説明

超高エネルギ高安定性ガス放電レーザ表面処理システム

【課題】広い区域にわたって高繰返し率のレーザ光を用いる表面及び/又は基板の処理を伴う製造工程で使用される高電力及び高安定性ガス放電レーザを提供する。
【解決手段】直列に接続した複数の一次巻線と複数の一次巻線の各々を通る単一の二次巻線とを有する多段分割ステップアップ変圧器と半導体トリガスイッチとを含むDC電源に接続されかつそれぞれの電極に接続した第1及び第2のパルス圧縮及び電圧ステップアップ回路を含む電源モジュールと、単一出力レーザ光パルスビームを生成するためにPOPA構成レーザシステム又はPOPO構成レーザシステムのいずれかとして第1及び第2のレーザユニットの作動を達成するように、それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路の作動パラメータに基づいてそれぞれの半導体スイッチの閉成を計時するように作動するレーザタイミング及び制御モジュールとを含むマルチチャンバレーザシステム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、広い区域にわたって高繰返し率のレーザ光を用いる表面及び/又は基板の処理を伴う製造工程で使用される高電力及び高安定性ガス放電レーザに関する。
関連出願
本出願は、2003年11月26日出願の「超高エネルギ高安定性ガス放電レーザ表面処理システム」という名称の米国特許出願出願番号第10/722,992号、2003年7月30日出願の「2チャンバガス放電レーザ用制御システム」という名称の第10/631,349号、2002年8月30日出願の「ビーム送出及びビーム指向制御を用いるリソグラフィレーザ」という名称の出願番号第10/233,253号、公開番号US20020154668A1として2002年10月24日公開の発明者がKnowles他で2001年11月30日出願の「超狭帯域2チャンバ高繰返し率ガス放電レーザシステム」という名称の現在は米国特許第6,625,191号である出願番号第10/012,002号、公開番号US20020044586A1として2002年4月18日公開の発明者がMyers他の2001年8月29日出願の「超狭帯域2チャンバ高繰返し率ガス放電レーザシステム」という名称の現在は米国特許第6,567,450号である出願番号第09/943,343号、及び公開番号US20020012376A1として2002年1月31日公開の発明者がDas他の2001年7月30日出願の「精密パルスタイミング制御を用いる高繰返し率ガス放電レーザ」という名称の現在は米国特許第6,618,421号である米国特許出願出願番号第09/837,035号の一部継続出願であり、その全ての開示内容は、本明細書において引用により組み込まれている。
本出願は、2003年6月25日出願の代理人整理番号第2003−0051−01号である「磁気回路要素を冷却する方法及び装置」という名称の特許出願出願番号第10/607,407号に関連し、同じく2003年6月25日出願の代理人整理番号第2002−0042−01号である「比較的近接して位置決めされた高電圧モジュールを電気的に相互接続する方法及び装置」という名称の特許出願出願番号第10/606,412号、及び2001年12月21日出願の「2チャンバガス放電レーザシステムのためのタイミング制御」という名称の特許出願出願番号第10/036,727号に関連し、2002年5月7日出願の「酸化剤を添加した封入ビーム経路を有するガス放電紫外線レーザ」という名称の特許出願出願番号第10/141,201号に関連し、2003年1月31日出願の「ガス放電レーザのための自動ガス制御システム」という名称の特許出願出願番号第10/356,168号に関連し、公開番号US20020085606として2002年7月4日公開の発明者がNess他の「精密タイミング制御を用いる注入シードレーザ」という名称の2001年5月3日出願の出願番号第09/848,043号に関連し、公開番号US20020167986A1として2002年11月14日公開の発明者がPan他の2002年5月7日出願の「酸化剤を添加した封入ビーム経路を有するガス放電紫外線レーザ」という名称の出願番号第10/141,201号に関連し、公開番号US20020099269A1として2003年5月29日公開の発明者がErshov他の「2チャンバガス放電レーザシステムのためのタイミング制御」という名称の2001年12月21日出願の出願番号第10/036,727号に関連し、現在は米国特許第6,625,191号である2001年11月30日出願の「超狭帯域幅2チャンバ高繰返し率ガス放電レーザシステム」という名称の出願番号第10/012,002号に関連し、現在は米国特許第6,619,421号である2001年4月18日出願の「精密パルスタイミング制御を用いる高繰返し率ガス放電レーザ」という名称の特許出願出願番号第09/837,035号、及び「磁気変調器電圧及び温度タイミング補償回路」という名称の米国特許第6,016,325号、及び2000年5月23日にSandstrom他に付与された「エネルギセンサフィードバックを有するレーザ照射ステッパ又はスキャナ」という名称の米国特許第6,067,306号に関連し、1999年11月30日出願の「ガス放電レーザのための長パルスパルスパワーシステム」という名称の米国特許出願出願番号第09/451,995号、及び代理人整理番号第2003−0109−01号である2003年11月13日出願の「長遅延及び高TISパルス伸張器」という名称の米国特許出願に関連し、2001年5月11日出願の「4KHzガス放電レーザ」という名称の米国特許出願出願番号第09/854,097号に関連し、「高信頼性モジュール式製造品質狭帯域高繰返し率エキシマレーザ」という名称の米国特許第6,128,323号に関連し、「パルスマルチプレクサを有するエキシマレーザ」という名称の米国特許第6,067,311号に関連し、その全ての開示内容は、本明細書において引用により組み込まれている。
【背景技術】
【0002】
薄膜トランジスタ(TFT)は、例えば、ラップトップコンピュータ上で一般的に見られる液晶ダイオード(LCD)画面を作製する公知の技術である。多結晶シリコン(Poly−Si)TFT画面は、例えば、アモルファスシリコン(aSi)TFTのLCD画面よりも明るくて読み取りやすいが、消費電力が高くなる可能性があり、部分的には現在利用可能な製造技術のために、特に、例えば現在利用可能な製造技術におけるいくつかの制限による製造収率に及ぼす影響のために、一般的により高価になる可能性がある。
【0003】
aSiのLCD基板の外面の焼き鈍しは、パネルディスプレイ性能の観点から、及び達成可能な製造収率に関連して現在の極めて重要な工程である。例えば、高解像度フラットパネルディスプレイの製造にTFT焼き鈍しを用いることは公知である。また、レーザ、例えばエキシマレーザ又はモジュール式ガス放電レーザを利用して、例えばアモルファスシリコン(aSi)のレーザ誘発結晶化を引き起こし、例えば多結晶シリコン(Poly−Si)を生成することも公知である。この工程、及びその非常に正確な制御及び作動は、次世代TFT素子の中枢技術である。このような技術がなければ、装置、例えばフラットパネルディスプレイは、技術が進歩する時に表示技術が要求する所要の優れた解像度及び輝度、広角視野、及び高ピクセルリフレッシュ速度のようなものを提供することを妨げられることになる。
【0004】
Poly−SiのTFT技術は、活性プレート上へのアドレス指定及び計時回路の統合を可能にすることにより、フラットパネルディスプレイの今後の発展の重要な経路を表している。これを行うために、回路区域内の局所レーザ焼き鈍しによるか又はアレイ及び回路TFTSにPoly−Siを使用するモノリシックな手法による2つの技術が出現している。J.Yres他著「液晶ディスプレイアドレス指定のための低温Poly−Si」、フィリップス・リサーチ・ラボラトリーズ、サリー、英国、アジア技術情報プログラム(ATIP)、5月11日、1993年、(http://www.atip.org/ATIP/public/atip.reports.93/mita−lcd.93html)を参照されたい。
【0005】
現在利用可能な光源システムからレーザ光出力を選択することも公知であり、このレーザ光出力は、例えば焼き鈍しの場合に伴う処理に対して最適化された中心波長を有し、処理されている、例えば焼き鈍しされている材料の表面内へ例えば材料内へ必要なだけの深い焼き鈍しを達成するために十分に高い電力で表面に入射する光の侵入を最大にするものである。他の場合には、処理されている特定の材料はまた、処理、例えば焼き鈍しに対して異なる中心波長で反応が異なる場合があり、特定の中心波長の選択に影響を与える。
当業技術で公知のガス放電レーザは、ガス放電に使用されているガスによって決まるあらゆる特定のレージングチャンバ内で起こる物理及び化学反応のために、中心波長の無限スペクトルをもたらすのには利用可能ではない。
【0006】
現在、エキシマレーザ又は他のガス放電レーザ、特に塩化キセノン(XeCl)ハロゲンガス放電レーザが上述の種類の焼き鈍し処理に有用であることも公知である。ドイツのLambda−Physikのような会社は、以下の作動パラメータを有するLambda−Physik「STEEL 2000」のような製品を供給している。
波長:308nm
安定化エネルギ:1030mJ
安定化平均電力:310W(308nmで)
最大繰返し率:300Hz
パルス持続時間(典型的にFWHM):29±5ns
パルス間エネルギ安定性(3シグマ):≦5.4%
最大パルスエネルギ振れ上方平均(最大エネルギから平均エネルギを差し引く):≦8.5%
ビーム寸法(典型的にFWHM)(ビーム出口から1m):(40±3)x(13±2)mm2
ビーム分散(典型的にFWHM)(10Hzで):≦4.5x≦1.5mrad
角度指向安定性(典型的にFWHM)(ビーム出口から1m):≦0.45x≦0.15mrad
ガス寿命:>40x106パルス
予想レーザ管寿命:1x109パルス
ビーム高さ:1235±20mm
【0007】
例えば、性能が約1J及び300Hzのこのようなレーザは、現世代ガラス基板に対する性能要件のまさにほぼ限界点にある。1250mmx1100mmの次世代(第5世代)のこのようなガラス基板は、パルス安定性、ビーム特性などのようなパラメータを維持しながら、遥かに優れた性能、例えばより高いレーザエネルギや繰返し率を要求することになる。この要件は、例えばフラットパネルディスプレイ技術の進歩、例えばガラス基板の寸法が1250mmX1100mmに増大するためにより厳しくなるので、例えば、必要とされるレーザエネルギは、2J/パルスへと少なくとも2倍に増大することになる。例えば「Lambda Physik」である一部によって提案された技術は、2つのレーザを例えばビームホモジナイザと組み合わせ、2つのレーザからの2つのビームを結合することである。しかし、例えばホモジナイザだけの増設による2つのレーザの使用も経費を増大し、消耗品の経費、更に保守による停止時間も追加する。ホモジナイザに加えて、関連の送出用光学器械もより複雑になる。
【0008】
例えば、B.Wexler他著「縮退4光波混合のためのXeCl増幅器の使用」、「米国物理学会、エキシマレーザ−1983」、C.Rhodes他編、172〜176頁で説明されているように、ある一定の用途を対象としたPOPA構成の使用が公知である。1986年に、マサチューセッツ州ビレリカ所在のエキシマレーザ会社Questekは、POPA技術に基づいて100WのKrFレーザを導入した。しかし、部分的にはPO及びPAがサイラトロン切換式であったことによるジッター/タイミング制御技術の欠落のために、この製品は、直ちに市場から撤収された。
従って、例えばTFT焼き鈍し及び/又は例えばA−Siコーティングからの大規模なpoly−siの作製に対するレーザ光を使用する表面及び材料処理技術の需要増大に対するより良い解決策に対する必要性が存在する。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許出願出願番号第10/722,992号
【特許文献2】米国特許出願出願番号第10/631,349号
【特許文献3】米国特許出願出願番号第10/233,253号
【特許文献4】公開番号US20020154668A1
【特許文献5】米国特許第6,625,191号
【特許文献6】米国特許出願出願番号第10/012,002号
【特許文献7】公開番号US20020044586A1
【特許文献8】米国特許第6,567,450号
【特許文献9】米国特許出願出願番号第09/943,343号
【特許文献10】公開番号US20020012376A1
【特許文献11】米国特許第6,618,421号
【特許文献12】米国特許出願出願番号第09/837,035号
【特許文献13】米国特許出願出願番号第10/607,407号
【特許文献14】米国特許出願出願番号第10/606,412号
【特許文献15】米国特許出願出願番号第10/036,727号
【特許文献16】米国特許出願出願番号第10/141,201号
【特許文献17】米国特許出願出願番号第10/356,168号
【特許文献18】公開番号US20020085606
【特許文献19】米国特許出願出願番号第09/848,043号
【特許文献20】公開番号US20020167986A1
【特許文献21】米国特許出願出願番号第10/141,201号
【特許文献22】公開番号US20020099269A1
【特許文献23】米国特許第6,619,421号
【特許文献24】米国特許第6,016,325号
【特許文献25】米国特許第6,067,306号
【特許文献26】米国特許出願出願番号第09/451,995号
【特許文献27】米国特許出願、2003年11月13日出願、「長遅延及び高TISパルス伸張器」
【特許文献28】米国特許出願出願番号第09/854,097号
【特許文献29】米国特許第6,128,323号
【特許文献30】米国特許第6,067,311号
【特許文献31】米国特許第5,023,884号
【非特許文献】
【0010】
【非特許文献1】J.Yres他著「液晶ディスプレイアドレス指定のための低温Poly−Si」、フィリップス・リサーチ・ラボラトリーズ、サリー、英国、アジア技術情報プログラム(ATIP)、5月11日、1993年
【非特許文献2】B.Wexler他著「縮退4光波混合のためのXeCl増幅器の使用」、「米国物理学会、エキシマレーザ−1983」、C.Rhodes他編、172〜176頁
【非特許文献3】T.Kudo他著「全ての半導体レーザの二重パルス照射によるa−Si薄膜の高度横結晶成長」、材料学会シンポジウム議事録、762巻、2003年春、1頁から6頁
【非特許文献4】A.Voutsas著「新時代の結晶化:ポリシリコン結晶化及び結晶エンジニアリングの進歩」、応用表面科学(2003年)
【非特許文献5】R.Dassow著「高移動性を有する薄膜のためのトランジスタNd:YVO4レーザ結晶化」、材料学会シンポジウム議事録、762巻、2000年春
【発明の概要】
【課題を解決するための手段】
【0011】
被加工物の基板内の結晶構成又は配向の変換を実行するためのガス放電レーザ結晶化装置及び方法が開示され、それは、細長いガス放電領域を形成するチャンバ内に収容された1対の細長い離間した対向電極を各々が有する第1及び第2のガス放電チャンバ、及び被加工物上で実行される結晶化処理に対して最適化された中心波長でレーザ光を生成するように選択されたハロゲン及び希ガスを含むチャンバ内に収容されたレーザガスを含む第1のレーザユニットと、DC電源、及び直列に接続した複数の一次巻線と複数の一次巻線の各々を通る単一の二次巻線とを有する多段分割ステップアップ変圧器と半導体トリガスイッチとを含むDC電源に接続されかつそれぞれの電極に接続した第1及び第2のパルス圧縮及び電圧ステップアップ回路を含む電源モジュールと、単一出力レーザ光パルスビームを生成するためにPOPA構成レーザシステム又はPOPO構成レーザシステムのいずれかとして第1及び第2のレーザユニットの作動を達成するように、それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路の作動パラメータに基づいてそれぞれの半導体スイッチの閉成を計時するように作動するレーザタイミング及び制御モジュールとを含むマルチチャンバレーザシステムを含むことができる。POPAとして、レーザシステムのリレー光学器械は、第1の出力レーザ光パルスビームを第1のレーザユニットから第2のガス放電チャンバ内に向けるように作動することができ、タイミング及び制御モジュールは、第1の出力レーザ光パルスビームが±3ns以内に第2の放電領域を通過している間に第2の対の電極間にガス放電を作り出すように作動し、POPOとして、結合光学器械は、出力ビームを結合し、タイミングは、結合出力内に予め選択された時間±3nsのパルス分離を作り出す。ビーム送出ユニット及びパルス伸張器を含めることもでき、タイミング及び制御は、パルス圧縮及び電圧ステップアップ回路における充電電圧及び構成要素温度を表す信号に基づいてプロセッサ制御することができる。
【図面の簡単な説明】
【0012】
【図1A】本発明の実施形態によるマルチチャンバレーザシステムのブロック図的部分概略図の側面図である。
【図1B】本発明の実施形態によるマルチチャンバレーザシステムのブロック図的部分概略図の上面図である。
【図2】本発明の実施形態のブロック図的概略図である。
【図2A】本発明の実施形態のブロック図的概略図である。
【図3】本発明の実施形態のブロック図的概略図である。
【図4】本発明の実施形態による半導体パルスパワーシステムの概略図である。
【図5】本発明の実施形態による図4に示す整流器モジュールのより詳細な概略図である。
【図6】本発明の実施形態による図4に示す圧縮ヘッドモジュールから図4に示すチャンバモジュール内のピーキングコンデンサを充電するタイミング図である。
【図7】図4に示す圧縮ヘッド及びチャンバモジュールのより詳細な図である。
【図8】本発明の実施形態によるタイミング及び制御モジュールのブロック図的概略図である。
【図9】本発明の実施形態で使用されるタイミング図である。
【発明を実施するための形態】
【0013】
本発明は、例えば表面及び材料処理用途向けに、例えばXeClレーザに対して本出願人の譲受人の既存のフッ素ベースのエキシマ技術の拡張を考えるものである。特に、例えばこのようなレーザを使用すると、例えばフラットパネルディスプレイの広い面積にわたる焼き鈍し(TFT焼き鈍し)用の既存システムの機能を上げることができる。例えば、上述のLambda−PhysikのXeClレーザ(1J、300Hz)。
【0014】
本発明が考えるように、例えばフラットパネルディスプレイ用の例えば第5世代ガラスパネルの広い面積にわたる焼き鈍しに向けて最適化することができる高電力高エネルギXeClレーザを開示する。また、本発明により、例えば数百ミリメートル長で1ミリメートルの何分の1かの割合の幅、例えば370mmx0.4mmの細長いスロットの形で、例えば一定のフルエンスを送出することができる高効率ビーム送出ユニットを提供する。
【0015】
ガラス基板の計画図に基づいて、基板サイズは、1250mmX1100mmに増大されるであろう。これであれば、2倍まで、つまり2J/パルスまでレーザエネルギ及び電力要件が上がることになる。「Lambda Physik」によって提案されている技術は、以下に示すように2つのレーザを結合することである。しかし、2つのレーザを使用すると、消耗品の経費及び停止時間が増大する。関連の送出構成要素もより複雑になる。本発明の実施形態によれば、本出願人は、例えばこのノードで、つまり2J/パルス300Hzレーザ、すなわち、約600wでの本発明の実施形態の利用を考えている。
【0016】
本出願人の評価及び発見によれば、単一の商業的に実際的なレーザ発振器を基本とした設計では、要件上、ガス放電型レーザの電極間で非常に大きな放電容積が求められるために2J/パルスを生成することはできない。例えば、XeClレーザのエネルギ/圧力(E/P)は、約1kV/cm−atmである。本出願人の譲受人のパルスパワーシステムが現在送出することができる超高電圧、例えば30kVでさえも、考慮することができる放電間隙は、4大気全圧力で僅か約3.5cmである。このような放電間隙であれば、一般的な放電幅2cmでは、現在普及している電極が1m長を若干下回るのに対して、チャンバ電極は、約1.4m長である必要がある。1.4m長は、少なくとも2つの理由から実現不可能である。それは、(1)例えば、高圧力でチャンバ構造に様々な問題を引き起こし、場合によっては、接線送風機の要件及び性能の問題に至るような非実際的な長さのチャンバ長に対する必要性であり、(2)0.06/cmの推定小信号ゲインに対して、この長さは、それを超えるとレーザが超放射になる1.7mという最大値に非常に近いものになり、すなわち、増幅自然放出(ASE)が、例えば約308nmの中心波長回りの自然な例えばXeCl帯域幅から外れた超広帯域ASEによる効率損失といった問題を引き起こすほど高いものになると考えられるからである。
【0017】
本発明は、1つのチャンバのレーザ出力をシードビームとして第2のチャンバに送出するように構成されたマルチチャンバレーザシステムを考えている。現在、本出願人の譲受人は、多大の出力電力を犠牲にして例えば集積回路リソグラフィ用途向けの例えば本質的に単色光の送出に対して非常に狭い線狭化を達成する第1のチャンバが非常に高度に線狭化された主発振器として作動する「XL」プラットホームという製品ラインを供給している。主発振器(MO)と呼ばれるこの発振器のこの低電力線狭化レーザによる出力は、その後、電力発振器(PA)として作動する第2のガス放電レーザチャンバ内で高度に増幅される。
【0018】
本発明は、電力発振器電力増幅器構成(POPA)から成る2チャンバレーザシステムを考えている。本発明の実施形態によれば、2つのチャンバは、各々、約1m長の細長い電極間に3.5cm電極間隙を有することができる。このような電力発振器であれば、0.5Jから0.7Jを生成することができる。そこで、これは、例えば増幅器を飽和させるのに十分なものとすることができる(一般的な飽和強度は、100nmパルスでは、約100mJ/cm2である)。PO効率は、約2%になり、これは一般的なものである。効率の制限因子は、本発明によれば、レーザ光子へのエキシマモジュール、例えばモジュール式フッ素モジュールの変換効率である。励起調光器の約50%は、エネルギがレーザから抽出される前に蛍光で失われる。
【0019】
しかし、本発明によれば、提案するPOPA法においては、PA抽出効率は、独立型発振器として、すなわちPOPOシステムとして作動した場合、2%を遥かに超えることができる。また、本出願人は、PAの効率は、最大約4%まで、更には約4%を超えることができるものと考えている。従って、POに対して35Jの電気的入力、及びPAに対してPOの35Jレーザ光出力で、全体として約2Jでレーザシステムの出力を送出すると予想することができ、この出力は、効率要件に変換すると僅か2.9%である。これに比する2Jの単一発振器システムであれば、ガス放電電極に対する電気パルス当たりのエネルギは100Jが必要になる。
2J/パルスというこの出力は、この時点で、他所で提案されているようなビームミキサに関連の損失及び複雑性を伴わずにビーム送出ユニットに効率的に結合させることができる。
【0020】
同じPOPA概念は、例えばエネルギがより低いシステムに適用することができる。別の構成においては、PO及びPAに対する入力エネルギは、4J/パルスとすることができる。例えば全体的効率2.9%では、出力は、遥かに高い繰返し率で250mJ/パルスか又はその近傍になる可能性があり、この出力であれば、依然として結果的には1kWレーザが、例えば上述の各種用途に適するものになる。また、本発明の実施形態によれば、別々のチャンバにおいてパルス間のタイミングを非常に正確に制御することができ、これによって、本発明の実施形態によれば、約8KHzで二重パルスモードでレーザを作動する可能性が生まれる。このようなモードでは、PAは、POにもなることができ、各POからの千鳥配列のパルスは、以下により詳細に説明するように、単一の出力経路で結合することができる。例えば、850nmによって分離されかつパルスの持続時間が長い2つのパルスを使用すると、有利な態様では、例えば、T.Kudo他著「全ての半導体レーザの二重パルス照射によるa−Si薄膜の高度横結晶成長」、材料学会シンポジウム議事録、762巻、2003年春、1頁から6頁で説明されているように、pSi結晶成長高度移動性及び均一性を発生させることができる。他には、例えば、A.Voutsas著「新時代の結晶化:ポリシリコン結晶化及び結晶エンジニアリングの進歩」、応用表面科学(2003年)、及びR.Dassow著「高移動性を有する薄膜のためのトランジスタNd:YVO4レーザ結晶化」、材料学会シンポジウム議事録、762巻、2000年春で説明されているように、従来技術のエキシマレーザは、例えばエネルギ密度及び/又はパルス繰返し率及び/又はパルス安定性が低いために、このような処理、例えばTFT焼き鈍しにおいて有効及び効率的に使用するにはある一定の性能特性がないと説明するものもある。上記によって提案された考えられる技術では、例えば532nmで緑色レーザから周波数増倍される二重パルスダイオード供給式半導体レーザが含まれる。しかし、このような解決策は、上述の要件を満足する見込みはない。
【0021】
しかし、本発明の実施形態によるエキシマレーザは、パルス間で安定化され、かつ非常に正確にタイミング調整されて分離され、また、パルス伸長された千鳥配列パルスを含む遥かに高い電力及びエネルギを送出するように構成することができる。
従って、本発明の実施形態により、本出願人は、本出願人の譲受人のXL製品ラインで実施されるような本出願人の譲受人のMOPAアーキテクチャに基づいて、例えばXeClのPOPAを提供することを提案する。このXeClレーザは、本発明の実施形態によれば、広帯域(すなわち、線狭化がないXeClエキシマレーザの自然なスペクトル)になるであろう。従って、本発明の実施形態によれば、線狭化モジュール及び波長及び線幅測定機器は、例えば本出願人の譲受人のXLA製品ラインであれば不要になり、その結果、省コスト及び全体的な効率の節約になる。
【0022】
XLAのMOは、図1A及び図1Bに示すように、全てが一緒にPO10の空洞共振器を形成するチャンバ12、線狭化モジュールの代わりに全反射光学器械14、例えば全反射ミラー18、及び出力カプラ16を含むPO10から成るPO10で置き換えられるであろう。従って、POからのレーザ出力レーザビームは、本発明の実施形態によれば、PA20のチャンバ22を二重通過し、PA20から全てのエネルギを抽出することができる。PO10の出力は、全反射ミラー14によってオフセットミラー24に反射され、オフセットミラー24は、1対の全反射ミラー25a及び26b(又は内部全反射ミラー、図示せず)に対してPA20の細長い電極(図示せず)とずれている経路に沿ってビームを反射させ、PA20の出力カプラを通じてPA20の出力の光軸でもあるチャンバ内の電極の中心軸線に沿ってPA20を通るビームの第2のパスを作り出す。それぞれPO10及びPA20の出力部にあるエネルギセンサ30及び32は、本発明の実施形態によれば、例えばPOPA出力エネルギをモニタすることができる。
【0023】
本出願人の譲受人のXLA製品ラインには、300Hzを優に超える繰返し率を含む高い繰返し率で例えばこのようなXeClレーザの例えば作動をサポートするのに必要な全ての技術を有する。これによって、非常に高い繰返し率として超高エネルギレーザシステム光出力パルスの形で必要とされる高出力エネルギを送出する機能がサポートされる。これらのサポート技術としては、非常に能率的な半導体パルスパワーシステムモジュール(SSPPM)、例えばそれぞれPO及びPAにおいて細長いガス放電電極に対する電気パルス照射間の臨界相対タイミングを維持するジッター制御技術によるジッターのない作動、水冷モジュール、及び超高速制御装置がある。従って、提案するPOPAであれば、例えば2J/パルスでの高電力光源になり、繰返し率は、本発明の実施形態によれば、500Hz又は4KHzで0.25J/パルスとすることができ、いずれの場合にも100Wレーザに対するものである。
【0024】
ここで図2を参照すると、表面/基板処理システムのブロック図的概略図が示されている。POPA40の出力は、次に、必要であれば例えばビーム送出ユニット(BDU)60へのレーザシステムレーザ出力ビームの送出以内又はその前にパルス伸張器50内で伸張されたパルスとすることができる。また、BDUは、製造装置、例えばTFT焼き鈍しを実行する装置へのレーザ出力レーザビーム送出の最も近い終点でビーム分析モジュール(BAM)62を有することができる。BDU60の詳細は、本発明の様々な実施形態によれば用途に依存する。例えば、TFT焼き鈍しの場合、ビームは、場合によっては、ビームホモジナイザ70内で均質化を必要とし、その後、例えば円筒形集光レンズ90を用いてスリット80を照明するために送出することができる。本発明の実施形態によれば、スリット80の拡大画像を例えばワークステーション92で基板上に投射することができる。本発明の実施形態の態様によれば、ビームは、全てのパルスでスリット80を正しく照射することが非常に重要である。そうでなければ、基板で強度の変動が発生し、結果的に表面/基板処理が非効率なものになる。従って、例えばレーザ制御情報及びBAM62から供給された情報を利用して、例えばBDU60で使用されている能動的安定化技術は、所要のエネルギ安定性を供給する上で重要なものとすることができる。
【0025】
本発明の実施形態の態様によれば、本発明は、提案するPOPAにおいて、とりわけ、提案するPOPAレーザを1000W範囲の効率的で拡張性がある高電力XeClレーザに作る際に鍵である例えば積極的なジッター/タイミング制御を含むSSPPM技術を利用するものである。
また、本発明の実施形態によるレーザシステムは、図2Aに示すように、各々が全反射ミラーのようなそれぞれの全反射光学器械102及び102’及び出力カプラ104及び104’を有する第1のPO100及び第2のPO100’を含むPOPO構成で構成することができる。第1のPO100の出力は、そのビームを全反射するように第1のPO100の出力の偏光に対してブルースターの角度で設けられたミラーに全反射ミラー106によって反射することができ、第2のO100’の出力は、1/4w位相差板に通してブルースターの角度woのミラー11oがそのビームを全く反射しないように、第1のPO100の出力の角度に対して直交するようにその極性を回転させることができ、2つの出力ビームは、ミラー110からの同じ出力経路を辿り、そのパルスは、一時的に互いに間隔が空いている。
【0026】
本明細書で使用される時、表Iに説明した頭字語及び定義は、そこに列挙した意味を有するものとする。
【0027】
(表I)

【0028】
ここで図3及び図4を参照すると、本発明の実施形態に従って供給される半導体パルスパワーモジュール(SSPPM)が示されている。SSPPM200は、TEM202を含むことができ、TEM202に対する必要性は、主としてSSPPM200の二重チャンネル構成によってもたらされるものである。この二重チャンネル構成では、例えば単一レーザガス放電チャンバのみを利用すると、これまでのシステムよりも遥かにより正確なトリガタイミングが必要である。TEM202は、SSPPM200内部のトリガ信号を供給するばかりでなく、例えばワークステーション制御装置(図示せず)に使用することができるいくつかのモニタリング及び制御信号、例えば「Sync Out」のソースであり、また、TEM202は、本発明による光学サブシステム(図示せず)に対する「波長補正トリガ」を供給することができる。
【0029】
また、SSPPM200内にはHVPS204を組み込むことができ、HVPS204は、AC電力をAC配電モジュール(図示せず)から受け取って共振充電器212内の蓄積コンデンサ列C−1(210)上に一定の電圧を充電して維持することができる。HVPS204は、オン指令をレーザコントローラ222内のLCP220から受け取って不具合をLCP220に送る。
また、SSPPM200は、一定の電圧をHVPS204(及び204’も)から受け取って、トリガがレーザコントローラ222から送られた時にパルス電荷をSSPPM200の整流器部234内のコンデンサ列232(C0)に供給することができるRC230を含むことができる。RC230は、トリガ信号及びHV設定値をFCPから受信し、例えば不具合を特定するいくつかの信号をLCP220に送信する。整流器234は、パルス電荷を共振充電器230から受け取って、変圧器240を通じてパルス立ち上がり時間を圧縮して電圧を段階的に大きくすることによってそれを変換することができる。整流器234は、トリガ信号をLCP220から受信して、例えば、不具合を特定するいくつかの信号をLCP220に送信する。また、SSPPM200は、パルス電荷を整流器234から受け取って、パルス立ち上がり時間を圧縮して更に圧縮された受け取ったパルスをPO10及びPA(又はPO)20のそれぞれのチャンバ12及び22上のピーキングコンデンサ列260に送出することができる圧縮ヘッド(CH)250を含むことができる。
【0030】
その主高電圧機能を実行するに際して、SSPPM200の整流器モジュール234は、電荷電圧をコンデンサ列210上にRC230から、また、レーザコントローラ222内のFC252からトリガ信号を受け取る。トリガ信号が感知された時、整流器234は、半導体スイッチ254を閉成し、インダクタンス258を通じてC0コンデンサ列210をC1コンデンサ列256内に放電する。電圧は、第1ステージ反応器270内のマグネティックスイッチが飽和して第1ステージ反応器270及びステップアップ変圧器240を通じて圧縮ヘッド250内でC1256をコンデンサ列Cp-1272の中に放電するまでC1256上に保持される。この放電は、移送時間においてパルスを圧縮しかつ変圧器240のステップアップ比率を通じて出力電圧を大きくするという二重の機能を有する。
【0031】
SSPPM200の整流器モジュール234の第2の低電圧保護及び制御機能は、整流器234がモジュール内で限定された数の不具合を感知し、CANバス280インタフェースを通じた処理のためにこのような不具合を表す信号をLCP220に送信することによって実行される。SSPPM200は、不具合が検出された時に半導体スイッチ254及び254’のトリガリングを無効にすることによって自己保護することができる。しかし、LCP220が整流器モジュール234によって送信された不具合信号を受信しなかったり又は解釈しなかった場合は、C0コンデンサ列210に電圧を印加することができる。
【0032】
図5は、整流器モジュール234のより詳細な概略図を示し、図6は、簡素化された概略図を示している。半導体スイッチ254及び充電インダクタンス258は、実際には、各スイッチ254及び254’が照射後に回復してかつ再度照射準備完了になるのに必要とされる時間のためにそれぞれのチャンバ内で4000Hzまでかつそれを超える数値でのガス放電時の作動に対応するために、半導体スイッチ254及び254’、及び充電インダクタンス258及び258’を含む2つの並列の回路であることを図5に見ることができる。また、図5には、半導体スイッチ254及び254’の各々に対して、それぞれの半導体スイッチ254及び254’を保護する役目をするそれぞれの並列のRCネットワークと共にダイオードD1〜D4を含み、ダイオードD1〜D4の各々に対しては、Rs1、Rs3、Rs5、及びRs7、Rs2、Rs4、Rs6、及びRs8、及びCs1〜Cs4を含み、半導体スイッチ254’に対しては、それぞれの並列のRCネットワークと共にダイオードD5〜D8を含み、ダイオードD5〜D8の各々に対しては、Rs9、Rs11、Rs13、及びRs15、Rs10、Rs12、Rs14、及びRs16、及びCs5〜Cs8を含む回路である。それぞれの半導体スイッチ254及び254’は、直列ダイオード及びそのスナバネットワークによって保護される。ダイオードは、放電電極からの反射エネルギが半導体スイッチ254及び254’内を流れるのを防止する。スイッチ254及び254’が保護されるのは、反射エネルギがこれらの直列ダイオードに到達した時にダイオードがオフになって電流がダイオード及び半導体スイッチ内を流れるのを防止するからである。スナバネットワーク内の抵抗器及びコンデンサは、ダイオードがオフになる素早さを制御する効果があり、その結果、回路保護及び信頼性が改善される。更に、それぞれの半導体スイッチ254及び254’のバイアスネットワーク290及び290’は、ダイオードD1及びD2と直列でありかつ電源PS2と並列であるバイアスコンデンサCbiasを通じてバイアス電源PS2から反対方向にバイアスされたバイアス可飽和インダクタLSA1及びLSA2、及び、更に別のCbiasがRbiasとLbiasの間に接続されかつ接地された状態でコンデンサCbiasと2つの充電インダクタ258A及び258Bの一方と直列であるRbias及びLbiasと、ダイオードD3及びD4及び充電インダクタ258Bと直列である非飽和インダクタLSA1及びLSA2とから成るRLCネットワーク、及び半導体スイッチ254’に対しては、ダイオードD7及びD8と直列でありかつ電源PS2’と並列であるバイアスコンデンサCbias’を通じてバイアス電源PS2’から反対方向にバイアスされたバイアス可飽和インダクタLSA1’及びLSA2’、更に別のCbias’がRbias’とLbias’の間に接続されかつ接地された状態でコンデンサCbias’と2つの充電インダクタ258A’及び258B’の一方と直列であるRbias’及びLbias’と、ダイオードD5及びD6及び充電インダクタ258B’と直列である非飽和インダクタLSA1’及びLSA2’とから成るRLCネットワークを含む。代替的に、LSA1及びLSA2の全ての部分は、可飽和にすることができ、すなわち、4組の導体及び4組の芯は、芯を通る4つの全ての導体を有する単一の組の芯によって機械的に達成することができる。その後、バイアス回路によって2線だけではなく4線の全てがリセットされることになる。このバイアス構成は、材料の利用可能な磁束スイングを予測可能に最大にすることを可能にする磁性材料を適切にバイアスする役目をすることが当業者によって理解されるであろう。磁性材料の予測可能なリセットは、レーザ作動中の精密タイミング制御に重要である。更に、回路を通じたバイアスネットワークのルーティングは、半導体スイッチ及び直列ダイオードが、それぞれ、オフ及びオンするのに十分な時間を確実に有するようにする上で重要である。これによって、性能及び信頼性が改善される。
【0033】
更に、整流器234パルス圧縮ネットワーク300は、芯1−Nの各々を通る単一二次巻線を有して出力部が変圧器240内で複数の変圧器芯1−Nの各々で一次巻線(単巻き)に直列に接続された可飽和反応器LS1(270)の両端にそれぞれの抵抗器R1及びR2を通じて接続されたダイオードD9及びD10と並列であるコンデンサC1256から成る。変圧器240の巻線1−Nは、モジュール相互接続出力部304の高電圧及び接地部にわたってインダクタ302を通じて接続される。
【0034】
パルス電力に関する本発明の実施形態によるレーザシステムの要件は、各チャンバに対してC0に送出される4KHzの割合でそれぞれのチャンバ内の電極へのガス放電電気パルス当たりの例えば3.5Jの電気エネルギ、すなわち、本発明の実施形態によるパルスパワーシステム全体で7.0J/パルスを提供するものである。パルスパワーシステム200は、高電圧パルスを2つのそれぞれのチャンバの各々に送信すべきである。各チャンバの放電時間は、例えば、前のPOチャンバからのシードビームがPA(PO)チャンバを通過している時にPA(PO)へのガス放電パルスの送出のタイミングを調整するために、±2ns未満の精度でパルス間で同期させなければならない。これには、特に、熱ドリフト及び短期ジッターのような事柄に対処するために長期にわたってパルス電力タイミングを補正すべきである。
【0035】
単一HVPS204又はより高い電力の場合は2つのHVPS204には、共振充電器212を供給して2つの並列234/圧縮ヘッド250/チャンバ242回路を駆動することができる。共振充電器212は、図4に示すように2つのC0コンデンサ列の各々を充電することができる。
第1ステージ反応器270は、その大部分をタイミング変動に寄与させるものである。反応器270が加熱する時に、飽和磁束密度が小さくなり、例えば、反応器270は早めに切り替わる。これは、温度と共に変動するスイッチングタイミングの原因になる可能性がある。また、スイッチ時間は、電圧と共に変動する可能性がある。反応器270の芯(図示せず)は、固定量の材料を有し、従って、ボルト−秒の積は一定である。温度の影響は、代理人整理番号第2003−0051−01号である2003年6月25日出願で本出願人の共通の譲受人に譲渡された「磁気回路要素の冷却方法及び装置」という名称の米国特許出願出願番号第10,607,407号に開示されている冷却機構を使用して本発明の実施形態によるシステムで使用されるもののような誘導要素に高温磁束を通常は誘導する超高繰返し率の時でさえも、緩和するか又は排除することさえ可能である。
【0036】
圧縮ヘッド250においては、Cp-1からCpへの移送は、以下のように分析することができる。
CPは、以下から計算される。
CP=1/2CV2、及び、η= としてECP=ηEC0と仮定すると、Cp-1からCpへの移送時間は、以下の通りである。
τ3=π(Ls2a1/2、ただし、Ca=Cp-1p/(Cp-1+Cp)であり、Ls2は、可飽和反応器SR2(310)のインダクタンスによってほぼ説明されるCp-1とCp間のインダクタンスである。
p-1からCpへの移送のインダクタンスは、以下から計算される。
s2=(τ3/π)2/Ca
ピーク電流は、以下によって計算される。
pk=Vcp-1(Ca/Ls21/2
【0037】
整流器モジュール234においては、C1からCp-1への移送は、以下のように分析することができる。
移送比率は、IGBT254及び254’耐電圧によって制限されており、すなわち、整流器が20−kVを生成する必要がありかつIGBTが最大作動電圧2−kVを有する場合、最小移送比率は、N=10でなければならない。Nがこの場合には10よりも小さい場合、それにより、IGBTは、より高い電圧で作動して所要の20kV出力を達成すべきである。変圧器240の出力は、結果的にはN>VCP-1/VC1になる。回路200は、最大50Kボルトまで対応する必要があると考えられ、そこで、2Kに耐えうるIGBTを仮定すると、変圧器比率は、25である必要がある。
【0038】
変圧器240を通じて見た時のCp-1の効率的なコンデンサC2は、以下から計算することができる。
2=Cp-12
本発明の実施形態に従って発生するように磁気圧縮にCn-1≦Cnを用いると、C1=0.94C2である。
従って、CpからCp-1への移送は、以下の通りである。
τ2=π(Ls1b1/2、ただし、Cb=C12/(C1+C2)であり、Ls1は、SR1(270)のインダクタンスによってほぼ説明されるCp-1とCpの間のインダクタンスである。C1からCp-1への移送のインダクタンスは、以下から計算される。
s1=(τ2/π)2/Cb
ピーク電流は、以下によって計算される。
pk=VC1(Cb/Ls11/2
【0039】
第1ステージ反応器270は、C1が完全に充電されるまでC1で電圧を阻止すべきである。これは、第1ステージ反応器270が可飽和反応器270であることで達成される。反応器芯材は、例えば、3.0TのΔBを有する0.5mil.50%−50%Ni−Fe(Orthonol)テープとすることができる。ΔB=Vτ/(2NAm)、ただし、V=印加電圧、τ=飽和前の阻止時間、N=巻回の数、Am=芯の断面積である。ΔB方程式に基づいて、Am=Vτ/2ΔBNに関して解く。
【0040】
芯の断面積は、
m=h(R0−Ri)(pf)、ただし、h=芯の高さ、R0=外半径、Ri=内半径、pf=詰め込み率=0.7である。
芯のビルドは、以下から計算される。
w=R0−Ri=Am/h/pf
1からCp-1への移送に必要とされる総インダクタンスは、先に、Ls1であると計算されている。迷走インダクタンスは、設計によって最小限に抑えられない限り総インダクタンスに影響を及ぼす可能性がある。
stray=Lxfmr+LC1+Lpcb+Lcable+Llead
【0041】
Lstrayは、所要のランプインダクタンスLs1の成分である。これは、機械的レイアウトから導出されるインダクタンスであり、設計固有のものであり、従って予測及び制御しにくいが、測定かつ推定することができる。Ls1は、C1からCp-1への移送に必要とされる総インダクタンスである。Lxfmrは、迷走インダクタンスLstrayの成分であり、変圧器の一次及び二次巻線固有のものである。Lc1は、迷走インダクタンスLstrayの成分であり、C1コンデンサ外形形状に固有のものである。Lpcbは、迷走インダクタンスLstrayの成分であり、C1プリント回路基板のレイアウト固有のものである。Lcableは、迷走インダクタンスLstrayの成分であり、整流器と圧縮ヘッドを接続する高電圧ケーブル(図示せず)固有のものである。Lleadは、迷走インダクタンスLstrayの成分であり、圧縮ヘッドの内側にある高電圧ケーブル接続のレイアウト固有のものである。Lsa=Ls1−Lstray
芯の飽和インダクタンスは、以下から計算される。
sat=μ02c/<1>、ただし、μ0=4π10-7、N=巻回数、Ac=Ls方程式に基づく芯の断面積、<1>=平均経路長である。Ac/<1>=Lsat/μ02に関して解く。
<1>=2π<R>=2π(Ri+(Ro−Ri)/2)=π(Ro+Ri
c=Amに設定すると、<1>を計算することができる。
(Ro+Ri)=<1>/π
芯損失は、以下から計算される。
損失/パルス=Vol(HcΔB+(wtΔB)2/4ρτ)、ただし、Vol=Hπ(R02−(Ri2)、Hc=19.9A/m、wt=テープ厚み、ρ=材料抵抗率、τ=充電時間である。
【0042】
コンデンサC1の設計では、充電電圧に対する直流耐電圧機能及びコンデンサのC1のdV/dt定格を満たす必要がある。理想的には、設計は、低パッケージインダクタンスを有する単一コンデンサになるであろう。この理想的なコンデンサは、現在は存在しない。望ましいキャパシタンスを達成するためには、小さな値のキャパシタンスの並列アレイを使用することができる。望ましい耐電圧を達成するためには、コンデンサを直列に接続することができる。これによって、結果的に直列並列アレイになる。コンデンサC1のdV/dtは、2つの方法で計算することができる。その1つは、VC1をC1からCp-1への移送で割ることである。第2の方法は、I=Cb(dV/dt)であることが分っているのでピーク電流を用いることである。コンデンサC0の設計は、説明したばかりのC1の設計と類似のものである。
【0043】
磁気圧縮にCn-1≦Cnを用いて、その後に比率C0=0.933C1を適用することにより、C0からC1への移送を以下のように分析することができる。
τ1=π(LCHc1/2、ただし、Cc=C01/(C0+C1)であり、LCHは、C0とC1の間のインダクタンスである。C0からC1への移送のインダクタンスは、以下から計算される。
CH=(τ1/π)2/Cc
ピーク電流は、以下によって計算される。
pk=VC0(Cc/Ls01/2
表IIは、SSPPM200モジュール設計パラメータを与えるものである。
【0044】
(表II)

【0045】
表IIIは、性能仕様を与えるものである。
【0046】
(表III)

【0047】
表IVは、冷間状態での遅延特性を与えるものであり、この特性は、整流器へのトリガからVCp−1の降下縁まで測定され、遅延特性の限界値は、履歴データの統計分析によって設定され、モジュールは、構成要素が室温(公称25℃)であり、熱的均衡状態にあると仮定して作動される。
【0048】
【表1】

【0049】
表Vは、構成要素を熱的均衡に到達させるのに十分な時間にわたって全電圧及び繰返し率で作動されるモジュールによって定められる熱間状態での遅延特性を与えるものである。
【0050】
【表2】

【0051】
0コンデンサ列232は、パルス電荷を共振充電器230から受け取ることが更に理解されるであろう。電圧は、半導体スイッチ254及び254’の一方がLC222内のFCP252からのトリガ信号に応答して閉成されるまでこのコンデンサ列C0232上に保持される。臨界パラメータは、dc耐電圧、dV/dt、及びピーク電流容量である。半導体スイッチ254及び254’は、FCP252からのトリガ指令まで電圧をC0上に保持し、トリガ信号を受信した時に、それぞれのスイッチ254及び254’が閉成され、それぞれの充電インダクタLCHA及びLCHB、及びLCHA’及びLCHB’を通じてC0232をC1256に接続する。臨界パラメータは、dc耐電圧、dV/dt、電源オン立ち上がり時間、電源オン遅延、電源オンジッター、及びピーク電流である。それぞれの阻止ダイオードD1〜D4及びD5〜D8は、いかなる電圧も例えば電極の導通後の逆転中にC1上に再度リンギングするのを妨げる。C1が正の電圧を有する場合、阻止ダイオードD1〜D4及びD5〜D8が導通することになり、電圧は、それぞれの充電インダクタLCHA及びLCHB、及びLCHA’及びLCHB’を通じてC0に移送されることになる。電圧が逆になり始めて再度リンギングした時に、ダイオードD1〜D4及びD5〜D8はオフになり、電圧をC0上に保持して次の導通のためにRCがそれぞれのC0を充電すべきである量を小さくし、また、時間を保存してかつ効率を向上させる。電圧感知回路(図示せず)は、C0上の充電量を示す信号をLC222内のLCP220に信号を供給し、LCPは、次の導通のために所要の電荷を計算して信号を相応にRC230に供給することができる。臨界パラメータは、dc耐電圧、dV/dt、逆回復時間、及びピーク電流である。バイアスネットワークは、可飽和なアシストを提供するものである。(2)組の可飽和なアシストがある。第1の組は、IGBT、例えばPowerex製の「CM800HA−34H」とすることができるそれぞれの半導体スイッチ254及び254’まで電流の流れを阻止するLSA2を含み、完全に閉成される。第2の組は、それぞれのダイオードD1〜D4及びD5〜D8まで電流を阻止するLSA1を含み、逆転中に完全に回復する。臨界パラメータは、飽和時間及び温度によるドリフトである。
【0052】
それぞれの充電インダクタLCHA及びLCHB(258A、B)及びLCHA’及びLCHB(258A’、B’)は、移送時間を設定し、半導体スイッチ254及び254’、及びダイオードD1〜D4及びD5〜D8内のピーク電流を制限する。このインダクタンスLCHA及びLCHB、及びLCHA’及びLCHB’は、全ての迷走インダクタンス及び巻線インダクタンスを含む。C1コンデンサ列256においては、電圧は、それぞれの半導体スイッチ254及び254’が閉成されるまでこのコンデンサ列C1256上に保持される。臨界パラメータは、dc耐電圧、dV/dt、及びピーク電流容量である。第1ステージ反応器270に対しては、臨界パラメータは、ボルト−秒阻止、ボルト/巻回、デルタBである。パルス変圧器240に対しては、臨界パラメータは、ボルト−秒、ボルト/巻回、デルタBである。D2、3、4、5、6、7、又は8にわたって取り付けられたRS2、CS1、及びRS1、又は均等物を含むダイオードスナバ回路に対しては、臨界パラメータは、電力、電圧、及び定格電流である。C1に対してはR1、D9、及びC2に対してはR2、D10を含むC1及びC2ブリップスナバ回路に対しては、臨界パラメータは、電力、電圧、及び定格電流である。
【0053】
SSPPM200によって使用される信号の一部は、以下の通りである。
1.VC0電圧モニタ信号(J1)、この信号は、VC0電圧波形を表すバッファアナログ信号を含む。この信号は、C0(400kΩ±1%上部脚x4.01kΩ±1%下部脚)に直接に接続した抵抗性電圧分割装置(図示せず)から導出することができる。換算係数は、レーザコントローラ222及び/又は装着オシロスコープ(図示せず)内の終端インピーダンスの関数とすることができる。同等の終端インピーダンスが400kΩを超える場合、換算係数は、1V/100Vになる。
2.VC1電圧モニタ信号(J2)、この信号は、レーザコントローラ222によるモニタリング用VC1電圧波形を表すバッファアナログ信号とすることができる。この信号は、C1(5kΩ±1%上部脚x49.9kΩ±1%下部脚)に直接に接続した抵抗性電圧分割装置(図示せず)から導出することができる。換算係数は、レーザコントローラ222及び/又は装着オシロスコープ(図示せず)内の終端インピーダンスの関数とすることができる。同等の終端インピーダンスが500kΩを超える場合、換算係数は、1V/201Vになる。
3.BDOT信号(J3)、この信号は、レーザコントローラ222が使用して「Sync Out」信号を発生させることができるC1とC2の間を流れる電流の時間導関数(dI/dt)を表すバッファアナログ信号とすることができる。この「Sync Out」信号は、パルス変圧器240の一次側の隣に位置する磁場ピックアップループ(図示せず)から導出することができる。この信号の振幅は、コントローラ222及び/又は装着オシロスコープ(図示せず)内の終端インピーダンスの関数とすることができる。同等の終端インピーダンスが50Ωに等しい場合、フルスケール振幅は、充電電圧によって〜1.5から5Vになる。この信号は、基準用としてのみ使用することができる。
4.VC2電圧モニタ信号(J4)、この信号は、レーザコントローラによるモニタリング用VC2電圧波形を表すバッファアナログ信号とすることができる。この信号は、C2(5kΩ±1%上部脚x49.9kΩ±1%下部脚)に結合することができるパルス変圧器240の一次側に接続した抵抗性電圧分割装置(図示せず)から導出される。換算係数は、制御モジュール及び/又は装着オシロスコープの関数とすることができる。同等の終端インピーダンスが50Ωに等しい場合、換算係数は、1V/201Vになる。
5.整流器トリガ(J5)、これは、整流器トリガを表すバッファ信号とすることができる。
【0054】
CANバス280インタフェースは、例えば68ピン相互接続によってレーザコントローラ222の整流器制御部を整流器及びRCの内部制御装置に接続することができ、ピンの各々が高い時、すなわち、設定された時に指示された条件は表VIIに示す通りである。
【0055】
(表VII)





【0056】
SSPPM200圧縮ヘッド250に対しては、本発明の実施形態に従って少なくとも4kHz及び28.750kVでの作動を考えている。圧縮ヘッド250は、整流器234からパルス電荷を受け取って、パルス立上がり時間を圧縮してそれぞれのチャンバ10及び20のピーキングコンデンサ列320に送出することができる。圧縮ヘッド250は、Cp-1コンデンサ列272上のパルス電荷をC1コンデンサ列256から受け取ることができる。電圧は、出力反応器SR310内のマグネティックスイッチが飽和してCp-1をCpに放電するまでCp-1上に保持される。この放電によって図7に示すパルス立上がり時間が圧縮される。図7は、Cp-1が約4.0x10-7秒で充電されて約1x10-7秒でCp上に放電されることを示している。図8は、圧縮ヘッド250モジュールの概略図を示している。
【0057】
圧縮ヘッド250反応器SR2(310)は、Cp-1が完全に充電されるまでCp-1上の電圧を阻止する必要があるとすることができる。これは、1.5TのΔBを有する0.5mil.80%−20%Ni−Fe(Supermalloy)テープとすることができる芯材を有する可飽和反応器SR310で達成される。
ΔB=Vτ/(2NAm)、ただし、V=印加電圧、τ=飽和前の阻止時間、N=巻回数、Am=ΔB方程式に基づく芯の断面積である。
m=Vτ/2ΔBNに関して解くと、芯の断面積は、以下の通りである。
m=h(R0−Ri)(pf)、ただし、h=芯の高さ、R0=外半径、Ri=外半径、pf=詰め込み率=0.7である。芯のビルドは、以下から計算することができる。
w=R0−Ri=Am/h/pf
【0058】
p-1からC1への移送に必要とされる総インダクタンスは、LSpになるように計算することができる。迷走インダクタンスは、有意要因とすることができ、以下によって調整される。
stray=LCp-1
及び、Lsat=Ls1−Lstray
芯の飽和インダクタンスは、以下から計算することができる。
sat=μ02c/<1>、ただし、μ0=4π10-7、N=巻回数、Ac=Ls方程式に基づく芯の断面積、<1>=平均経路長である。
c/<1>=Lsat/μ02に関して解くと、
<1>=2π<R>=2π(Ri+(Ro−Ri)/2)=π(Ro+Ri
c=Amを設定すると、<1>を計算することができる。
(Ro+Ri)=<1>/π
芯損失は、以下から計算される。
損失/パルス=VolHcΔB+(wtΔB)2/4□□、ただし、Vol=Hπ((R02−(Ri2)、Hc=.22A/m、wt=テープ厚み、ρ=材料抵抗率、τ=充電時間である。
【0059】
また、圧縮ヘッド250は、上述したものと類似のものであるバイアス電源314と、ユーザに磁性材料の完全磁束スイングを保証するために可飽和反応器SR2(310)をバイアスする1対のバイアスインダクタL1及びL2とを含むバイアスネットワーク312を含む。それはまた、芯をバイアスして予測可能な作動及びタイミング制御を保証する予測可能な方法を可能にする。また、反応器のバイアス回路を完了するように機能する抵抗器R1を通じて接地に接続した1対のインダクタL3及びL4を含む回路316が含まれる。それは、反応器に直接に通じる水冷のための経路を可能にするという付加的な機能を有する。
表VIIIは、換気流れ要件を与え、表IXは、水冷要件を与えるものである。
【0060】
(表VIII)

【0061】
(表IX)

【0062】
表Xは、一部の性能仕様を与えるものである。
【0063】
(表X)

【0064】
HVPS204及びSSPPMの残りとの相互作用に関しては、HVPSは、レーザのオフから待機までの10秒の秒読みの間にAC電力を受け取り、すなわち、共振充電器230からHV有効指令を受け取ってDC高電圧を共振充電器230の入力部に供給する。HVPSは、水冷式として内部空気循環ファンを有する密封シャーシ内に収納することができる。
共振充電器230は、CAN280上でレーザコントローラ222との高速HVデータシリアルリンクを通じてプログラム電圧を受け取ることができる。RC212は、HV有効指令をHVPS204に出して、入力高電力DC電圧をHVPS204又はモジュール204、204’から受け取ることができる。また、RC230は、それぞれのMO10及びPO20圧縮ヘッド250及び250’の圧縮ヘッドバイアス電源を含むことができる。また、RC230は、上述のように、LCP220によって判断されたプログラム電圧レベルまでC0コンデンサ列210(2チャンネル、ダイオード隔離式)を正確に充電することができる。また、RC230は、次の充電サイクルまで電流として反射エネルギを保存することができる。RCは、外部に位置するファンで水冷及び空冷することができる。
【0065】
MO用に1つ、PA用に1つの整流器234及び234’は、HV電荷を単一共振充電器230から受け取り、高速HVパルスを圧縮ヘッド250及び250’に送出することができ、また、例えば外部に位置するファンで水冷及び空冷することができる。
MO用に1つ、PA用に1つの圧縮ヘッド250及び250’は、それぞれのチャンバ10及び20の上部に取り付けることができ、高速HVパルスをそれぞれの整流器234及び234’から受け取って最終パルス圧縮を行い、レーザ放電に向けてそれぞれのチャンバ10及び20上のそれぞれのピーキングコンデンサ320及び320’に高速立上がり時間HVパルスを送出することができる。
【0066】
HVPS204電力モジュールは、RC230内の負荷コンデンサC−1(210)に対する電流供給装置として機能することができる。複数のHVPS204出力及び/又は複数のHVPS204モジュールを使用し、例えば並列に接続して、例えばより高い平均電力で等しい電流共有で同じ充電電圧を供給することができる。HVPS204電力モジュールは、共振充電器230からの信号によって有効にすることができる。共振充電器230は、「LaserON」指令をレーザコントローラ222から受け取って、待機から「LaserON」までの10秒間の秒読みの最初にHVPS204を有効にすることができる。
【0067】
HVPS204は、例えば入力AC電圧の変動に対する相対的な免疫性を達成し、力率1を達成し、かつ入力ACライン上で導かれるより高い高調波を排除するために、電源分野で公知であるように力率補正(PFC)を使用することができる。HVPS204の内部DCバス電圧は、PFCによって大まかに調整することができる。代替的に、DCバスからの電流は、Hブリッジインバータ(図示せず)を通じてHVPS204内のステップアップ変圧器(図示せず)の一次側を通じて切り換えることができる。HVPS204内の変圧器(図示せず)のAC出力をDCに調整することができる。出力電流は、局所制御ループ(図示せず)がモニタし、出力電圧がある指定の所望の事前設定出力電圧レベルを下回っている限り、HVPS204からの制御出力電流を維持することができる。
表XIは、HVPS204の一部の性能仕様を与えるものである。
【0068】
(表XI)

【0069】
HVPS204の最大作動電圧800Vでは、最大8.3Jのエネルギを250μs毎に例えば1033μFのキャパシタンスで負荷コンデンサ(図示せず)から引き出すことができる。負荷コンデンサ上の電圧は、電極への放電パルス中に調整できないほど落とすことができるが、電圧は、次の放電パルス前に表 で示すように指定の調整内に回復させなければならない。指定の8.3J以下は、僅か95μSで負荷コンデンサから抽出することができる。放電パルスは、250μS以上隔てて発生することになる。調整用仕様(8.1.17)は、全ての作動条件、8.3J又はそれ未満/パルス、定常作動中、及び第1及び第2のパルス間、第2及び第3のパルス間などの初期過渡応答中に適用される。
【0070】
電力発振器
図1A及び図4に示す電力発振器10は、多くの点で、本明細書においてその開示内容が引用により組み込まれている「小型エキシマレーザ」という名称の米国特許第5,023,884号、及び先に参照した米国特許第6,128,323号で説明されているような従来技術のArFレーザと類似のものであり、また、先に参照した米国特許出願出願番号第09/854,097号で説明されているArFレーザと実質的に同等である。しかし、先に参照し、かつその一部分を完全性を期すために本明細書で繰り返す米国特許第6,625,191号で開示するように、これらの従来技術のレーザに対する改良点によって4000Hz以上での作動が可能になる。電力発振器10は、例えば1対の細長い電極(図示せず)が位置する放電チャンバ12を含むことができ、電極の各々は、例えば長さ約50cmであり、約0.5インチ離間させることができる。ファン(図示せず)及び熱交換装置(図示せず)は、各ガス放電パルスが得られるようにレーザガスを電極間に存在する新鮮なイオン化されていないガスに循環させ、熱をチャンバから除去する。チャンバ12は、例えば高フルエンス損傷耐性材料、例えばCaF2で作製された例えばウィンドウユニット(図示せず)を含むことができる。チャンバは、例えばレーザガス、例えば1%キセノン、0.1%ハロゲン、例えば塩素、及び残りはネオンの混合気を収容することができる。ハロゲンは、塩化水素の形で例えば0.03%〜0.1%の範囲で例えば0.05%挿入することができる。キセノンは、例えば0.2%〜1%の範囲、例えば0.3%で残りをネオンで構成して挿入することができる。総圧力は、例えば300kPa〜500kPaの範囲内、例えば約420kPaに保つことができる。HClの損失を取り消すための触媒として、例えば0.2%〜0.5%の範囲の量でH2を時々使用することができる。例えば、同じくCaF2で構成することができる、例えば出力カプラ16によって空洞共振器を作製し、出力レーザパルスビーム経路方向に垂直に取り付けられたミラーを含み、また、例えば約30%の光を例えば308nmで反射し、かつ308nmの光の約70%を通過させるようにコーティング処理することができる。空洞共振器の反対の境界は、例えば同じくCaF2で作製することができる例えば全反射ミラー18によって形成することができる。
【0071】
本発明の好ましい実施形態によれば、電力発振器10及び電力増幅器20の両方の主充電コンデンサC0232は、ジッター問題を低減させるために並列に充電することができる。これは、それぞれ、PO及びPO用の2つのパルスパワーシステム200のパルス圧縮回路234及び250のパルス圧縮時間が充電コンデンサC0列232の充電レベルに依存する可能性があるので望ましいとすることができる。パルスエネルギ出力は、例えば、充電コンデンサC0列232上の初期充電電圧の調整によってパルス間で制御すべきである。また、レーザガス圧及びCl2濃度は、広範囲のパルスエネルギ増加及びレーザガス圧にわたって望ましいビームパラメータを達成するように制御することができる。本発明の実施形態による電力発振器10の場合、放電と消灯の間の時間は、Cl2濃度の関数であり、従って、Cl2濃度(0.5から1ns/kPa)は、タイミングを変えるために変更することができる。これは、当業技術で公知のように、塩素が枯渇するので望ましい濃度を維持するようにフッ素含有量を変えることにより、又は、同じく当業技術で公知のように、フッ素ベースのレーザと同様に前のパルスからの情報を用いて緩やかに枯渇する塩素含有量によるタイミング要件の変化を継続的に更新することによって対処することができる。
【0072】
電力増幅器
電力増幅器20は、例えば、対応する電力発振器10放電チャンバ12と本質的には同一であるレーザチャンバ22で構成することができる。また、2つの別々のチャンバを有することにより、大部分は、波長及び/又は帯域幅とは別に一連のパルス(線量と呼ばれる)制御におけるパルスエネルギ及び一体化エネルギを促進する。これは、例えば、より良い線量安定性及び/又はパルス間の安定性を可能にする手助けになり得る。2つのチャンバは、実質的に同じ混合気かつ実質的に同じ圧力で作動してPO10内の発振出力電力及びPa20内のPO10出力の増幅を最適化することができる。チャンバの構成要素の全ては同じであり、かつ製造工程中に置換可能である。
【0073】
PO及びPAの圧縮ヘッド250は実質的に同一であるが、圧縮ヘッド250のコンデンサCp-1列272は、例えばPA20と比較して実質的により高いインダクタンスを生成するために、PO10の場合はPA20よりも幅を取って位置決めすることができる。チャンバ12及び22、及びパルスパワーシステム200の電気構成要素が同一であることは、ジッター問題が最小限に抑えられるように、パルス形成回路のタイミング特性が確実に同じか又は実質的に同じになるようにする一助になり得る。
【0074】
電力増幅器20は、例えば、PA20の電極間の放電領域を通る少なくとも2つのビーム経路が得られるように構成することができる。POは、空洞共振器を有する発振器であり、出力レーザビームパルスとして出現する前にチャンバ10及びPO10の空洞共振器の残りを通じて数回発振することができるビームを有する。その後、このビームをミラー14によってPA20に反射させることができる。図1Bで分るように、ミラー24は、チャンバ20の中心線軸線から若干ずれているので、電極の陽極/陰極の対の縦方向のほぼ中間点で電極(図示せず)と交差することができるPAのチャンバ20を通るPOからの出力レーザ光パルスを斜めに反射させる(一方は、他方よりも長いとすることができ、従って、この中間点は、2つのうちの短い方で決まる可能性がある)。その後、ビームは、チャンバ20の後方ウィンドウから出て、例えば細長い電極によって形成された縦方向の中心線軸線つまり放電領域に対応することができ、かつ、本発明の実施形態による電極自体の縦方向の中心線軸線に対応することができる放電の縦方向の中心線軸線に沿ってPAのチャンバ20を通るようにビームを反射させることができる例えば2つの全反射ミラー26a及び26bを含むビーム戻りユニットに入る。電極間の放電の縦方向の中心線軸線は、電極自体の縦方向の中心線軸線に整列しているか否かを問わず、出力カプラ28及び例えばビームモニタリングユニット30を通るPAからの出力レーザ光パルスビームの光軸を形成することができる。
【0075】
本発明の実施形態による充電電圧は、望ましいパルス及び線量エネルギ、及び安定性を維持するようにパルス間で選択することができることが好ましい。Cl2濃度は、例えばレーザ作動パラメータ、例えば総ガス圧と共に、例えば充電電圧の望ましい作動範囲を維持するために、例えば定期的にモニタ及び調整することができる。この望ましい範囲は、電圧によるエネルギの変化が他の係数の中でCl2濃度及びレーザガス圧の関数とすることができることから、例えば望ましいdE/dV値を生成するように選択することができる。本発明の実施形態による注入のタイミングは、例えば充電電圧を基本とすることができる。注入の頻度は、例えば状態を比較的一定に保つために高く、また、例えば望ましい状態を維持するために一時的に連続的な注入を停止する必要がある場合には、適切な調整で本質的に連続的又はほぼ連続的なものとすることができることが好ましい。
【0076】
放電タイミング
PO及びPAにおける電極間の電気放電は、例えば約50nsの電極間の電気放電から生じて約50ns続くとすることができる。この放電により、レージング作用に必要な反転分布が生じるが、この反転は、電気放電の時間中のみに存在する。従って、本発明の実施形態によるシード光注入POPAレーザシステムの重要な要件により、シードビームが発生することができるようにレーザガス内で反転分布が生じた時に約50ns秒にわたってPO10からのシードビームが確実にPAの放電領域を通るようになる。正確な放電タイミングの重要な障害は、遅延があるということであり、この遅延は、スイッチ254が閉成されるようにトリガされる時間(実際にはそのようにトリガされても閉成しない)と、約50ns続いて約40〜50nsしか続かないガス放電を引き起こす(結果的に反転分布が生じる)電気放電の始まりとの間の約5ミリ秒程度とすることができる。電気エネルギのパルスがC0と電極間の回路を通るのにこの約5ミリ秒の時間間隔が掛かると考えられる。この時間間隔は、例えば充電電圧の大きさにより、また、例えばパルス電力回路200内のインダクタの温度で大幅に変動する可能性がある。
それにも関わらず、本発明の実施形態により、約2ns未満の相対精度内の2つの放電チャンバ12及び22のガス放電のタイミング制御を可能にする回路が提供される。2つの回路のブロック図を図8に示している。
【0077】
本発明の実施形態によれば、本出願人は、タイミングのいくつかの態様を約5〜10ns/ボルトの充電電圧による変動に基づくものとすることを選択した。従って、本発明の実施形態によれば、充電コンデンサC0列232を充電する時の高電圧電源の精度及び反復性の測定及び制御は、極めて重要とすることができる。例えば、5nsのタイミング制御及び例えば10ns/ボルトの感度のずれに対して、解像度精度は、0.5ボルトである必要があるであろう。1000Vの公称充電電圧の場合、これには0.05%の充電精度が必要になり、この0.05%の充電精度は、特に、コンデンサを特定の値に毎秒4000回充電すべきである時には達成するのは非常に困難である。
【0078】
代替的に、例えばこの問題の解決策は、本発明の実施形態によれば、例えば図3及び図4に示し、かつ上述のように、共に同じ正確な電圧に充電され、かつ各々がもしあれば望ましい電圧からの同じ誤差を共有するように、単一の共振充電器230から並列にPO及びPAの両方の充電コンデンサC0を充電することである。また、本発明の実施形態によれば、PO10及びPA20の2つのパルス圧縮/増幅回路234、250、242は、図9に示すように、時間遅延と充電電圧の曲線が適合するように設計される。これは、例えば可能な程度まで各回路に同じ構成要素を使用することによって可能にすることができる。
【0079】
タイミング変動(この変動はジッターと呼ばれる)を最小限に抑える本発明の実施形態の態様によれば、両方の放電チャンバのパルス電力構成要素は、例えば時間遅延と電圧の曲線が実際に図9に示すように互いに密接に追跡するように、本質的に同一構成要素を有することができる。充電電圧の通常の作動範囲にわたって電圧による時間遅延の実質的な変化があるが、電圧によるこの変化は、事実上、両方の回路とも同じである。従って、両方の充電コンデンサ並列に充電された状態では、充電電圧は、放電の相対的タイミングを変えることなく、広い作動範囲にわたって変えることができる。また、慎重にバイアスして、充電電圧以外の例えば温度の変化に直面してもタイミングに関して予測することができるマグネティックスイッチングを使用してパルスパワーシステムが現状のように作製されるということは、並列回路における強化されたタイミング制御とタイミング制御のアイデンティティとを可能にする役目をすることができる。また、例えば出力電力を維持するために充電電圧の変化に影響を与える他の作動パラメータは、それぞれ、PO10及びPA20の並列パルス電力回路の各々における同じ相対的時間遅延の維持が、短期にわたって、例えばパルスのバーストにおけるパルス間で、及びいくつかの一連のバーストにわたるバースト間で、チャンバ間での同じ放電タイミングの維持も可能にすることができるほど十分にゆっくりと変化する。
【0080】
パルス電力回路200における電気構成要素の温度制御も、温度変動がパルス圧縮タイミングに影響を与える可能性があることから重要である(特に可飽和インダクタにおける温度変化)。従って、本発明の態様によれば、第1の瞬間の温度変動は最小限に抑えられ、これは、先に参照した特許出願出願番号第10/607,407号で説明した冷却装置及び手法によって容易にすることができる。更に、本発明の実施形態の態様によれば、例えば感温構成要素の温度は、補正するためにトリガタイミングに行われるフィードバック制御調節を用いてモニタすることができる。制御装置には、公知の作動履歴に関する過去のタイミング変動に関係した履歴データに基づいて調整を実行するように学習アルゴリズムでプログラムされたプロセッサを設置することができる。その後、この履歴データは、レーザシステムの現在の作動に基づいてタイミング変化を予想するために適用される。
【0081】
トリガ制御
本発明の実施形態の態様によれば、2つのチャンバ12及び22の各電気放電(従って、ガス放電でもある)のトリガは、例えば各回路に対して先に参照した米国特許第6,016,325号で説明されたもののうちの1つのようなトリガ回路を利用することにより、例えば別々に達成することができ、この特許の一部は、完全性を期すために本明細書で繰り返されている。これらの回路は、例えばトリガと放電の間の時間ができるだけ一定に保持されるように、各種の変動、例えばパルス電力回路200の電気構成要素の充電電圧及び温度の変化に対して補正されるようにタイミング遅延を追加することができる。上述のように、2つの回路は基本的に同じであることから、補正後の変動は、ほとんど等しいものである(すなわち、互いから約2ns以内)。
【0082】
先に参照した米国特許第6,625,191号で図6C、図6D、及び図6Eに示すように、本発明の好ましい実施形態の性能は、電力増幅器の電気放電が主発振器内の放電の約40から50ns後に発生すれば大幅に高めることができる。本出願人は、これらの同じ関係が本発明の実施形態によるPOPA構成又はPOPO構成では比較的同じままであり、及び/又は、好ましい遅延が同様にこれらの図で例示したものと同じ種類の測定結果から実験的に判断することができると考えている。これは、例えば、レーザパルスが電力発振器内で発生するのに数ナノ秒掛かり、また、電力発振器からのレーザビームの前部が電力増幅器に到達するのに更に数ナノ秒掛かる可能性があるので真であると思われる。従って、本発明の実施形態の態様によれば、それぞれのPO及びPAのチャンバ12及び22の充電回路の各別々のトリガスイッチ254に別々のトリガ信号を供給することができる。実際の遅延は、図6C、図6D、及び図6Eに示すもののような実際の性能曲線に基づいて望ましいビーム品質を達成するように選択することができる。これらの図で反映された測定結果から示すように、変動も可能であり、例えばパルスエネルギを犠牲にして、例えばPO10トリガとPA20トリガの間の遅延を大きくすることにより、より長いパルスを得ることができる。
【0083】
放電タイミングを制御する他の技術
相対放電タイミングは、例えば先に参照した図6C、図6D、及び図6Eのグラフに示すように、例えばビーム品質に重要な影響を与える可能性があることから、例えば放電タイミングを制御するための付加的な対策を取ることができる。例えば、レーザ作動の特定のモード、例えば非常に大きな負荷サイクルにわたる非常に高い電力(レーザシステムがパルス作動している時間のパルス作動していたりパルス作動していない時の総時間に対する比率)は、放電タイミング制御を複雑化しかねない充電電圧の大きな振れ、及び/又は、例えばインダクタ温度の大きな振れをもたらす場合がある。このような問題に対処するために、例えば放電タイミングを例えばパルス毎にモニタすることができ、また、時間差、例えばフィードバック制御システムにおいてtamp−toscを用い、それぞれのスイッチ254を閉成するそれぞれのトリガ信号のタイミングを調整することができる。本発明の実施形態の態様によれば、例えば、PA20チャンバ放電のパラメータは、PO10及びPA20タイミングが非常に良くないと、結果的にPA20内に生成されるレーザビームがほとんど又は全くないことになるので、例えばレーザパルスではなくて放電蛍光(例えば、ASEからの)を観察するために、例えばフォトセルを用いて、例えばPA20チャンバ放電のパラメータをモニタすることができる。MOに対しては、ASE又はシードレーザパルスのいずれかを用いて、例えばMOがPaに必要なエネルギを供給したことを示すために、MOがPAに必要なエネルギを供給したことを示すことができるであろう。MOエネルギが正しく、POエネルギが低く、かつASEが高い場合には、時間tamp−toscが最適ではないと推論することができると考えられる。
【0084】
また、本発明の実施形態の態様によれば、パルスタイミングは、例えば図4のインダクタLCH及び図7の310に対してバイアスを実行する図5の可飽和インダクタLSA1及びLSA2及び/又は図7のL1及びL2又はL3及びL4を通じてバイアス電流を調整することにより加減することができる。他の技術を用いてこれらのインダクタを飽和させるのに必要とされる時間を長くすることができると考えられる。例えば、パルスタイミングモニタからのフィードバック信号に基づいてフィードバック制御することができ、超高速応答PZT素子で芯材を機械的に分離させることができる。更に、例えば、C0コンデンサ列210の下流側で調節可能な寄生負荷をパルス電力回路のいずれか又はその両方に追加することができる。パルスタイミングモニタ信号に加えて、充電電圧及びインダクタ温度信号を例えばフィードバック制御に使用して、上述のようなトリガタイミングの調節に加えて、例えば上述のようなバイアス電流及び/又は芯の機械的分離を調節することができる。
【0085】
また、バースト中又はレーザシステム出力光パルスのバースト間での機器停止時間の長さは、例えばPO10及びPA20のパルスパワーシステム間の相対的タイミングに影響を与える可能性があり、PA20内の放電がMO10からのシードビームが望ましい位置にある時に確実に発生するようにするために、例えばトリガ制御において調節を行なわなければならないと考えられる。電気放電及び各チャンバから出る光のタイミングのために例えばトリガ信号をモニタすることにより、レーザオペレータは、トリガタイミング(約2nsまでの精度)を調節して最良の性能を達成することができる。本発明の実施形態の態様によれば、これは、タイミング及びビーム品質をモニタし、特に、上述のレーザ作動パラメータ信号の表示及び例えば上述のようなもののような経験的に導出されたグラフからのデータに従って最良の性能が得られるように自動的にタイミングを調節するようにプログラムすることができるプロセッサ220を有するレーザコントローラ252によって実行することができることが好ましい。より詳細には、本発明の実施形態の態様によって様々な組の作動モード及びパラメータに適用可能なビン値の組を発生するタイミングアルゴリズムを利用することができる。本発明の実施形態の態様によるアルゴリズムを利用すると、先に参照した米国特許第6,067,306号でより詳細に説明しているように、1つ又はそれよりも多くの前のパルス(直前のパルスなど)に対して収集されたフィードバックデータに基づいて現在のパルスのタイミング値が設定される連続作動中にフィードバック制御に切り換えることができる。
【0086】
代替的なパルス電力回路
本発明の実施形態の別の態様によれば、別のパルス電力回路200を考察することができる。この回路200は、例えばC0をより高い値に充電するための電圧がより高い電源を使用することができる点を除いて、上述したものと類似のものである。上述の実施形態におけるのと同様に、例えば交流230ボルト又は460ボルトで工場電力から作動する高電圧パルス電力回路装置200は、上述のように高速充電共振充電器230用であり、かつ、例えば4000Hz以上の周波数で2つの2.17μF充電コンデンサC0列210を約1100Vから2250Vの範囲の電圧まで正確に充電するように設計された電源とすることができる。PO10用整流器234及び圧縮ヘッド250内の電気構成要素は、例えば2つの回路内の時間応答を可能な限り同一に保つために、PA20内の対応する電気構成要素と可能な限り同一とすることができる。スイッチ254は、例えば図5に示すように、各々が例えば3300V定格にされて並列に配置された2つのIGBTスイッチの列とすることができる。C0コンデンサ列210は、例えば2.17FC0コンデンサ列210をもたらすように64本の平行な脚で配置された例えば128個の0.068μF1600Vコンデンサで構成することができる。C1コンデンサ列256は、例えばバンクキャパシタンス2.33μFをもたらすように、例えば68本の平行な脚で配置された136個の0.068μFの1600Vコンデンサで例えば構成することができる。Cp-1及びC1コンデンサ列272及び320は、例えば図4及び図5を参照して上述したものと同じものとすることができる。可飽和インダクタ254は、例えば4.9インチOD及び3.8インチIDを有する0.5インチ厚の50%−50%のNi−Feで構成された例えば5つの芯を有する約3.3nHの飽和インダクタンスをもたらす単一巻回インダクタとすることができる。可飽和インダクタ270は、各々が例えば5インチのOD及び2.28インチIDを有する80%−20%のNi−Feで作られた0.5インチ厚の5つの芯で構成された約38nHの飽和インダクタンスをもたらす2巻回インダクタとすることもできる。2ナノ秒のタイミング精度でIGBT254を閉成するためにトリガ回路(図示せず)を設置することができる。PO10は、電力増幅器20用IGBT254のトリガの約40ns前にトリガすることができる。しかし、精密タイミングは、主発振器出力及び電力増幅器放電のタイミングを測定するセンサからのフィードバック信号で決まることが好ましい。
【0087】
上述のように、「パルスパワー」システムにおける磁気パルス圧縮のスループットタイミングは、材料温度などの関数とすることができる磁性材料特性に依存する。従って、精密タイミングを維持するために、これらの材料特性を直接又は間接的にモニタ及び/又は予測することが極めて重要である。上述の1つの方法では、以前に収集したデータ(温度の関数としての遅延時間)と共に温度モニタを利用してそのタイミングを予測することができる。代替手法では、マグネティックスイッチバイアス回路を利用して、例えばパルス間で(又は、第1のパルスの前に)磁気が逆バイアスされる時に磁気特性(飽和時間)を実際に測定することができる。バイアス回路は、十分な電圧をマグネティックスイッチに印加して材料を逆バイアスすると同時に、レーザタイミングを正確に制御することができるように飽和時間を測定することができる。それぞれのスイッチを逆バイアスする際に利用したボルト−秒の積は、順方向の通常の放電作動中に必要とされるものに等しいはずであるから、例えばパルスパワーシステムのスループット遅延時間は、例えば次に来るパルスの作動電圧が分ると計算することができるであろう。
【0088】
提案する手法の概略図は、先に参照した’191号特許の図5Dに示されている。初期作動は、例えば特定のマグネティックスイッチが例えば2つのバイアス絶縁インダクタを通じてそれぞれのバイアス電源によってもたらされた順方向の飽和状態に既にあると仮定することができるであろう。この電流は、例えば、約100Vをマグネティックスイッチに例えば印加することにより、例えば中断させることができ、このマグネティックスイッチは、その後、約30μs後に飽和する。タイマは、例えば電圧が印加された時にトリガさせ、また、例えば電流探触子がそれぞれの可飽和反応器の飽和を検出した時にカウントを停止し、その結果、100Vの印加電圧に対して飽和時間を計算することができる。それぞれの可飽和反応器は、逆バイアスされ、例えば残留電圧が回路から排出されると主パルス放電シーケンスに向けて準備完了状態になる。
【0089】
先に参照した図6Eに示すように、出力パルス長は、約20nsの範囲とすることができ、ある程度までは2つの電気放電の相対的タイミングの関数である。パルス長がより長いと(他の条件が同じならば)、レーザ光源システムを含む製造システム全体の光学器械の寿命を長くすることができる。本発明の実施形態の態様によれば、例えばいくつかの技術を用いて、例えばパルス長を長くすることができる。上述のように、放電間の相対的時間は、パルス長に対して最適化することができる。PO10及び電力増幅器20のパルス電力回路は、例えば先に参照した米国特許出願出願番号第09/451,995号で説明されているような技術を用いて、又は例えば個々のパルスの強度を小さくするためにPA20の下流側に追加することができる米国特許第6,067,311号で説明されているものうちの1つのような光学パルスマルチプレクサでより長いパルスが得られるように最適化することができる。チャンバは長くすることができ、また、電極は、より長いパルス長が得られるように設計された進行波放電を生成するように構成することができる。
【0090】
本発明の実施形態の態様によれば、ジッター制御は、例えばパルスタイミングが少なくとも約10〜20ns以内で確実に正確であるようにすることができる例えばジッター補正装置(JCD)と呼ばれる技術で実行することができる。充電電圧が高いほど、トリガとレーザパルスの間の遅延が短くなる。パルスパワーシステム内の磁気装置の温度が高いほど、トリガとパルスの間の遅延が短くなる。しかし、既知の固定電圧及び温度では、入力トリガによる光パルスの自然なパルス間の変動は小さく、約±5nsである。従って、好ましい実施形態では、例えば光源のユーザからのトリガ指令に応答して、例えばFCP252又はLCP220によってトリガが送られた後に例えばジッター制御を実施する例えば製造工具、例えばLCPは、得られるパルスが約20ns以内まで正確なものになるように、感知レーザ作動充電電圧を表す信号と磁気の感知温度を表す信号とに対応する量だけ、トリガをPO10及びPA20のパルス電力200内のそれぞれの半導体スイッチ254及び254’に送るのを遅らせることができる。代替的に、コントローラ252は、温度変動に対する直接的な補正なしに、次に来るパルスに対する指定の充電電圧に基づいて、例えば充電電圧の変動に対して電気パルスのタイミングを調節することができる。しかし、例えば、補正は、例えばパルスのバースト内で前のパルス又は一連のパルスから測定されたタイミング誤差に基づいてタイミングに実行することができる。磁気構成要素の温度は、緩やかに変動することが通常は観察することができるので、このパルスタイミングフィードバック技術は、例えば、実質的に、緩やかに変動する温度の影響を補正すると同時に、現時点の他のより多くの時間変動の影響に対して補正することができる。
【0091】
本発明の実施形態のこの態様によれば、フィードバック補正は、例えば僅か25%の補正を適用するか又は何らかの選択された補正係数を掛けた検出タイミング誤差によって表される20nsのパーセントに対して例えば指標化することができる何らかの他のより小さい補正が適用される20ns未満のようなより小さいタイミング誤差に対する例えば完全な補正を下回る他の検出されたタイミング誤差に対するものよりも20ns大きいなどの例えば大きなタイミング誤差に対して異なる種類の検出されたタイミング誤差に対して完全な100%補正を例えば適用する技術を用いて例えば行うことができる。この小さい方のパーセントによる補正を例えば使用して、タイミング信号におけるゼロ誤差状態に関する発振を回避することができる。本発明の実施形態の別の態様によれば、特に小さい解像度、例えば1ns解像度は、広いダイナミックレンジ内でさえも例えば40MHz水晶発振器を有するデジタルカウントを用いて例えば達成することができる。40MHz発振器は、例えば25ns間隔で例えばクロック信号を供給することができるが、これらの信号は、ほぼ線形のアナログ容量式充電回路を充電するのに例えば利用することができる。その後、コンデンサ上の電圧を読み取って時間を約1.0nsの精度まで求めることができる。
【0092】
開示する好ましい実施形態による本発明は、例えばレーザ結晶化用途に特に十分に適応したXeClレーザを提供することが当業者によって理解されるであろう。XeClレーザは、例えば本出願人の譲受人の既存の製品、例えばXLA製品ラインにおけるように、一方のチャンバの出力に他方のチャンバの入力を供給させる既存のマルチチャンバレーザ技術に基づくことができる。本発明の実施形態によるレーザシステムは、POPA構成又はPOPO構成とすることができる。POPA構成においては、非常に高い電力及びエネルギ(500から1000Wの近くの平均電力)で作動することができるレーザシステムが設けられる。POPA構成のレーザシステムを作動させることにより、全体的な効率を50%も上げることができ、これによって、消耗品のコストを含む全体的な使用効率はまた、構成要素消耗品の少なくとも1つ、すなわち、チャンバの寿命の長さに直接関係するので信頼性が向上する。このようなPOPA構成はまた、例えばPaが飽和範囲モードで作動されるので、本出願人の譲受人のLXAのMOPAレーザと同様にエネルギ安定性を向上させることができる。本発明の実施形態によるレーザシステムは、エネルギ要件が比較的高くかつ安定性要件が相対的に非常に厳しい例えば超横方向成長(SLG)レーザ結晶化処理に非常に良好に適するものである。
【0093】
本発明の実施形態によるレーザシステムは、POPO構成において、レーザを使用してタイミングを分離させることができる2つのパルスをもたらすことができる。各レーザPOチャンバは、20から30mJ/パルスの範囲とすることができ、各繰返し率は、4kHzまでとすることができる。約1から2μsecの時間間隔の場合、本発明の実施形態によるレーザシステムは、先に参照したKudo他の論文で説明されているように、Sumitomoによって提案されているような高度SLG(aSLG)に対して使用することができるであろう。125μsecでのパルス間の時間間隔の場合、本発明の実施形態によるレーザシステムは、8kHzで作動することができ、従って、例えば先に参照したKudo他による論文及び先に参照したVoutsasによる論文で説明されているように、多くの研究所によって開発された制御SLG(cSLG)にも使用することができる。今日、aSLG及びcSLGの両方は、高繰返し率緑色レーザ、例えば、十分には強力ではなくかつ周波数増倍が必要なダイオードポンプドNd:YAG周波数倍増レーザを用いて実行することが考えられている。
【0094】
例えばcSLGの場合、非常に短いパルス間隔、すなわち、〜100nsを用いると、本発明の実施形態によるレーザシステムの出力は、非常に長いパルス幅を有する2つのパルスとして出現することができる。このような長いパルスは、例えば、固化時間を短くし、かつ結晶品質を向上させる。また、例えば焼き鈍し工程における固化時間を遅らせることにより、パルスが長いほど例えば結晶化構成に良好なのでcSLG及びaSLGの両方の結果を向上させ、また、レーザシステム下流側の光学器械を保護することができるパルス伸張器を使用することができる。パルス伸張器は、レーザシステム自体の一部とするか又はレーザシステムの外部にあるビーム送出ユニットに組み込むことができる。また、BDUは、ビームをワークステーションに送出する際に例えばSLGを実行するために、例えば、これらのパラメータをパルス単位で維持するために、出力レーザパルスビーム指向及び位置決めを制御するのに有用とすることができるであろう。
【0095】
例えば、POPAレーザシステムとしての本発明の実施形態による別の構成においては、レーザシステムは、cSLGに対しては6kHzまでで作動させることができる。エネルギは低減されることになるが、電力は、>200Wになる。また、本発明の実施形態によれば、出力レーザ光パルスビームは、1つの方向に伸張させ、かつ他の方向に焦点を合わせることができる。本発明の実施形態により、このような伸張ビームは、例えば被加工物にレーザ光を向ける際に使用されるスリットに対して寸法を決めることができ、集光ビームのプロフィールは、例えばaSLGに対して理想的と考えられるガウス形に対応することができる。
【0096】
本出願の目的及び特許請求の範囲の解釈のために単に「表面処理」と称され、かつ基板内又は基板上で、特に、単に例えば露光、例えばフォトレジスタ以外に例えば集積回路ウェーハ上での高い電力及び高い安定性要件で基板の貫通が含まれる場合の化学的又は物理的反応を可能にしたり、刺激したり、又は高める誘導結晶成長、焼き鈍しのような処理を包含すると理解されるような例えば表面又は基板処理を伴う製造工程に関する類似の用途は、本発明の上述の実施形態の場合と同様に、しかし、例えば本発明の上述の実施形態に従って構成された例えばXeF、KrF、ArF、及びF2ガス放電レーザを使用して他の中心波長で実行することができることが当業者によって理解されるであろう。本出願に開示される本発明の好ましい実施形態の重要な態様は、本出願人のマルチチャンバPOPA及び/又はPOPOIレーザの機能及び従来技術のレーザシステムの使用からもたらされる製造工程欠陥を解決するために指定の方法で互いに使用する2つのレーザチャンバのタイミングを正確に制御する機能の利用である。本出願人の譲受人のMOPA構成のXLAガス放電レーザ以前では、MOPA又はPOPA又はPOPOガス放電レーザは、部分的にはこれらの極めて重要なタイミング要件のために一般的には使用されていなかった。しかし、今や例えば本出願人の譲受人のXLA技術により、ガス放電レーザ、例えばエキシマレーザ及び分子フッ素レーザの利用の大幅な高まりがあり、これによって次世代の大規模ポリシリコン結晶化のような製造工程が可能になっている。本発明の態様によるこのようなレーザシステムは、製造中の被加工物に対して、従来技術のレーザシステム(構成によって500Hzから8KHz)と比較して非常に高い電力(1000Vまで)、非常に高い繰返し率、エネルギ/電力がパルス間で安定化された伸張パルス、及びパルス繰返し率倍増のために千鳥配置によるPOPOパルスを供給する目的を含む精密タイミングを供給する。
【0097】
本発明の実施形態は、様々な有用な方法で、例えばPOPA構成で、例えば4KHzパルス繰返し率150mJで又はそれを超えて、例えば光学的に伸張された上述のパルスを送出するように構成することもでき、かつ、有利な態様では、BDUで又は2つのパルス(各POPOから各々1つ)の正確な(±3ns)タイミング及びエネルギ制御を伴うPOPOを同じく使用した二重パルス構成でも例えば8KHzの割合かつパルス伸長及びBDU送出を伴って二重パルスに向けた正確な(±3ns)タイミング及びパルスエネルギを同じく送出するPOPO構成における送出を通じて向上させることができることが理解されるであろう。第1のPOPO実施形態では、パルスは、例えば≦1μsの分離及び8KHzの全体的なパルス繰返し率に向けて2つの密接に配置されたパルスにおける各第1の出力レーザ光パルスの開始の間の例えば250μsの分離で比較的密接に配置することができる。このイベントにおいては、密接に配置されたパルスの各対の第2のパルスは、125μs未満で分離させることができ、また、被加工物に対する処理には、例えば8KHzの繰返し率で125μsよりも互いに密接に配置された異なる電力レベルによる2段階の処理が必要である場合には、異なる電力レベル、例えば低い方の電力レベルとすることができる。第2のPOPO構成においては、パルスは、例えば8KHzパルス繰返し率に向けて均一な125μsによって均一に分離させることができる。
【0098】
例えばXeClを利用した本発明によるシステムは、例えば308nm中心波長150mJ/パルス、4KHzパルス繰返し率、すなわち、600Wの1%シグマ、伸張なしの60〜70nsFWHMパルス持続時間、及び4XのTis伸張器を有して20Bパルス程度のチャンバ寿命を有する120nsFWHMを提供することができる。本発明の実施形態によるSSPPMは、長寿命化、高電力化、チャンバ長寿命化、及び非常に低いチャンバ間ジッターによる保守の低減を可能にすることができる。本発明の実施形態によるBDUは、有利な態様では、レーザビーム形状改善、及び製造機器への送出点での発散低減、及びBDUにおいて積極的かつ動的にモニタされて安定化された指向及び位置決めを光発生におけるレーザ指向誤差から独立して提供することができ、その結果、製造工具及び従って同じく被加工物に対するエネルギ送出の不変性のような事柄も可能になる。
【0099】
要約すると、被加工物の基板内の結晶構成又は配向の変換を実行するためのガス放電レーザ結晶化装置及び方法が開示され、それは、細長いガス放電領域を形成するチャンバ内に収容された1対の細長い離間した対向電極を各々が有する第1及び第2のガス放電チャンバ、及び被加工物上で実行される結晶化処理に対して最適化された中心波長でレーザ光を生成するように選択されたハロゲン及び希ガスを含むチャンバ内に収容されたレーザガスを含む第1のレーザユニットと、DC電源、及び直列に接続した複数の一次巻線と複数の一次巻線の各々を通る単一の二次巻線とを有する多段分割ステップアップ変圧器と半導体トリガスイッチとを含むDC電源に接続されかつそれぞれの電極に接続した第1及び第2のパルス圧縮及び電圧ステップアップ回路を含む電源モジュールと、単一出力レーザ光パルスビームを生成するためにPOPA構成レーザシステム又はPOPO構成レーザシステムのいずれかとして第1及び第2のレーザユニットの作動を達成するように、それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路の作動パラメータに基づいてそれぞれの半導体スイッチの閉成を計時するように作動するレーザタイミング及び制御モジュールとを含むマルチチャンバレーザシステムを含むことができる。POPAとして、レーザシステムのリレー光学器械は、第1の出力レーザ光パルスビームを第1のレーザユニットから第2のガス放電チャンバ内に向けるように作動することができ、タイミング及び制御モジュールは、第1の出力レーザ光パルスビームが±3ns以内に第2の放電領域を通過している間に第2の対の電極間にガス放電を作り出すように作動し、POPOとして、結合光学器械は、出力ビームを結合し、タイミングは、結合出力内に予め選択された時間±3nsのパルス分離を作り出す。ビーム送出ユニット及びパルス伸張器を含めることもでき、タイミング及び制御は、パルス圧縮及び電圧ステップアップ回路における充電電圧及び構成要素温度を表す信号に基づいてプロセッサ制御することができる。
以上の開示内容は、本発明の現時点で好ましい実施形態に関連するものであり、本発明は、このような実施形態に限定されるのではなく、特許請求の範囲及びこのような特許請求の範囲の均等物及び/又はこのような特許請求の範囲に示す要素に相応の範囲にあると考えるべきである。
【符号の説明】
【0100】
10 PO
12、22 チャンバ
14 全反射光学器械
20 PA

【特許請求の範囲】
【請求項1】
被加工物の基板における結晶構成又は配向の変換を実行するためのガス放電レーザ結晶化装置であって、
第1のガス放電チャンバ、
第1の細長いガス放電領域を形成する、前記第1のチャンバ内に収容された第1の対の細長い離間した対向電極、及び
被加工物上で実施される結晶化処理に対して最適化された中心波長でレーザ光を生成するように選択された希ガスとハロゲンを含む、前記第1のチャンバ内に収容されたレーザガス、
を含む第1のレーザユニットと、
第2のガス放電チャンバ、
第2の細長いガス放電領域を形成する、前記第2のチャンバ内に収容された第2の対の細長い離間した対向電極、及び
被加工物上で実施される結晶化処理に対して最適化された中心波長でレーザ光を生成するように選択された希ガスとハロゲンを含む、前記第2のチャンバ内に収容されたレーザガス、
を含む第2のレーザユニットと、
DC電源、
直列に接続した複数の一次巻線と該複数の一次巻線の各々を通る単一の二次巻線とを有する多段分割ステップアップ変圧器と、半導体トリガスイッチとを含み、前記DC電源に接続し、かつ前記第1の対の電極に接続した第1のパルス圧縮及び電圧ステップアップ回路、及び
直列に接続した複数の一次巻線と該複数の一次巻線の各々を通る単一の二次巻線と、半導体トリガスイッチとを有する多段分割ステップアップ変圧器を含み、前記DC電源に接続し、かつ前記第2の対の電極に接続した第2のパルス圧縮及び電圧ステップアップ回路、
を含む電源モジュールと、
前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路の作動パラメータに基づいて前記それぞれの半導体スイッチの閉成を計時し、POPA構成レーザシステム又はPOPO構成レーザシステムのいずれかとして前記第1及び第2のレーザユニットの作動をもたらして単一の出力レーザ光パルスビームを生成するように作動するレーザタイミング及び制御モジュールと、
を含むマルチチャンバレーザシステム、
を含むことを特徴とする装置。
【請求項2】
前記レーザシステムは、POPAレーザシステムとして構成され、更に、第1の出力レーザ光パルスビームを前記第1のレーザユニットから前記第2のガス放電チャンバの中に向けるように作動するリレー光学器械を含み、
前記タイミング及び制御モジュールは、部分的に前記第1の半導体スイッチの閉成の時間に基づいて前記第2の半導体スイッチの閉成を計時し、前記第1の出力レーザ光パルスビームが±3ns以内に前記第2の放電領域を通過している間に前記第2の対の電極間にガス放電を作り出し、第2の増幅レーザ出力光パルスビームを前記単一の出力レーザ光パルスビームとして生成する、
ことを特徴とする請求項1に記載の装置。
【請求項3】
前記レーザシステムは、POPOレーザシステムとして構成され、更に、前記第1のレーザユニットからの第1の出力レーザ光パルスビームを前記第2のレーザユニットからの第2の出力レーザ光パルスビームと結合して前記単一の出力レーザ光パルスビームを生成するように作動する結合光学器械を含み、
前記タイミング及び制御モジュールは、部分的に前記第1の半導体スイッチの閉成の時間に基づいて前記第2の半導体スイッチの閉成を計時し、前記第2の対の電極間にガス放電を作り出し、予め選択された時間±3nsにより、前記単一の出力レーザ光パルスビームにおける前記第1の出力レーザ光パルスビーム内の出力レーザ光パルスを前記第2の出力レーザ光パルスビーム内の出力レーザ光パルスから分離する、
ことを特徴とする請求項1に記載の装置。
【請求項4】
前記単一の出力レーザ光パルスビーム内のパルスのTisを少なくとも2X伸張するように作動する、該単一の出力レーザ光パルスビームの経路内のパルス伸張器、
を更に含むことを特徴とする請求項1に記載の装置。
【請求項5】
前記単一の出力レーザ光パルスビーム内のパルスのTisを少なくとも2X伸張するように作動する、該単一の出力レーザ光パルスビームの経路内のパルス伸張器、
を更に含むことを特徴とする請求項2に記載の装置。
【請求項6】
前記単一の出力レーザ光パルスビーム内のパルスのTisを少なくとも2X伸張するように作動する、該単一の出力レーザ光パルスビームの経路内のパルス伸張器、
を更に含むことを特徴とする請求項3に記載の装置。
【請求項7】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項1に記載の装置。
【請求項8】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項2に記載の装置。
【請求項9】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項3に記載の装置。
【請求項10】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項4に記載の装置。
【請求項11】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項5に記載の装置。
【請求項12】
前記単一の出力レーザ光パルスビームの経路にあり、被加工物の基板における結晶構成又は配向の変換の実行のために該単一の出力レーザ光パルスビームを製造工具に送出するように作動するビーム送出ユニットと、
ビームパラメータモニタ及びビームパラメータ調節機構を含む、前記ビーム送出ユニット内のビーム調節モジュールと、
を更に含むことを特徴とする請求項6に記載の装置。
【請求項13】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項7に記載の装置。
【請求項14】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項8に記載の装置。
【請求項15】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項9に記載の装置。
【請求項16】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項10に記載の装置。
【請求項17】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項11に記載の装置。
【請求項18】
前記タイミング及び制御モジュールは、前記それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の充電電圧を表す受信信号と、該それぞれの第1及び第2のパルス圧縮及び電圧ステップアップ回路内の少なくとも1つのマグネティックスイッチング要素の温度を表す信号とに基づいてプログラムされたタイミング制御作動を実行するプロセッサを含む、
ことを更に含むことを特徴とする請求項12に記載の装置。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図2A】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−191207(P2012−191207A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2012−48850(P2012−48850)
【出願日】平成24年3月6日(2012.3.6)
【分割の表示】特願2006−521997(P2006−521997)の分割
【原出願日】平成16年7月26日(2004.7.26)
【出願人】(510194183)ティシーゼット・リミテッド・ライアビリティ・カンパニー (1)
【氏名又は名称原語表記】TCZ, LLC
【Fターム(参考)】