装置。
【請求項6】
少なくとも一つの電極対が配されており、該電極対の少なくとも一つはHPPMSマグネトロン(1)であり、
電気配線が該電極対の各電極のために配されており、
該電極対の二つの電極のための該電気配線は、共通の真空通路(8)若しくは二つの隣接する真空通路を介して、コーテイング用の該チャンバに挿通しており、該電気配線は、該チャンバの内部で該電極に延びている
先行する請求項のいずれかに記載の装置。
【請求項7】
マグネトロンスパッタリングにより物体を前処理及びコーテイングするための装置であって、
金属製のチャンバ壁(26)と、スパッタターゲットを有するマグネトロン(1,2)と、コーテイングされるべき物体を支持するための基板テーブル(4)とを備えた真空チャンバからなり、
さらに第1電極(1)及び第2電極(3)とを備えた少なくとも一つのプラズマ発生電極対からなり、
少なくとも該第1電極は、高電力パルスを用いたマグネトロンスパッタリングモードで動作するHPPMSマグネトロンであり、
HPPMS電源が該第1電極と該第2電極との間に配されており、
該基板テーブル(4)に支持された物体が該電極対の能動面の間に位置するか、あるいは該電極対の能動面の間の空間を移動するように、該第1電極と該第2電極とを配置するようにした装置。
【請求項8】
少なくとももう一つの電極対が真空チャンバに配されており、該電極対の各電極の少なくとも一つはマグネトロン(2)として構成されており、該マグネトロンは直流電源若しくは在来型のパルス電源に接続されている
請求項7に記載の装置。
【請求項9】
該少なくとも一つの電極対の能動面の間の距離は20cmより大きく、好ましくは40cmより大きく、特に好ましくは60cmより大きい、
請求項7又は8に記載の装置。
【請求項10】
該第2電極は、陽極(3)であり、
バイアス電圧を発生するために、バイアス電圧源(V)が該陽極(3)と該基板テーブル(4)との間に配されている、
請求項7から9のいずれかに記載の装置。
【請求項11】
コーテイングの間プラズマにさらされる該陽極(3)の表面は、該プラズマにさらされる該第1電極の表面より小さい、
請求項10に記載の装置。
【請求項12】
電源(V)が該陽極と該チャンバ壁との間に配されており、コーテイングの間該チャンバ壁に対して該陽極を正電位に維持する
請求項10又は11に記載の装置。
【請求項13】
コーテイングの間、少なくとも二つのマグネトロンが共通の陽極(3)に対して接続されている
請求項10から12のいずれかに記載の装置。
【請求項14】
該第2電極はHPPMSマグネトロン(1a)であり、
該第1電極と該第2電極との間にHPPMS電力供給源(40)が配されており、
このHPPMS電力供給源により、該電極(1,1a)が相互にバイポーラ方式でパルス駆動される
請求項8又は9に記載の装置。
【請求項15】
該HPPMS電力供給源(40)は、二つの容量素子(6,6a)を含み、各容量素子の一方の極はスイッチング素子(5,5a)を介してHPPMSマグネトロン(1)に接続しており、
他方の極は、更なるスイッチング素子(10,10a)を介して他方のHPPMSマグネトロンに接続している
請求項14に記載の装置。
【請求項16】
制御装置(12)が配されており、スイッチング素子(5,5a)を介して該容量素子(6,6a)の一つを該二つのマグネトロン(1,1a)に交互に接続する一方、他方の容量素子(6,6a)の少なくとも一つの極を、該マグネトロン(1,1a)から電気的に分離する
請求項15に記載の装置。
【請求項17】
マグネトロンスパッタリングにより物体を前処理及びコーテイングするための方法であって、
該物体は、金属製のチャンバ壁(26)と、スパッタターゲットを有するマグネトロンとを有する真空チャンバに配され、
該真空チャンバの中でプラズマが発生し、該スパッタターゲットの少なくとも一つがスパッタされ、
該マグネトロンの少なくとも一つは、高電力パルスを用いたマグネトロンスパッタリングプロセスによりHPPMSマグネトロンとして動作し、
エッチング工程で、負のバイアス電圧(V)を該物体(11)に印加することで、該物体(11)が金属イオンの照射によってエッチングされ、
続いて該バイアス電圧(V)を連続的に下げることで、該スパッタターゲットからスパッタで離れた物質が該物体(11)の上に層として堆積することを特徴とする方法。
【請求項18】
続いて、硬質層を形成する請求項17に記載の方法。
【請求項19】
該コーテイングモードに連続的に移行した後、まず金属の中間層を形成する
請求項17又は18に記載の方法。
【請求項20】
まず硬質の中間層を形成し、その上に硬質層を形成する
請求項17から19のいずれかに記載の方法。
【請求項21】
まず金属の中間層を形成し、
その上に硬質の中間層を形成し、
その上に硬質層を形成する
請求項17から20のいずれかに記載の方法。
【請求項22】
該スパッタターゲットの少なくとも一つの材料は、該基板のエッチング、該金属の中間層の形成及び/又は硬質の中間層の形成に用いられる金属からなり、
該金属は、周期律表の4−6属の金属から選択され、
好ましくは該金属はTi若しくはCrである
請求項17から21のいずれかに記載の方法。
【請求項23】
該エッチング工程で、まず気体イオンでエッチングし、
続いて金属イオンでエッチングを行う
請求項17から22のいずれかに記載の方法。
【請求項24】
該エッチング工程で、金属イオンによりエッチングを行い、その際金属イオンは該物体の表面に打ち込まれる請求項17から23のいずれかに記載の方法。
【請求項25】
金属イオンと気体イオンを同時に照射して少なくと一つの工程を行う
請求項17から24のいずれかに記載の方法。
【請求項26】
酸化アルミニウムの硬質層を形成する
請求項17から25のいずれかに記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2011−518950(P2011−518950A)
【公表日】平成23年6月30日(2011.6.30)
【国際特許分類】
【出願番号】特願2011−505437(P2011−505437)
【出願日】平成21年4月28日(2009.4.28)
【国際出願番号】PCT/EP2009/003082
【国際公開番号】WO2009/132822
【国際公開日】平成21年11月5日(2009.11.5)
【出願人】(505103518)コムコン・アーゲー (6)
【Fターム(参考)】