説明

触媒支援型化学加工方法及び装置

【課題】難加工物、特に近年電子デバイスの材料として重要性が高まっているSiCやGaN等を、加工効率が高く且つ数十μm以上の空間波長領域にわたって精度が高く加工する。
【解決手段】フッ化水素酸等のハロゲンを含む分子が溶けた処理液22中に、GaNやSiC等の被加工物28を配し、モリブデンまたはモリブデン化合物からなる触媒26を被加工物28の被加工面に接触または極近接させながら該触媒26と被加工物28とを相対移動させて被加工物28の被加工面を加工する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、触媒支援型化学加工方法及び装置に係わり、更に詳しくは、化学的な反応が可能な触媒作用を利用して被加工物を加工する触媒支援型化学加工方法及び装置に関する。
【背景技術】
【0002】
一般的に機械的な加工は、古くから様々な場面で使用されている。たとえば、機械研磨では、工具を加工したい表面に押し付けることで、機械的作用により材料欠陥を導入し表面の原子を剥ぎ取って加工する。このような機械研磨法では、結晶格子にダメージを与えてしまう上に、高精度な面を得ることが非常に困難となる。ゆえに、高精度でものを作成するためには、格子欠陥を発生させることなく加工できる化学的な加工を用いる必要がある。
【0003】
超微粉体を分散した懸濁液を被加工物の被加工面に沿って流動させて、該超微粉体を被加工面上に略無荷重の状態で接触させ、その際の超微粉体と被加工面との界面での相互作用(一種の化学結合)により、被加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)による加工は既に知られている(特許文献1〜4)。
【0004】
また、高電圧を印加した加工電極により発生させた反応ガスに基づく中性ラジカルを被加工物の被加工面に供給し、この中性ラジカルと被加工面の原子又は分子とのラジカル反応によって生成した揮発性物質を気化させて除去し、加工電極を被加工面に対して相対的に変化させて加工するものであって、反応ガスの種類と被加工物の材質に応じて決定される、加工時間と加工量との間の相関データと、前加工面と目的加工面の座標データとに基づきその座標差に応じて加工時間を数値制御して加工するプラズマCVM(Chemical Vaporization Machining)も提案されている(特許文献5)。
【0005】
更に、回転電極を高速に回転させることで、該回転電極の表面でガスを巻き込むことによって加工ギャップを横切るガス流を形成して加工する回転電極を用いた高密度ラジカル反応による高能率加工方法も提案されている(特許文献6)。
【0006】
前述のEEMやプラズマCVMは、化学的な加工として非常に優れている。EEMは、原子スケールで平滑な面を得ることが可能であり、プラズマCVMでは機械的な加工に匹敵する高能率な加工が高精度で可能である。
【0007】
EEMは、その加工原理から考えて、高周波の空間波長に対して非常に平滑な面を得ることが可能である。EEMは、超純水によりSiO等の微粒子を表面に供給し、微粒子の表面の原子と被加工物表面の原子が化学的に結合することで加工が進むことが特徴である。このとき、微粒子の表面が非常に平坦な面であり、それが基準面となって、表面に転写されていると考えられる。ゆえに、原子配列を乱すことなく、原子サイズのオーダで平坦な表面を作ることが可能となる。しかしEEMは、その加工原理のゆえ、数十μm以上の空間波長域を平坦化しにくい。
【0008】
また、プラズマCVMは、活性なラジカルを利用しているので、非常に高効率な加工法である。プラズマCVMの加工は、プラズマ中の中性ラジカルと被加工物表面の化学反応を利用しており、1気圧という高圧力雰囲気下において高密度のプラズマを発生させ、プラズマ中で生成した中性ラジカルを加工物表面の原子に作用させ、揮発性の物質に変えることで加工している。ゆえに、被加工面の原子配列を乱すことなく、従来の機械加工に匹敵する加工能率を持っている。しかし、基準面を持たない加工法であるため、指数面による影響を受けやすい。
【0009】
一方、化学機械的研磨(CMP)は、SiOやCrを砥粒として用い、機械的作用を小さくし、化学的作用によって無擾乱表面を形成しようとするものである。例えば、特許文献7に示すように、酸化触媒作用のある砥粒を分散させた酸化性研磨液にダイヤモンド薄膜を浸漬し、砥粒で薄膜表面を擦過しながらダイヤモンド薄膜を研磨する方法が開示されている。ここで、砥粒として酸化クロムや酸化鉄を用い、この砥粒を過酸化水素水、硝酸塩水溶液又はそれらの混合液に分散させた研磨液を用いることが開示されている。
【0010】
更に、ハロゲン化水素酸からなる処理液中に被加工物を配し、白金、金またはセラミックス系固体触媒からなる触媒を被加工物の被加工面に接触若しくは極接近させて配し、触媒の表面でハロゲン化水素を分子解離して生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を溶出させることによって被加工物を加工する加工法が提案されている(特許文献8)。
【0011】
【特許文献1】特公平2−25745号公報
【特許文献2】特公平7−16870号公報
【特許文献3】特公平6−44989号公報
【特許文献4】特開2000−167770号公報
【特許文献5】特許第2962583号公報
【特許文献6】特許第3069271号公報
【特許文献7】特許第3734722号公報
【特許文献8】特開2006−114632号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
本発明は、前述の状況に鑑み、難加工物、特に近年電子デバイスの材料として重要性が高まっているSiCやGaN等を、加工効率が高く且つ数十μm以上の空間波長領域にわたって精度が高く加工することが可能な新しい加工法を提案することを目的とする。その加工法は、機械的な加工法であれば、表面に格子欠陥が導入され高精度な加工が困難となるから、結晶学的に考えて、化学的な加工法でなければならない。本発明では、化学的な反応によって基準面を転写するという原理を利用するが、その基準面が変化しないということが重要である。なぜなら、基準面が変化すると、加工が進むに従って加工表面が変化してしまうからである。そこで、本発明は、基準面が変化せず、化学的な反応が可能な触媒作用を利用した触媒支援型化学加工方法及び装置を提案する。
【課題を解決するための手段】
【0013】
本発明は、前述の課題を解決するため、ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工することを特徴とする触媒支援型化学加工方法を提供する(請求項1)。
【0014】
ここで、前記処理液がフッ化水素酸(HF水溶液)であることが好ましい(請求項2)。また、前記被加工物が、Si、SiC、GaN、サファイヤ、ルビー及びダイヤモンドの内から選ばれた1種であることが好ましい(請求項3)。
【0015】
前記触媒を表面に有する平坦な定盤の該表面に、前記処理液の存在の下で、ホルダーで保持した被加工物の被加工面を接触させながら、前記定盤と前記被加工物とを相対的に移動させて被加工物の被加工面を平坦に加工することができる(請求項4)。
【0016】
また、本発明は、ハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、被加工物を加工する触媒支援型化学加工方法であって、前記加工中に被加工物の被加工面と前記触媒の間に電圧を印加する電圧印加工程、前記加工中または加工前に被加工物の被加工面に光を照射する光照射工程、前記加工中における該被加工物の温度を制御する被加工物温度制御工程、前記処理液の温度を制御する処理液温度制御工程、及び前記触媒の温度を制御する触媒温度制御工程のうちの1種又は2種以上を組み合わせて適用し、被加工物を加工することを特徴とする触媒支援型化学加工方法を提供する(請求項5)。
【0017】
加工中に被加工物の被加工面と触媒との間に電圧を印加することで、ハロゲンを含む分子の解離反応を補助し、触媒表面でのハロゲン原子の生成量を増加させて、加工速度を高めることができる。
加工中または加工前に被加工物の被加工面に光を照射し、被加工物の被加工面を光で励起させることで、被加工面を活性にして加工速度を高めることができる。
【0018】
アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。このため、被加工物の加工中における該被加工物の温度、処理液の温度及び触媒の温度の少なくとも1つを制御し、反応温度を制御することで、加工速度を変化させることができる。
【0019】
本発明の触媒支援型化学加工装置は、表面にモリブデンまたはモリブデン化合物からなる触媒を有する定盤と、被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部を有する(請求項6)。
【0020】
本発明の更に他の触媒支援型化学加工装置は、表面に、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を有する定盤と、被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部と、被加工物の被加工面と前記触媒の間に電圧を印加する電源、被加工物の被加工面に光を照射する光源、前記加工中における該被加工物の温度を制御する被加工物温度制御機構、前記処理液の温度を制御する処理液温度制御機構、及び前記触媒の温度を制御する触媒温度制御機構のうちの1種又は2種以上を有する(請求項7)。
【発明の効果】
【0021】
本発明の触媒支援型化学加工方法は、加工基準面にモリブデン(Mo)またはモリブデン化合物からなる触媒を用い、該触媒の表面で処理液中のハロゲンを含む分子を解離させてハロゲンラジカルを生成し、このハロゲンラジカル並びにこのハロゲンラジカルが水分子を分解して生成したOHラジカルが被加工面に作用することで加工が進展する。本発明では、砥粒や研磨材を用いずに、触媒機能を果たすモリブデンまたはモリブデン化合物を処理液中で被加工面に接触または極近接させ、モリブデンまたはモリブデン化合物と被加工面を相対移動させることにより常に新しい被加工面が出現して加工が進む。ここで、触媒表面で生成されたラジカルは、触媒表面から離れると急激に不活性化するので、ラジカルは、基準面となる触媒表面上若しくは表面の極近傍のみにしか存在せず、それにより空間的に制御された状態で加工できる。
【0022】
本発明の触媒支援型化学加工方法は、加工基準面を有する化学的な加工であるので、EEMやプラズマCVMでは困難であった数十μm以上の空間波長領域を高度に平坦化加工することができる。また、Siの加工は勿論であるが、これまで加工が難しかったSiCやGaN、更にはサファイヤ、ルビー、ダイヤモンドの高精度な加工ができるようになり、半導体製造工程においても使用できる可能性がある。
【0023】
本発明の触媒支援型化学加工方法は、加工基準面に白金、金又はセラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を用い、該触媒表面でハロゲンを含む分子が溶けた処理液が分子解離してハロゲンラジカルを生成し、触媒に接触若しくは極接近した被加工物の表面原子とハロゲンラジカルとの化学反応で生成したハロゲン化合物を、溶出させることによって被加工物を加工する。ここで、被加工物に対して常態では溶解性を示さない、又はほとんど溶解性を示さないハロゲン化水素酸からなる処理液を使用すると、触媒表面で生成されたハロゲンラジカルは、触媒表面から離れると急激に不活性化するので、ハロゲンラジカルは基準面となる触媒表面上は若しくは表面の極近傍のみにしか存在せず、それにより触媒からなる基準面直下でのみ加工が進行する化学的な加工法となり得る。
【発明を実施するための最良の形態】
【0024】
次に、実施形態に基づき、本発明を更に詳細に説明する。本発明の加工原理は、ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工するというものである。
【0025】
処理液として、フッ化水素酸(HF水溶液)を使用した、本発明の加工法の概念図を図1に示す。図1(a)に示すように、モリブデン(Mo)からなる触媒1をフッ化水素(HF)が溶けた処理液中に配置すると、触媒1の表面でHF6が解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。このFラジカル8は、寿命は短いが、反応性が非常に強いため、図1(b)に示すように、モリブデン(Mo)からなる触媒1と被加工物2の被加工面とを、フッ化水素酸(HF水溶液)中で接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。そして、図1(c)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。
【0026】
ここで、被加工物2がSiCの場合には、下記の(化学式1)に示すように、Fラジカル(F・)によってSiC表面がフッ素化され、その部分が優先的に加工されるものと推測される。
【0027】
(化学式1)
SiC+8F・→SiF↑+CF
【0028】
このような本発明に係る触媒支援型化学加工法には、次の3つの特徴がある。(1)基準面(触媒)上でのみ反応種(ハロゲンラジカル)が作られる。(2)基準面から離れると、反応種(ハロゲンラジカル)は不活性化する。(3)基準面の物性は長時間変化しない。
【0029】
このような特徴をもつために得られる本発明の利点を次に述べる。それは、「基準面上でのみ反応種が作られる」ために、化学エッチングとは異なり表面の面指数に影響されずに加工することが可能となる。「基準面から離れると反応種が不活性化する」ために、基準面を転写する化学的加工法となり、EEMで見られたような原子スケールでの平坦化が期待できる。「基準面の物性が長時間変化しない」ために、基準面が転写され加工が進行しても、該基準面の表面が変化しない。つまり、以上のようなことから、この触媒支援型化学加工法は、効率的な超精密加工法となりうる可能性があると考えられる。
【0030】
ここで、前記処理液としては、フッ化水素酸が挙げられるが、フッ化水素酸に限らず、被加工物、加工条件等の組合せにより、その他のハロゲン化水素溶液も用いることができる。
【0031】
(実施例1)
本発明の触媒支援型化学加工法の加工原理を確認するために、加工装置を作製した。その基礎実験用加工装置の概念図を図2に示す。この加工装置は、底面に加工試料10を固定して内部を薬液で満たす上方に開口した薬液槽12と、薬液槽12を一方向に往復運動させる駆動機構14と、薬液槽12の底面に固定した加工試料10の表面(被加工面)に所定の押圧力で接触するコイン状触媒16を備えている。コイン状触媒16は、その下端において加工試料10の表面に点状に接触し、加工試料10は、コイン状触媒16の表面と平行に往復運動することで、加工試料10の表面を線状に沿って深さ方向に加工(溝加工)するようになっている。
【0032】
そして、コイン状触媒16の材料として純度99.95%のモリブデン(Mo)を、薬液としてフッ化水素酸(50%HF)をそれぞれ使用して、フッ化水素酸中に浸漬させたGaNからなる加工試料10の表面にコイン状触媒16を接触させながら加工試料10を10mm/secで往復運動させて、加工試料(GaN)10の表面を3時間に亘って溝加工した。
【0033】
この時の加工結果を図3及び図4に示す。ここで、図3は、加工後の加工試料表面の斜視図を示し、図4は、加工後の加工試料の断面プロファイルを示す。図3及び図4に示すように、GaNからなる加工試料の表面には、モリブデンからなるコイン状触媒と接触して線状に加工された2条に延びる溝(凹部)が形成されており、これにより、モリブデンからなるコイン状触媒によりGaNが加工できることが判る。
【0034】
比較例1として、コイン状触媒16として純度99.98%のプラチナ(Pt)を使用し、その他の条件は実施例1と同様にして、GaNからなる加工試料10の表面を3時間に亘って加工した。
この時の加工結果を図5及び図6に示す。ここで、図5は、加工後の加工試料表面の斜視図を示し、図6は、加工後の加工試料の断面プロファイルを示す。図5及び図6に示すように、加工後のGaNからなる加工試料の表面は、溝(凹部)が形成されることなく、平坦面となっており、これにより、プラチナからなるコイン状触媒では、GaNを加工できないことが判る。
【0035】
一般的に化学エッチングが困難とされているGaNを、フッ化水素酸(50%HF)中で、モリブデンからなる触媒で擦るだけで容易に加工することができた。また、基準面であるコイン触媒の直下のみ加工されたので、基準面が転写されたと考えられる。即ち、新しく提案した触媒支援型化学加工法の有用性を示すことができた。また、フッ化水素酸(50%HF)は、安価で比較的取扱いが容易であるので、本発明は実用的な観点からも有益であると言える。
【0036】
例えばFラジカルは、非常に活性であるため、例えばモリブデンの触媒作用による解離吸着のみでは、十分な量のFラジカルを生成することが難しい。そこで、処理液として、フッ化水素酸(HF水溶液)を使用した場合に、モリブデン触媒と被加工物との間に電圧を印加することで、HFの解離反応を補助し、触媒表面でのハロゲン原子の生成量を増加させて、加工速度を高めることができる。このように、処理液として、HF水溶液を使用した場合、モリブデン触媒と被加工物との間に印加する電圧は、下記の反応式に示す、HF分解反応の標準電極電圧値である3V程度が好ましい。
+2H+2e=2HF+3.053eV
【0037】
図7は、処理液として、フッ化水素酸(HF水溶液)を使用し、モリブデン(Mo)からなる触媒1と被加工物2との間に電圧を印加して被加工物2の表面を加工するようにした加工法の概念図を示す。図7に示すように、陽極と陰極とを反転可能な電源40を備え、この電源40の一方の極から延び、スイッチ42を介装した導線44aを触媒1に、電源40の他方の極から延びる導線44bを被加工物2にそれぞれ接続している。その他は、図1に示すものと同様である。
【0038】
この場合にあっても、図7(a)に示すように、フッ化水素(HF)が溶けた処理液中に触媒1と被加工物2を配置すると、触媒1の表面でHF6が解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。この状態で、図7(b)に示すように、スイッチ42をONにして、触媒1と被加工物2との間に、例えば触媒1が陽極となる電圧を印加すると、触媒1の表面(被加工物2との対向面)が活性領域1aとなり、触媒1の表面でのHF6の解離反応が促進されて、多量のFラジカル8が生成される。この状態で、図7(c)に示すように、触媒1を被加工物2の被加工面に接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。この時、Fラジカル8が多量に存在する触媒1の活性領域1aによって、被加工物2の加工が促進される。
【0039】
そして、図7(d)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まり、更に、スイッチ42をOFFとすることで、触媒1の表面は活性領域でなくなる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。
【0040】
(実施例2〜7)
図7に示す加工原理を確認するために、加工装置を作製した。その基礎実験用加工装置の概念図を図8に示す。この加工装置の図2に示す加工装置と異なる点は、加工試料10とコイン状触媒16との間に、電源18を介して、電圧を印加できるようにしている点である。その他の構成は、図2に示す加工装置と同様である。
【0041】
そして、コイン状触媒16の材料として純度99.95%のモリブデン(Mo)を、薬液としてフッ化水素酸(50%HF)をそれぞれ使用して、フッ化水素酸中に浸漬させたSiCからなる加工試料10の表面にコイン状触媒16を、付加加重74gで接触させながら加工試料10を3mm/secで往復運動させて、加工試料(SiC)10の表面を1時間に亘って溝加工した。この加工時に、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした1Vの電圧を印加した(実施例2)。
【0042】
この時の加工結果を図9及び図10に示す。ここで、図9は、加工後の加工試料表面の斜視図を示し、図10は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200nmの深さの溝を加工することができた。参考として、図11に加工前の加工試料の表面を、図12及び図13に、加工試料10とコイン状触媒16との間に電圧を印加することなく、加工試料(SiC)10の加工を行った時の結果を示す。ここで、図12(a)は、加工試料表面の斜視図を、図12(b)は、図12(a)の部分拡大図を、図13は、加工後の加工試料の断面プロファイルをそれぞれ示す。この場合、加工試料表面に、約175nmの深さの溝を加工することができた。
【0043】
これにより、加工試料(SiC)10とコイン状触媒16との間に、コイン状触媒16を陽極とした1Vの電圧を印加しながらSiCを加工することにより、電圧を印加することなく加工を行った場合より、SiCの加工速度が高められることが判る。
【0044】
実施例3として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした2Vの電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図14及び図15に示す。ここで、図14は、加工後の加工試料表面の斜視図を示し、図15は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200〜250nmの深さの溝を加工することができた。
【0045】
実施例4として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陽極とした3Vの電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図16及び図17に示す。ここで、図16は、加工後の加工試料表面の斜視図を示し、図17は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約200〜250nmの深さの溝を形成することができた。
【0046】
この実施例3及び4より、処理液として、HF水溶液を使用した場合、モリブデン触媒と被加工物との間に印加する電圧は、HF分解反応の標準電極電圧値である3V程度が好ましいことが判る。
【0047】
実施例5として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした1V(−1V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図18及び図19に示す。ここで、図18は、加工後の加工試料表面の斜視図を示し、図19は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約100nmの深さの溝を形成することができた。
【0048】
実施例6として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした2V(−2V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図20及び図21に示す。ここで、図20は、加工後の加工試料表面の斜視図を示し、図21は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約80nmの深さの溝を形成することができた。
【0049】
実施例7として、加工試料10とコイン状触媒16との間に、コイン状触媒16を陰極とした3V(−3V)の電圧を印加し、その他の条件は実施例2と同様にして、SiCからなる加工試料10の表面を1時間に亘って加工した。この時の加工結果を図22及び図23に示す。ここで、図22は、加工後の加工試料表面の斜視図を示し、図23は、加工後の加工試料の断面プロファイルを示す。これにより、加工試料表面に、約100nmの深さの溝を形成することができた。
【0050】
上記実施例2〜4と実施例5〜7とを比較すると、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、SiCを加工する場合には、触媒と被加工物との間に触媒を陽極とした印加することで、電圧を印加しない場合と比較して、SiCの加工速度を速めることができるが、触媒と被加工物との間に触媒を陰極とした電圧を印加すると、逆にSiCの加工速度が遅くなり、しかも印加する電圧を高めると、表面平形状が悪化することが判る。
【0051】
なお、上記の例では、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、触媒と被加工物との間に電圧を印加しながら被加工物の表面を加工するようにしている。このように、触媒と被加工物との間に電圧を印加しながら被加工物の表面を加工する場合には、触媒として、モリブデンの他に、白金、金、セラミックス系固体触媒またはモリブデン合金を使用しても良い。これによっても、図7(b)に示すのと同様に、白金や金等からなる触媒の表面(被加工物との対向面)を活性領域となし、触媒表面でのハロゲンラジカルの解離反応を促進させ、多量のハロゲンラジカルを生成させて、加工速度と向上させることができる。
【0052】
例えば、SiCやGaN等のワイドバンドギャップ材料は、化学的に非常に安定であり、このため、モリブデン触媒作用による解離吸着で生成したハロゲン原子が反応しても、十分な反応速度を得ることが難しい。そこで、反応時に被加工物表面(被加工面)に光を照射して被加工面を活性にすることで加工速度を高めることができる。この時に照射する光の波長は、被加工物のバンドギャップに相当する波長以下、例えば4H−SiCのバンドギャップは3.26eVであるので、SiCを加工する場合には383nm以下、GaNのバンドギャップは3.42eVであるので、GaNを加工する場合には365nm以下であることが好ましい。
【0053】
図24は、処理液としてフッ化水素酸(HF水溶液)を、触媒1としてモリブデン(Mo)をそれぞれ使用して、被加工物2の表面(被加工面)に光を照射して被加工物2の表面を加工するようにした加工法の概念図を示す。図24に示すように、触媒1の上方には光源50が、触媒1と光源50との間に励起光透過窓52がそれぞれ設けられ、触媒1の内部には、上下に貫通して光を通過させる多数の光通過孔1bが設けられている。その他は、図1に示すものと同様である。このように、触媒1と光源50との間に、光源1からの光を透過する励起光透過窓52を入れることで、光源1がフッ化水素(HF)等が溶けた処理液により腐食されるのを防ぐことができる。この励起光透過窓52に用いる材質は、CaF等のフッ化物ガラスであることが好ましい。
【0054】
この場合にあっても、図24(a)に示すように、フッ化水素(HF)が溶けた処理液中に触媒1と被加工物2を配置すると、触媒1の表面でHFが解離されてH原子7とハロゲンラジカル(Fラジカル)8が生成される。そして、被加工物2の表面(被加工面)に、例えば被加工物2のバンドギャップに相当する波長以下の光を光源50から照射して、被加工物2の表面(被加工面)を励起部分2aとなして活性化させる。この状態で、図24(b)に示すように、触媒1を被加工物2の被加工面に接触または極接近させると、接触部分の被加工面表面原子が化学反応により処理液中に溶解される。この時、被加工面は、光で励起された励起部分2aとなっており、活性にしてあるので、加工速度が高くなる。そして、図24(c)に示すように、触媒1を被加工物2の被加工面から離すと、触媒表面で生成されるラジカルが被加工物表面に作用しなくなる為に溶解反応が止まり、更に、光の照射を停止すると、被加工物2の表面は活性部分ではなくなる。従って、触媒1が接触または極接近している間だけ、被加工物2の被加工面が加工される。
【0055】
なお、上記の例では、処理液としてフッ化水素酸を、触媒としてモリブデンをそれぞれ使用し、被加工物の表面に(被加工面)に光を照射しながら被加工物の表面を加工するようにしている。このように、被加工物の表面に(被加工面)に光を照射しながら被加工物の表面を加工する場合には、触媒として、モリブデンの他に、白金、金、セラミックス系固体触媒またはモリブデン合金を使用しても良い。これによっても、図24(a)に示すのと同様に、被加工面を光で励起された励起部分となして活性にして、加工速度と向上させることができる。
【0056】
なお、アレニウスの式で知られるように、化学反応は反応温度が高くなれば、それだけ反応速度は大きくなる。本加工法は、化学反応に基づいている。したがって、被加工物の温度、処理液の温度及び触媒の温度の少なくとも1つを制御して、化学反応が生じるときの温度を制御することで、加工速度を制御することができる。
【0057】
本発明の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の簡略斜視図を図25に示す。このポリッシング装置(触媒支援型化学加工装置)20は、内部を処理液22で満たす容器24と、容器24内に回転自在に配置された、モリブデンまたはモリブデン合金からなる触媒定盤26と、表面(被加工面)を下向きにして被加工物28を着脱自在に保持するホルダー30を有している。ホルダー30は、加工性、対薬品性及び温度に対する耐性に優れた、例えばSiCによって構成されているが、硬質塩化ビニルまたはPEEK材で構成してもよく、触媒定盤26の回転軸芯と平行且つ偏心した位置に設けた上下動自在な回転軸32の先端に連結されている。ホルダー30は、回転軸32に対してピボット支持(ボール軸受け支持)されているので、触媒定盤26の表面に、ホルダー30の被加工物保持面が追従することができ、被加工物28が触媒定盤26に面接触できるようになっている。
【0058】
これにより、容器24内を処理液で満たし、ホルダー30で保持した被加工物28を触媒定盤26に所定の圧力で押付けながら、触媒定盤26及び被加工物28を回転させて、被加工物28の表面(下面)を平坦に加工する。なお、触媒定盤26の表面に、適宜編目状、同心円状、またはスパイラル状の溝構造を設けることにより、該触媒定盤26の回転に伴って、加工領域に新鮮な処理液を供給することが可能となる。
【0059】
なお、処理液で満たされた容器24内に触媒定盤26と被加工物28が配置された浸漬型の形態に限らず、触媒定盤26の上方に配置したノズル(図示せず)から触媒定盤26と被加工物28の間に処理液を供給するようにしてもよい。処理液を循環利用する場合は、スラッジを除去するために、精製して再利用するのが好ましい。また、図25とは、上下を逆にした形態でもよい。その場合には、被加工物をその被加工面を上向きにして配置し、それに対向するように上方に配置された触媒定盤を、被加工物に軽く接触または微小間隔を設けて近づけてもよい。
【0060】
そして、触媒定盤26の材料として、モリブデン(Mo)またはモリブデン化合物を、処理液22としてフッ化水素酸またはハロゲンを含む分子が溶けた溶液をそれぞれ使用して、SiCウェーハ等からなる被加工物28の表面を加工する。
【0061】
(実施例8)
図25に示すポリッシング装置において、触媒定盤26の材料として純度99.95%のモリブデン(Mo)を、処理液22としてフッ化水素酸(50%HF)をそれぞれ使用し、フッ化水素酸中に浸漬させたSiCウェーハからなる加工試料の表面を、触媒定盤26及び加工試料を共に20rpmで回転させながら、2インチウェーハに対して5kgの加重を掛けて、18時間に亘って平坦に加工した。加工の前後で加工試料(SiCウェーハ)の重量を測定したところ、加工前2.4368gであった加工試料の重量が加工後に2.4357gに変化しており、加工量は0.0011gで、これはSiCの厚さ換算で1.8μmに相当する。
【0062】
比較例2として、触媒定盤26の材料として純度99.98%のプラチナ(Pt)を使用し、その他の条件は実施例2と同じにして、SiCウェーハからなる加工試料の表面を18時間に亘って平坦に加工した。加工の前後で加工試料(SiCウェーハ)の重量を測定したところ、加工前2.4310gであった加工試料の重量が加工後に2.4308gに変化しており、加工量は0.0002gで、これはSiCの厚さ換算で0.3μmに相当する。
【0063】
これにより、SiCの加工(研磨)に際し、触媒定盤26として、モリブデンを使用することで、プラチナを使用した場合と比較して、約6倍の加工速度が得られることが判る。これは、HFが解離してH原子とFラジカルが生成される反応が、プラチナよりもモリブデンからなる触媒定盤26の表面で起こり易くなるためであると考えられる。
【0064】
図26は、ポリッシング装置に適用した本発明の他の実施の形態の触媒支援型化学加工装置の簡略斜視図を示す。この図26に示すポリッシング装置(触媒支援型化学加工装置)20aの図25に示すポリッシング装置(触媒支援型化学加工装置)20と異なる点は、陽極と陰極とを反転可能な電源34を備え、この電源34の一方の極から延び、スイッチ36を介装した導線38aを触媒定盤26に、電源34の他方の極から延びる導線38bを被加工物28にそれぞれ接続するようにしている点である。この例にあっては、触媒定盤26として、モリブデンまたはモリブデン合金の他に、白金、金またはセラミックス系固体触媒を使用することができる。
【0065】
なお、図24に概略的に示すように、触媒定盤26の内部に多数の光通過孔を設けるとともに、触媒定盤26の下方に光源を配置して、被加工物28の表面(被加工面)に、好ましくは被加工物28のバンドギャップに相当する波長以下の光を照射するようにしてもよい。この時、光源とフッ化水素(HF)等が溶けた処理液の間に、光源からの光を透過する励起光透過窓を入れることにより、光源がフッ化水素(HF)等が溶けた処理液により腐食されるのを防ぐことができる。励起光透過窓に用いる材質は、CaF等のフッ化物ガラスであることが好ましい。
【0066】
この例にあっては、容器24内を処理液で満たし、ホルダー30で保持した被加工物28を触媒定盤26に所定の圧力で押付けながら、触媒定盤26及び被加工物28を回転させて、被加工物28の表面(下面)を平坦に加工する。この時、必要に応じて、触媒定盤26と被加工物28との間に、例えば触媒定盤26を陽極とした所定の電圧を印加する。また、光源を備えた場合には、必要に応じて、被加工物28の表面(被加工面)に、所定の周波数の光を照射する。
【0067】
図27は、ポリッシング装置に適用した本発明の他の実施の形態の触媒支援型化学加工装置の簡略斜視図を示す。この図27に示すポリッシング装置(触媒支援型化学加工装置)20bの図25に示すポリッシング装置(触媒支援型化学加工装置)20と異なる点は、以下の通りである。すなわち、ホルダー30の内部には、該ホルダー30で保持した被加工物28の温度を制御する温度制御機構としてのヒータ70が回転軸32に延びて埋設されている。容器24の上方には、熱交換器72によって所定の温度に制御した処理液を容器24の内部に供給する温度制御機構としての処理液供給ノズル74が配置されている。更に、触媒定盤26の内部には、該触媒定盤26の温度を制御する温度制御機構としての流体流路76が設けられている。
【0068】
なお、この例では、被加工物28の温度を制御する温度制御機構としてのヒータ70、処理液の温度を制御する温度制御機構としての処理液供給ノズル74、及び触媒定盤26の温度を制御する温度制御機構としての流体流路76を設けた例を示しているが、いずれか1つを設けるようにしてもよい。また、この例にあっては、図26に示す例と同様に、触媒定盤26として、モリブデンまたはモリブデン合金の他に、白金、金またはセラミックス系固体触媒を使用することができる。
【0069】
アレニウスの式で知られるように、化学反応は反応温度が高ければ、それだけ反応速度は大きくなる。この例によれば、被加工物28、処理液及び触媒定盤26の温度の少なくとも1つの制御して、反応温度を制御することで、加工速度を変化させることができる。
【0070】
本発明は、上記実施例で例示した一軸加工や平面加工に限らず、三次元形状の試料に対して、球状または円筒状に構成された触媒を接触させて所望の形状に加工するなど、各種の除去加工に応用できる。また、上述した電圧印加、光照射、温度制御はこれらを単独でも、また適宜組み合わせて加工を促進させるようにしてもよい。
【図面の簡単な説明】
【0071】
【図1】本発明の触媒支援型化学加工方法の加工概念図を示し、(a)はハロゲンを含む分子が溶けた処理液中に配置されたモリブデン触媒表面上で、該ハロゲンを含む分子が解離し反応種であるハロゲンラジカルが生成される概念を、(b)は(a)に示すモリブデン触媒と被加工物の加工表面を接触又は極接近させることで、触媒表面で生成された反応種と被加工物表面原子の化学反応により被加工物表面原子が処理液中に溶解して加工が進行する概念を、(c)は(b)に示すモリブデン触媒と被加工物の加工表面が離れる為に、加工反応が止まる様子をそれぞれ示している。
【図2】図1に示す方法を実施する基礎実験用加工装置の概念を示す斜視図である。
【図3】実施例1における加工後の加工試料表面を示す斜視図である。
【図4】実施例1における加工後の加工試料の断面プロファイルである。
【図5】比較例1における加工後の加工試料表面を示す斜視図である。
【図6】比較例1における加工後の加工試料の断面プロファイルである。
【図7】本発明の他の触媒支援型化学加工方法の加工概念図を示し、(a)は図1(a)相当図を、(b)は触媒と被加工物との間に電圧を印加した時の概念を、(c)は図1(b)相当図を、(d)は図1(c)相当図を示す。
【図8】図7に示す方法を実施する基礎実験用加工装置の概念を示す斜視図である。
【図9】実施例2における加工後の加工試料表面を示す斜視図である。
【図10】実施例2における加工後の加工試料の断面プロファイルである。
【図11】加工前の加工試料表面を示す斜視図である。
【図12】(a)は加工試料とコイン状触媒との間に電圧を印加することなく加工試料(GaN)の加工を行った時の加工試料表面を示す斜視図で、(b)は(a)の部分拡大図である。
【図13】加工試料とコイン状触媒との間に電圧を印加することなく加工試料(SiC)の加工を行った時の加工試料の断面プロファイルである。
【図14】実施例3における加工後の加工試料表面を示す斜視図である。
【図15】実施例3における加工後の加工試料の断面プロファイルである。
【図16】実施例4における加工後の加工試料表面を示す斜視図である。
【図17】実施例4における加工後の加工試料の断面プロファイルである。
【図18】実施例5における加工後の加工試料表面を示す斜視図である。
【図19】実施例5における加工後の加工試料の断面プロファイルである。
【図20】実施例6における加工後の加工試料表面を示す斜視図である。
【図21】実施例6における加工後の加工試料の断面プロファイルである。
【図22】実施例7における加工後の加工試料表面を示す斜視図である。
【図23】実施例7における加工後の加工試料の断面プロファイルである。
【図24】本発明の更に他の触媒支援型化学加工方法の加工概念図を示し、(a)は被加工物の被加工面に光を照射している概念を(b)は触媒と被加工物の加工表面を接触又は極接近させることで、触媒表面で生成された反応種と被加工物表面原子の化学反応により被加工物表面原子が処理液中に溶解して加工が進行する概念を、(c)は触媒と被加工物の加工表面が離れる為に、加工反応が止まる様子をそれぞれ示している。
【図25】本発明の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。
【図26】本発明の他の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。
【図27】本発明の更に他の実施の形態のポリッシング装置に適用した触媒支援型化学加工装置の概要を示す斜視図である。
【符号の説明】
【0072】
1 触媒
2 被加工物
6 フッ化水素(HF)
7 H原子
8 Fラジカル
10 加工試料
12 薬液槽
14 駆動機構
16 コイン状触媒
18,34,40 電源
20,20a,20b ポリッシング装置(触媒支援型化学加工装置)
22 処理液
24 容器
26 触媒定盤
28 被加工物
30 ホルダー
32 回転軸
50 光源
70 ヒータ(温度制御機構)
74 処理液供給ノズル(温度制御機構)
76 流体流路(温度制御機構)

【特許請求の範囲】
【請求項1】
ハロゲンを含む分子が溶けた処理液中に被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工することを特徴とする触媒支援型化学加工方法。
【請求項2】
前記処理液は、フッ化水素酸である請求項1記載の触媒支援型化学加工方法。
【請求項3】
前記被加工物が、Si、SiC、GaN、サファイヤ、ルビー及びダイヤモンドの内から選ばれた1種である請求項1または2記載の触媒支援型化学加工方法。
【請求項4】
前記触媒を表面に有する平坦な定盤の該表面に、前記処理液の存在の下で、ホルダーで保持した被加工物の被加工面を接触させながら、前記定盤と前記被加工物とを相対的に移動させて被加工物の被加工面を平坦に加工することを特徴とする請求項1乃至3のいずれかに記載の触媒支援型化学加工方法。
【請求項5】
ハロゲンを含む分子が溶けた処理液中に該被加工物を配し、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を被加工物の加工面に接触若しくは極接近させて配し、被加工物を加工する触媒支援型化学加工方法であって、
前記加工中に被加工物の被加工面と前記触媒の間に電圧を印加する電圧印加工程、前記加工中または加工前に被加工物の被加工面に光を照射する光照射工程、前記加工中における該被加工物の温度を制御する被加工物温度制御工程、前記処理液の温度を制御する処理液温度制御工程、及び前記触媒の温度を制御する触媒温度制御工程のうちの1種又は2種以上を組み合わせて適用し、被加工物を加工することを特徴とする触媒支援型化学加工方法。
【請求項6】
表面にモリブデンまたはモリブデン化合物からなる触媒を有する定盤と、
被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部を有することを特徴とする触媒支援型化学加工装置。
【請求項7】
表面に、白金、金、セラミックス系固体触媒、モリブデン、又はモリブデン化合物からなる触媒を有する定盤と、
被加工物を保持し該被加工物の被加工面を前記定盤に接触させるホルダーと、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物との間にハロゲンを含む分子が溶けた処理液を供給する処理液供給部と、
前記定盤と前記ホルダーで保持して該定盤に接触させた被加工物とを相対移動させる駆動部と、
被加工物の被加工面と前記触媒の間に電圧を印加する電源、被加工物の被加工面に光を照射する光源、前記加工中における該被加工物の温度を制御する被加工物温度制御機構、前記処理液の温度を制御する処理液温度制御機構、及び前記触媒の温度を制御する触媒温度制御機構のうちの1種又は2種以上を有することを特徴とする触媒支援型化学加工装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2008−81389(P2008−81389A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2006−328331(P2006−328331)
【出願日】平成18年12月5日(2006.12.5)
【出願人】(504176911)国立大学法人大阪大学 (1,536)
【出願人】(000000239)株式会社荏原製作所 (1,477)
【Fターム(参考)】