説明

磁気スイッチ

【課題】 少ない部品点数で誤動作が発生しにくく、且つ温度変化による影響を低く抑えた磁気スイッチを提供する。
【解決手段】 固定部と、前記固定部に対し平行に移動する移動機構と、極性の異なる外部磁界H1,H2を発生するとともに前記固定部と前記移動機構との一方に設けられた一対のマグネットM1,M2と、他方に設けられた1ヶのGMR素子10からなる磁気抵抗効果素子と、前記磁気抵抗効果素子に所定の電流を供給する電源部と、前記磁気抵抗効果素子から出力される電圧と所定のしきい値とを比較し、その比較結果に基づいて切替信号を出力する比較部と、を有する構成とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無接点方式のスイッチに係わり、特にGMR素子を使用した磁気スイッチに関する。
【背景技術】
【0002】
無接点方式とすることができるスイッチとしては、例えばホール素子を用いた磁気スイッチが存在する(例えば、特許文献1)。
【0003】
またGMR素子を用いた磁気スイッチも存在する(例えば、特許文献2)。前記GMR素子として、抵抗値の調整が不可能な固定抵抗部と抵抗値の調整が可能な可変抵抗部とから構成されるものがある(例えば、特許文献3)。
【特許文献1】特開平8−17311号公報
【特許文献2】特開2003−60256号公報
【特許文献3】特開2001−111137号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1に記載されるようなホール素子を用いた磁気スイッチでは、前記ホール素子からの出力電圧が10mV程度と小さく、外部ノイズなどが混入すると誤動作が発生する頻度が高くなるという問題がある。
【0005】
ところで、ホール素子の出力電圧Vは、ホール係数をR、ホール素子の厚さをd、電流をI、外部からの磁界密度をBとすると、V=R・I・B/dで規定されることが知られているが、前記ホール係数R及び厚さdは選択したホール素子によりあらかじめ決定されてしまう固定的な要素である。このため、実際の磁気スイッチ回路において、スイッチ動作を安定させるべく前記出力電圧Vを大きくするには、前記電流Iおよび/または前記磁束密度Bを大きくする必要がある。しかし、前記電流Iを大きくする方法では磁気スイッチとしての消費電力が大きくなる。また前記磁束密度Bを大きくする方法では、外部磁界を形成するマグネットを大きくするか、または最大エネルギー積の大きな希土類磁石(例えば、ネオジム磁石)を採用する必要があるところ、前者では磁気スイッチが大型化してしまい、後者においてはコストが高騰するという問題がある。
【0006】
一方、特許文献2に記載されたGMR素子を用いた磁気スイッチでは、GMR素子を少なくも2ヶ以上用いる必要がある。またGMR素子を2ヶ用いる場合にあっても、一方のGMR素子と他方のGMR素子の固定層(ピン止め層)の磁化方向は180度異なる反対向きである。
【0007】
ところが、同じウェハ上に配置されるGMR素子の磁化方向はすべて同じ方向となるから、一度GMR素子どうしを切り離し、その後に前記磁化方向の向きが反対向きとなるように位置合わせする必要がある。このとき、前記GMR素子の磁化方向の向きは視認することができないため、所定の測定機器を用いながら行う必要があり、製造工程が煩雑になるという問題がある。
【0008】
この点、特許文献3に示されように、一方のGMR素子に抵抗値の調整が不可能な固定抵抗を用いる方法を採用すると、一対のGMR素子間の向きを調整する必要がなくなる。しかし、一般にGMR素子と固定抵抗とは温度特性が異なるため、温度が変化すると中点電圧のバランスが崩れてしまい検出精度が低下して誤動作の原因になるという問題がある。
【0009】
本発明は上記従来の課題を解決するためのものであり、少ない部品点数で誤動作が発生しにくい磁気スイッチを提供することを目的としている。
【0010】
また本発明は温度変化による影響を低く抑える磁気スイッチを提供することを目的としている。
【課題を解決するための手段】
【0011】
本発明は、固定部と、前記固定部に対し平行に移動する移動機構と、極性の異なる外部磁界を発生するとともに前記固定部と前記移動機構との一方に設けられた一対のマグネットと、他方に設けられた1ヶのGMR素子からなる磁気抵抗効果素子と、前記磁気抵抗効果素子に所定の電流を供給する電源部と、前記磁気抵抗効果素子から出力される電圧と所定のしきい値とを比較し、その比較結果に基づいて切替信号を出力する比較部と、を有することを特徴とするものである。
【0012】
本発明では、1ヶのGMR素子で磁気スイッチを構成することができるため、製造コストを低減することができる。また部品点数が少なく、大型のマグネットを採用する必要もないため、小型化することが可能である。
【0013】
また本発明は、固定部と、前記固定部に対し平行に移動する移動機構と、極性の異なる外部磁界を発生するとともに前記固定部と前記移動機構との一方に設けられた一対のマグネットと、他方に設けられた一対のGMR素子と、一方のGMR素子を前記外部磁界から磁気遮蔽する磁気遮蔽部材と、前記一対のGMR素子に所定の電圧を供給する電源部と、前記一対のGMR素子から出力される電圧と所定のしきい値とを比較し、その比較結果に基づいて切替信号を出力する比較部と、を有することを特徴とするものである。
【0014】
上記発明では、磁気遮蔽部材で覆ったGMR素子を固定抵抗として用いることができる。しかも、同じ基板上に同時に形成した一対のGMR素子のうちの一方を固定抵抗として利用し、他方を外部磁界によって抵抗値が変わる可変抵抗として利用することができるため、前記固定抵抗と可変抵抗の温度特性を一致させることができる。このため、温度変化に対して安定して動作することが可能な磁気スイッチとすることができる。
【0015】
またGMR素子は定電流で駆動することができるため、消費電力を低減することができる。さらには外形寸法の大きなマグネットや最大エネルギー積の大きな磁石を用いる必要もなくなるため、小型で安価な磁気スイッチとすることができる。
【0016】
上記においては、前記一対のGMR素子が、同じウェハから切り出された共通の基板上に形成されていることが好ましい。
【0017】
前記手段では、同じウェアから切り出された一対のGMR素子をそのまま使用することができるため、一対のGMR素子の固定層の磁化方向を調整する必要がなく、製造工程を簡素化することができる。
【発明の効果】
【0018】
本発明の磁気スイッチでは、小型で安価な磁気スイッチを提供することができる。
また温度変化に対して安定して動作する磁気スイッチを提供することができる。
さらに磁気スイッチの製造工程を簡素化することができる。
【発明を実施するための最良の形態】
【0019】
図1は本発明の第1の実施の形態としてGMR素子を1ヶ用いた磁気スイッチを示す斜視図、図2はGMR素子の磁化方向を示す平面図、図3は磁気スイッチの構成を示す回路構成図、図4及び図5は磁気スイッチの動作を説明するための説明図であり、図4は第1の位置にある場合、図5は第2の位置にある場合を示している。また図6は磁気スイッチの出力特性を示すグラフである。なお、図1はいわゆるムービングマグネット方式の磁気スイッチを示している。
【0020】
図1に示す磁気スイッチでは、固定部側となる壁面20にGMR素子(磁気抵抗効果素子)10が固設されている。
【0021】
また、前記壁面(固定部)20の近傍には、前記壁面20に対して平行な状態を維持しながらスライド移動する移動機構(図示せず)が設けられている。前記移動機構の先端には一対のマグネットM1,M2が固定されており、前記一対のマグネットM1,M2は前記GMR素子10の前方(X1方向)の位置にて図示Y1−Y2方向に自在に進退可能な状態にある。前記一対のマグネットM1,M2は異なる極性に設定されている。図1に示すものでは、マグネットM1のX1側の面がS極(したがって、X2側の面がN極)に、マグネットM2のX1側の面がN極(したがって、X2側の面がS極)にそれぞれ着磁されている。
【0022】
図4に示すように、前記移動機構がY2方向に移動すると前記マグネットM1のN極がGMR素子に対向する第1の位置に設定され、図5に示すように前記移動機構がY1方向に移動すると前記マグネットM2のS極がGMR素子に対向する第2の位置(図5参照)に設定される。
【0023】
前記GMR素子10はフリー層および固定層(ピン止め層)などを有している。図2では、図示Y2方向に向けられた実線矢印がフリー層に対するバイアス磁界の方向m1を示しており、図示X2方向に向けられた白抜き矢印が固定層の磁化方向e1を示している。前記バイアス磁界の方向m1と前記固定層の磁化方向e1とは90度異なる方向に設定されている。前記固定層の磁化方向e1は一定であり、前記マグネットM1又はM2から供給される外部磁界H1又はH2によって変化することはないが、フリー層の磁化方向は前記外部磁界H1,H2に応じて変化する。
【0024】
図3に示すように、前記GMR素子10の両端は、例えば−1000ppm/℃の温度補正を持った定電流源(電源部)15に接続されており、所定の定電流Iが供給される。なお、図3に示すように前記GMR素子10の等価回路は、固定抵抗分Rと可変抵抗分ΔRとが直列接続されたものとして表すことができる。
【0025】
図4に示すように、前記図示しない移動機構がY2方向に移動した前記第1の位置にある場合、すなわち前記マグネットM1のN極がGMR素子10に対向する場合には、前記マグネットM1から供給される外部磁界H1の方向はX2方向であるため、フリー層の磁化方向が前記固定層の磁化方向e1の向きと同じX2方向に向けられる。このため、GMR素子10の前記可変抵抗分ΔRはほぼ最小値である零に設定され、前記GMR素子10の出力Vは最小出力電圧Vmin(=I・R)に設定される。
【0026】
一方、図5に示すように、前記移動機構がY1方向に移動した前記第2の位置にある場合、すなわち前記マグネットM2のS極がGMR素子に対向する場合には、前記マグネットM2から供給される外部磁界H2の方向は図示X1方向であるため、フリー層の磁化方向は前記固定層の磁化方向e1とは逆向き(X1方向)に設定される。このため、GMR素子10の前記可変抵抗分ΔRは最大値に設定され、前記GMR素子10の出力Vは最大出力電圧Vmax(=I・(R+ΔR))に設定される。
【0027】
前記GMR素子10の出力Vの最大出力電圧Vmaxと最小出力電圧Vminとの電位差ΔV(=Vmax−Vmin)は、従来のホール素子の出力電圧10mVよりも大きな80mV程度となる。このため、外部ノイズなどが混入しても誤動作しにくい磁気スイッチとすることができる。
【0028】
具体的には、図3に示すように、磁気スイッチはコンパレータなどから形成された比較部18を有し、前記GMR素子10の出力Vと所定のしきい値電圧Vthとの比較を行う。なお、前記所定のしきい値電圧Vthは、図6に示すように前記最大出力電圧Vmaxと前記最小出力電圧Vminとの中間に設定される。
【0029】
そして、前記比較部18は、例えばV<Vthの場合にはスイッチオフとなる0vからなる切替信号を出力し、V>Vthの場合にはスイッチオンとなる5vからなる切替信号を出力する。これにより、安定動作する磁気スイッチを構成することができる。
【0030】
このように、上記第1の実施の形態に示す磁気スイッチは、1ヶのGMR素子で磁気スイッチを構成することができる。また従来のように大きなマグネットや最大エネルギー積の大きな希土類磁石を使用する必要もないため、製造コストを低減することができる。
また定電流で駆動することができるため、消費電力を低く抑えることができる。
【0031】
なお、上記第1の実施の形態では、マグネットM1,M2が移動機構に設けられて移動させられるムービングマグネット方式の場合について説明したが、本発明は移動機構にGMR素子が設けられ、ヨーク側にマグネットが設けられるムービングセンサ方式のものであってもよい。
【0032】
図7は本発明の第2の実施の形態としてGMR素子を2ヶ用いた磁気スイッチを示す斜視図、図8はGMR素子の構成を示す回路構成図、図9及び図10は磁気スイッチの動作を説明するための説明図であり、図9は第1の位置(ギャップG1内)にある場合、図10は第2の位置(ギャップG2内)にある場合を示している。なお、図7はいわゆるムービングセンサ方式の磁気スイッチを示している。
【0033】
図7に示すように、第2の実施の形態の磁気スイッチは、図示X1側の端面がN極に(したがって、X2側の端面がS極に)着磁されたマグネットM1と、図示X1側の端面がS極に(したがって、X2側の端面がN極に)着磁されたマグネットM2とが一体化されたマグネットを有している。
【0034】
前記マグネットM1,M2のX1及びX2方向の端面には、フェライトなどの磁性材料で形成された第1のヨーク21と第2のヨーク22が固定されている。前記第1のヨーク21と第2のヨーク22は断面が略L字形状に形成されており、図示X方向の突出する対向部21a,22aを有している。一方の対向部21aの端面(固定部)と他方の対向部22aの端面(固定部)とが対向する部分には、所定の隙間寸法からなるギャップGが形成されている。
【0035】
なお、前記マグネットM1と前記マグネットM2とをXZ平面に平行な仮想境界面BSで区切ったときに、図示Y1側に位置するギャップをギャップG1、図示Y2側に位置するギャップをギャップG2とする。
【0036】
このとき、前記マグネットM1が形成する磁界は、前記マグネットM1のN極から第2のヨーク22→対向部22aの端面→ギャップG1→対向部21aの端面→第1のヨーク21→マグネットM1のS極に至る第1の閉磁路(閉じた磁気回路)を形成している。また前記マグネットM2が形成する磁界は、前記マグネットM2のN極から第1のヨーク21→対向部21aの端面→ギャップG2→対向部22aの端面→第2のヨーク22→マグネットM2のS極に至る第2の閉磁路(閉じた磁気回路)を形成している。前記第1の閉磁路が形成する磁界の向きと前記第2の閉磁路が形成する磁界の向きとは、互いに逆向きの関係にある。このため、前記ギャップG1内の外部磁界H1の向きは図示X2方向であり、ギャップG2内の外部磁界H2の向きは図示X1方向である。
【0037】
前記ギャップGの側方には、図示Y1及びY2方向に進退自在にスライド移動する移動機構(図示せず)が設けられている。前記移動機構の先端には、移動方向(Y1−Y2方向)に並ぶ一対のGMR素子(磁気抵抗効果素子)11,12が固定されている。
【0038】
図9に示すように前記移動機構が図示Y1方向に移動すると、前記一対のGMR素子11,12の双方が前記ギャップG1内に位置する第1の位置に設定される。また図10に示すように前記移動機構がY2方向に移動すると前記一対のGMR素子11,12がギャップG2内に位置する第2の位置に設定される。
【0039】
前記第1の位置では、前記マグネットM1が発生した一様な外部磁界H1の中に前記一対のGMR素子11,12を垂直に置いた場合に相当し、前記第2の位置では、前記マグネットM2が発生した一様な外部磁界H2の中に前記一対のGMR素子11,12を垂直に置いた場合に相当する。
【0040】
ところで、図7に示す第2の実施の形態では、磁性材料で形成され一方のGMR素子11のみを覆う磁気遮蔽部材30が設けられている。このため、マグネットM1,M2が発生した外部磁界H1,H2は、他方のGMR素子11には影響を与えることが可能であるが、磁気シールドされた一方のGMR素子11には何らの影響も与えることができない状態に設定されている。
【0041】
なお、GMR素子11,12の構造は、前記第1の実施の形態に示すGMR素子と同様である。また前記GMR素子11とGMR素子12は、同じウェハ上に形成された多数のGMR素子から、隣接する任意の2つのGMR素子を切り出すことにより構成されている。このため、GMR素子11とGMR素子12とは温度特性を始とする多くの特性が一致している。
【0042】
前記GMR素子11とGMR素子12とは直列に接続されており、その等価回路は図8に示すものとなる。すなわち、磁気シールドされている前記一方のGMR素子11は外部磁界H1,H2の影響を受けないため、固定抵抗分Rのみからなる固定抵抗とみなすことができる。また他方のGMR素子12は上記同様の固定抵抗分Rと可変抵抗分ΔRとが直列接続されたものとして表される。そして、前記GMR素子11と前記GMR素子12との接続部13からは出力端子14が引き出されている。
【0043】
図8に示すように、直列接続された前記GMR素子11とGMR素子12との両端には定電圧源(電源部)16が接続され、所定の定電圧V1が印加される。
【0044】
図9に示すように、前記図示しない移動機構がY1方向に移動した前記第1の位置にある場合、すなわち前記一対のGMR素子11,12が共にギャップG1内に位置する場合には、前記マグネットM1から供給される外部磁界H1は磁気シールドされたGMR素子11には影響を与えず、前記GMR素子12のみに影響を与える。このため、前記GMR素子12のフリー層の磁化方向が前記固定層の磁化方向e1の向きとは逆向きとなるX2方向に向けられる。このため、前記GMR素子12の前記可変抵抗分ΔRは最大に設定され、前記出力端子14の出力Vは最大出力電圧Vmax(=(ΔR+R)/(ΔR+2R)・V1)に設定される。
【0045】
一方、図10に示すように、前記移動機構がY2方向に移動した前記第2の位置にある場合、すなわち前記一対のGMR素子11,12が共にギャップG2内に位置に移動した場合には、前記GMR素子12のフリー層の磁化方向が前記固定層の磁化方向e1の向きに一致するX1方向に向けられる。このため、前記GMR素子12の前記可変抵抗分ΔRは最小(ほぼ零)に設定され、前記出力端子14の出力Vは最小出力電圧Vmin(=(R)/(2R)・V1)=V1/2に設定される。
【0046】
第2の実施の形態においても、前記GMR素子11,12の出力Vの最大出力電圧Vmaxと最小出力電圧Vminとの電位差ΔV(=Vmax−Vmin)は、従来のホール素子の出力電圧10mVよりも大きな80mV程度となる。このため、外部ノイズなどが混入しても誤動作しにくい磁気スイッチとすることができる。
【0047】
具体的には、図8に示すように、磁気スイッチは比較部18を有し、前記出力端子14からの出力Vと所定のしきい値電圧Vthとの比較を行う。なお、前記所定のしきい値電圧Vthは、上記図6同様に前記最大出力電圧Vmaxと前記最小出力電圧Vminとの中間に設定される。
【0048】
そして、前記比較部18は、例えばV<Vthの場合にはスイッチオフとなる0vからなる切替信号を出力し、V>Vthの場合にはスイッチオンとなる5vからなる切替信号を出力する。これにより、安定動作する磁気スイッチを構成することができる。
【0049】
このように、上記第2の実施の形態では、一対のGMR素子11の一方を固定抵抗として利用することで、簡単な構成からなる磁気スイッチとすることができる。また固定抵抗として利用する一方のGMR素子11と通常のGMR素子12とは同じウェハ上から切り出したものであるため、温度変化に起因する抵抗値の変動(温度特性)を一致させることができる。このため、温度が変化しても、前記GMR素子11,12の出力Vの変動幅を、前記電位差ΔV内の極めて小さな範囲内に抑えることができ、温度変化に対しても誤作動の少ない磁気スイッチとすることが可能である。しかも、一方のGMR素子11を磁気遮断部材で覆うという簡単な手段で固定抵抗とすることができる。
【0050】
また上記第2の実施の形態では、前記GMR素子11と前記GMR素子12との固定層の磁化方向e1を一致させた状態で使用することができる。
【0051】
ここで、共通のウェハ上に同時に形成されたGMR素子11,12は、前記固定層の磁化方向e1の向きは一致した状態にある。このため、ウェハから一体的に切り出したGMR素子11,12を、そのままの状態で固定部側となる前記壁面20や前記移動機構の先端に固定することができる。すなわち、GMR素子11の固定層の磁化方向e1とGMR素子12の固定層の磁化方向e1とを調整する必要がないため、製造工程を簡素化することが可能である。
【0052】
なお、上記第2の実施の形態では、一対のGMR素子11,12が移動機構に設けられて移動させられるムービングセンサ方式の場合について説明したが、本発明は移動機構にマグネットM1,M2が設けられ、ヨーク側にGMR素子11,12が設けられるムービングマグネット方式のものであってもよい。
【図面の簡単な説明】
【0053】
【図1】本発明の第1の実施の形態としてGMR素子を1ヶ用いた磁気スイッチを示す斜視図、
【図2】GMR素子の磁化方向を示す平面図、
【図3】磁気スイッチの構成を示す回路構成図、
【図4】磁気スイッチの動作として第1の位置にある場合の説明図、
【図5】磁気スイッチの動作として第2の位置にある場合の説明図、
【図6】磁気スイッチの出力特性を示すグラフ、
【図7】本発明の第2の実施の形態としてGMR素子を2ヶ用いた磁気スイッチを示す斜視図、
【図8】GMR素子の構成を示す回路構成図、
【図9】磁気スイッチの動作として第1の位置(ギャップG1内)にある場合の説明図、
【図10】磁気スイッチの動作として第2の位置(ギャップG2内)にある場合の説明図、
【符号の説明】
【0054】
10,11,12 (磁気抵抗効果素子)
14 出力端子
15 定電流源(電源部)
16 定電圧源(電源部)
18 比較部
20 壁面(固定部)
21 第1のヨーク
21a 対向部
22 第2のヨーク
22a 対向部
30 磁気遮蔽部材
G,G1,G2 ギャップ
H1,H2 外部磁界
M1,M2 マグネット
R 固定抵抗分
ΔR 可変抵抗分
m1 バイアス磁界の方向
e1 固定層の磁化方向

【特許請求の範囲】
【請求項1】
固定部と、前記固定部に対し平行に移動する移動機構と、極性の異なる外部磁界を発生するとともに前記固定部と前記移動機構との一方に設けられた一対のマグネットと、他方に設けられた1ヶのGMR素子からなる磁気抵抗効果素子と、前記磁気抵抗効果素子に所定の電流を供給する電源部と、前記磁気抵抗効果素子から出力される電圧と所定のしきい値とを比較し、その比較結果に基づいて切替信号を出力する比較部と、を有することを特徴とする磁気スイッチ。
【請求項2】
固定部と、前記固定部に対し平行に移動する移動機構と、極性の異なる外部磁界を発生するとともに前記固定部と前記移動機構との一方に設けられた一対のマグネットと、他方に設けられた一対のGMR素子と、一方のGMR素子を前記外部磁界から磁気遮蔽する磁気遮蔽部材と、前記一対のGMR素子に所定の電圧を供給する電源部と、前記一対のGMR素子から出力される電圧と所定のしきい値とを比較し、その比較結果に基づいて切替信号を出力する比較部と、を有することを特徴とする磁気スイッチ。
【請求項3】
前記一対のGMR素子が、同じウェハから切り出された共通の基板上に形成されていることを特徴とする請求項2記載の磁気スイッチ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2007−188739(P2007−188739A)
【公開日】平成19年7月26日(2007.7.26)
【国際特許分類】
【出願番号】特願2006−5506(P2006−5506)
【出願日】平成18年1月13日(2006.1.13)
【出願人】(000010098)アルプス電気株式会社 (4,263)
【Fターム(参考)】