説明

集積回路を製造する装置及び方法

本発明は、厚膜金属層14を有する集積回路10を製造する装置に関する。金属ペースト14の層は、熱伝導基板12上に適用手段24によって適用される。金属ペースト14は、予め決められたサイズの金属粒子を含む。RF生成器16は、金属ペースト14にRFエネルギー18を選択的に誘導結合させる。金属粒子を加熱するために、金属ペースト14の金属粒子の予め決められたサイズは、RFエネルギー18の結合周波数に対応する。このようにして、金属ペースト14の金属粒子は、従来のプロセスのパワーの何分の一かのパワーで、金属ペースト14を予備焼結する必要なく、加熱される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、厚膜金属層を有する集積回路を製造する装置及び方法に関する。
【背景技術】
【0002】
ソーラーパネル用の太陽電池のような現在の集積回路は、金属ペーストが基板に適用され、アセンブリ全体が、ペーストの金属粒子を溶解し、融解し又は焼結するために加熱され、それによって所望の回路を生成するプロセスによって今日製造されている。十分な量のエネルギーが、金属の融解/焼結温度まで金属ペースト及び基板の両方を加熱するために印加される。基板と導電性材料との間の有益なインタラクションは、これらの高い温度において生じるが、長時間にわたるインタラクションは、基板損傷及び/又は基板特性の変化のため、性能を低下させる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
加熱及び冷却レートの制限は、通常、金属ペーストを有する基板全体への加熱パワーの伝達によって支配される。従来、基板及び金属の総熱容量が、1秒あたりの所与のパワー入力に対する温度上昇を計算するために考慮される必要があり、例えばシリコン基板の熱容量は、基板上に配される金属ペースト、例えば銀ペースト、の熱容量より非常に大きい。この熱容量比は、従来の方法を使用する場合、あたかも金属が単独で加熱されるかのように同じ時間期間にわたって同じ温度増加を得るために、より多くのパワーが必要とされることを確実にする。
【0004】
独国特許出願公開第100 41 889 A号明細書は、半導電性コーティング材料の電気特性を熱的に変化させるプロシージャを開示する。
【0005】
独国特許出願公開第102006005026A号明細書は、ガラス基板上の焼結された粒子の導電性コーティングを開示している。開示される焼結粒子は、ITOのナノ粒子である。ガラス及びITOは、300MHz乃至30GHzの間のマイクロ波を使用して、共振キャビティにおいて容量加熱される。
【0006】
米国特許出願公開第2005/0087226号明細書は、非平坦な基板上の薄膜に関する電極配置方法を開示している。方法は、数kHz乃至1MHzのレンジの誘導加熱を使用し、これは、高い導電性をもつ予備焼結された材料を必要とする。基板及び電極材料の両方が、基板及び電極材料の共融温度まで加熱される。
【0007】
本発明の目的は、電子装置用の熱伝導性基板上の金属ペーストを迅速に加熱し冷却する装置及び方法であって、改善された電気性能及び大きなエネルギー節約を有する装置及び方法を提供することである。
【0008】
本発明の他の目的は、基板上の金属ペーストを迅速に冷却する受動的な方法であって、冷却レートが、従来の赤外線加熱の場合に使用される能動冷却方法の場合よりも速い方法を提供することである。
【0009】
本発明の他の目的は、ラジオ周波数(RF)エネルギーを基板上の金属ペーストの金属粒子に選択的に結合させる方法であって、金属の熱容量及び周囲の基板に対する小さいエネルギー損失のみが考慮される必要があり、非常に迅速に金属を所望の温度まで加熱するために供給されなければならないパワーが、従来の方法と比較して大幅に少なくて済む方法を提供することである。
【0010】
本発明の他の目的は、金属層を有する集積回路を製造する方法であって、基板自体が金属の融解/焼結温度まで加熱されず、金属層のみが冷却される必要がある方法を提供することである。
【課題を解決するための手段】
【0011】
本発明の第1の見地において、厚膜金属層を有する集積回路を製造する装置であって、熱伝導性基板上に金属ペーストの層を適用する適用手段であって、金属ペーストが予め決められたサイズの金属粒子を有する、適用手段と、金属ペーストにRFエネルギーを選択的に誘導結合させるRF生成器であって、予め決められたサイズの金属粒子が、RFエネルギーと選択的に誘導結合可能であり、金属粒子の予め決められたサイズが、金属粒子を加熱するためにRFエネルギーの結合周波数に対応する、RF生成器と、を有する装置が提案される。
【0012】
他の見地において、(焼結された/融解された)厚膜金属層を有する集積回路を製造する方法であって、熱伝導性基板上に金属ペーストの層を適用するステップであって、前記金属ペーストが予め決められたサイズの金属粒子を有する、ステップと、RF生成器から金属ペーストにRFエネルギーを選択的に誘導結合させるステップであって、金属粒子の予め決められたサイズが、RFエネルギーの結合周波数に対応し、予め決められたサイズの金属粒子が、金属粒子を加熱するために、RFエネルギーと選択的に誘導結合可能である、ステップと、を含む方法が提案される。
【0013】
本発明は、基板上に(焼結された/融解された)厚膜金属ペーストを有する集積回路を製造する装置及び方法を提供する。方法は、基板上の金属ペーストの金属粒子の選択的な誘導結合のため、迅速で且つエネルギー効率の良いやり方で達成され、それによって、誘導エネルギーのほとんどが金属粒子を直接加熱することになる。基板は、金属粒子からエネルギーを受け取ることができるがRFエネルギーとは結合されず、すなわち非常に制限されたやり方で結合される。これは、特に従来のプロセスと比較して、少ないエネルギーしか必要としない高速加熱プロセスをもたらす。
【0014】
従来のプロセスは、高導電層を生成するために、電極材料が、誘導的又は容量的に関わらず加熱ステップの前にまず焼結されることを必要とする。誘導加熱に関して従来技術に開示される低い周波数の場合、誘導加熱の効果は、電極材料及び基板の両方を一緒に加熱する要求のため、非常に制限されてしまい、それほど速くもない。マイクロ波による容量加熱を使用する従来のプロセスの場合、容量加熱及びマイクロ波の性質のため、共振キャビティが必要とされる。
【0015】
本発明によれば、個別の銀粒子に結合するより高い周波数のため、電極材料の予備焼結が不要である。高導電層は全く必要とされない。結合の効率も、より大きい。このより大きな効率のため、加熱のスピードは、より低い周波数で行われる誘導加熱を含む従来技術よりも非常に高い。
【0016】
広い周波数レンジは、容量加熱プロセスの用途でそれ自体知られており、非導電性材料及び導電性材料を加熱するために使用される。導電性材料の誘導加熱は、数十乃至数百kHzの周波数を用いる一般的な技術である。しかしながら、2−200MHz又は特に約27MHzのレンジによる誘導は、後述されるように、対処される必要がある多くの厄介な問題(例えば必要とされる高い電圧による絶縁破壊及び加熱プロセスの制御)のため、知られていない。
【0017】
例えば10−1000kHzの低い周波数の場合、加熱されるべき製品と同じくらい大きいコイルを使用することが一般的である。これは、局所化されない加熱状況のためである。時として、より小さいコイルが、より局所化された加熱のために印加されうる磁場強度を増大するために選ばれる。当然ながら、効果的であるために、従来技術は、この低周波エネルギーの印加が、例えば電極材料のような加熱されるべきパターンが高導電性であることを必要とすることを開示している。これは、電極材料が誘導加熱の前に予備焼結されることを必要とする。
【0018】
従来の誘導周波数とマイクロ波との間の例えば2−200MHzの中間周波数レンジ、特に27MHz、において、局所的及び非局所的な加熱アプローチの両方が使用されることができる。しかしながら、局所化される磁場及び小さいコイルの使用は、より良好な温度場の均一性がより容易に達成されることができ、磁場強度が非常により高くなりうるという強い利点を有する。更に、金属ペーストの個別の金属粒子へのRF場の結合は、予備焼結が不要であることを意味する。本開示は、電極材料が選択的に加熱される場合は、RF場を使用して電極材料を焼結する。
【0019】
従来技術において提供される低周波誘導加熱は、温度場を制御して均一性を提供するために、基板上の電極材料パターンのジオメトリに厳しい要求を課す。本開示の加熱構造は、加熱されるべきパターンのジオメトリに対する感受性がはるかに低い。
【0020】
従来技術とは対照的に、本開示は、小さいコイルによって生成されることができるRF生成器からの局所化された場を使用する。この構成は、加熱プロセスの均一性が増大され、非常に高い磁場強度が極めて高い電圧を用いることなく可能である、という2つの重要な利点を有する。
【0021】
一実施形態によれば、基板は、そのより大きな質量のため、金属ペーストの金属より高い熱容量を有する。これは、基板が金属層の迅速な冷却を提供するヒートシンクとして作用することを可能にする。
【0022】
第2の実施形態によれば、基板は、シリコン、ガリウム砒素化合物、ゲルマニウム、インジウム−テルル化合物及び銅−インジウム−ガリウム−硫黄化合物を含むことができる。これらの材料は、それ自体と集積回路製造において使用される多数の金属との間の、大きい誘導加熱効率(及び熱容量)の差の利点を提供する。
【0023】
別の実施形態によれば、基板は、選択的に結合される金属を迅速に冷却するヒートシンクとして作用することができる。基板上の金属を選択的に結合する利点は、金属が選択的に結合されるとき、基板が、結合期間の全体にわたって相対的に冷たいままであることを意味する。従って、基板と金属との間の温度差及びエネルギー差を吸収する大きい容量が利用可能であり、金属は、非常に迅速に冷却されることができる。
【0024】
別の実施形態によれば、金属ペーストは、銀、アルミニウム、銅、ステンレススチール及び集積回路において使用されるのに適した他の導電性金属の金属粒子を含みうる。さまざまな種類の金属が、集積回路の意図されるアプリケーション及び基板の熱容量に依存して、有利に使用されることができる。
【0025】
別の実施形態によれば、金属ペーストの金属粒子は、2乃至200MHzのレンジの非常に高い周波数において選択的に結合される。金属の選択的な結合とは、基板が直接的には熱的な影響を受けず、金属粒子に対して相対的に冷たいままであることを意味する。選択される周波数レンジは、誘導のために使用される一般的な周波数よりも高く、結合に関してより効果的であり、また、共振キャビティ及び拡張遮蔽を必要とするマイクロ波周波数よりも大幅に低い。この周波数レンジは、基板材料に過剰に浸透することなく又は(例えばマイクロ波の場合のように)拡張遮蔽構造を必要とすることなく、金属ペーストの金属粒子と選択的に結合するのに十分なエネルギーを提供する。簡素な遮蔽が、電子器具の外乱を防ぐためにのみ必要とされてもよい。
【0026】
別の実施形態によれば、金属ペーストの金属粒子は、約27MHzのRFエネルギーと結合可能であるマイクロ粒子である。これは、例えばRFエネルギーの過剰浸透又は基板の過剰な加熱のような多くの不所望の懸念なしに制御可能な結合を提供するために、金属粒子の予め決められた一様なサイズが、狭い範囲で選択された周波数帯域と共に使用されることができるという利点を提供する。適切にサイズ設計された粒子は、制御された製造方法を提供するために、特定の周波数帯域と良好に補い合う。マイクロ粒子は、結合のためにマイクロ波RFエネルギーを必要とするナノサイズの粒子よりも大きい。マイクロ波RFエネルギーは、周囲を保護するための遮蔽構造を必要とする。
【0027】
他の実施形態によれば、基板テーブルが、RF生成器の下において予め決められたレートで金属ペーストを有する基板を移動させるために提供されることができ、この場合、RFエネルギーは、予め決められたやり方で分布される。これは、基板上の金属ペーストの選択的な加熱又は非加熱のために、RFエネルギーの一様且つ制御された分布の利点を提供する。RFエネルギーは、温度均一性を向上させるために、基板の位置に対して変更されることができる。ある状況では、一定のRFパワー及び一定の基板スピード下での加熱が、基板移動方向において十分には均一でないことが観察された。基板への熱伝導の効果は、RFパワーが基板移動長さの全体にわたって一定であるとき、温度上昇の勾配を生じさせる。これは、最初の部分では、大きく相対的に冷たい基板がヒートシンクとして作用するために利用可能であるが、最後の部分では、基板の小さい部分のみが相対的に冷たく、この部分のヒートシンク容量がより小さい、という冷却の状況によりもたらせる。一実施形態において、RFパワー供給の変化は、RFパワー出力の電気的又は機械的な調整によって行われ、この調整は、基板位置を示す信号によって制御される。基板がコイルの下を通過する間、コイルに対するRFパワーを調整することによって、パワー負荷が、各々の基板位置ごとに個別に「プログラムされる」ことができ、これにより、向上される均一性又は意図される不均一性を実現する。
【0028】
別の実施形態によれば、装置は、基板を予熱する基板ヒータを有することができる。基板の導電特性は、温度変化と共に変化しうる。これは、温度上昇によって、例えば導電特性のような基板の物理的特性を変化させ又は操作する利点を提供する。このステップを用いる利点は、例えば加熱されたシリコンのようなより高い導電性をもつ基板が、わずかに加熱されるときでも、金属ペーストを冷却するためのより効率的なヒートシンク構造を提供することである。更に、予熱ステップは、プロセスの安定性を向上させる。シリコンは、低温では非導電性であり、ゆえに、印加される誘導場においては温度上昇しない。しかしながら、より高い温度では、シリコンは、導電性になり、RFエネルギーと結合し始める。シリコン基板が予熱されない場合、シリコンの吸収特性の急激な変化は、制御不能なプロセスを生じさせ、非常に不均一な加熱をもたらすことがある。対照的に、基板が、400°より高く予熱される場合、吸収特性は、非常にゆっくりと変化し、プロセス設定において考慮されることができる。単位材料当たりの吸収されるエネルギー量は、この温度であっても、銀よりもシリコンのほうがはるかに小さく、ゆえに、選択的な加熱の原理は、なお十分に適用できる。基板が、例えばGaAs、Ge、InTe、CuInGaS又はバンドギャップ特性を有する任意の他の材料のような異なる半導電性材料である場合も、この効果は重要でありうる。
【0029】
別の実施形態によれば、金属ペーストの層は、予め決められた3次元ジオメトリを伴って構成され、誘導結合される金属粒子の温度は、ジオメトリによって操作可能である。金属ペーストの金属粒子のサイズが、RFエネルギー周波数と相補的である状況で、RFエネルギーが注意深く変更される場合、特定の制御可能な浸透深さが、当該RFエネルギーに関して達成されることができ、また、それぞれ異なる温度が、金属ペーストの予め決められた3次元ジオメトリに依存して、金属ペースト層の異なる部分について達成されることができる。
【0030】
厚膜金属層の間に非導電層を有する多重(2又はそれ以上)層を具える集積回路は、本発明を使用してRF加熱により加熱されることができる。バイアを使用することによる2層の接続も可能である。
【0031】
本発明のこれらの及び他の見地は、以下に記述される実施形態から明らかであり、それらを参照して説明される。
【図面の簡単な説明】
【0032】
【図1】本発明の一実施形態による、導電性金属ペーストのパターンをその上に有する集積回路用基板の上面図。
【図2】本発明の一実施形態による、RFコイル下において金属導電性ペーストの適用されたパターンを有する集積回路用基板の側断面図。
【図3】従来の方法による低周波誘導加熱の構造を示す図。
【図4】本発明の一実施形態による中間周波数誘導加熱の構造を示す図。
【図5】本発明の一実施形態による基板の温度変化曲線を示す図。
【図6】本発明の一実施形態による、適用される金属導電性ペーストを有する集積回路を製造する装置の斜視図。
【図7】図7A−7Dは、本発明の一実施形態による、適用された金属ペーストを有する多層集積回路用の素子の上面図及び側面図。
【図8】本発明の一実施形態による、さまざまな異なる金属に関する結合周波数及び対応する浸透深さを示す図。
【発明を実施するための形態】
【0033】
図1は、基板12及び特定のパターンに構成された適用された金属ペースト14を有する集積回路10の構造を示している。厚膜金属層14は、図6に示されるように、適用手段24により熱伝導性基板12に適用される。金属ペースト14は、予め決められたサイズの金属粒子を有する。図2に示されるように、コイルのようなRF生成器16が、金属ペースト14の金属粒子にRFエネルギー(18)を選択的に誘導結合して金属粒子を加熱するために、使用される。
【0034】
本発明は、基板12上に厚膜金属ペースト14を有する集積回路10を製造する装置及び方法を提供する。方法は、基板12上の金属ペースト14の金属粒子の選択的な結合のため、誘導エネルギー18のほとんどが、金属粒子を直接的に加熱することになるように、迅速且つエネルギー効率の良い態様で達成される。基板12は、金属粒子からの熱伝導により幾らかの熱エネルギーを受け取ることができるが、RFエネルギーとは結合されず、又は予熱されたシリコン基板の場合は非常に制限された程度だけ結合される。これは、特に従来のプロセスと比較して、非常に少ないエネルギーしか必要としない高速加熱プロセスをもたらす。
【0035】
従来のプロセスは、高導電層を生成するために、電極材料が、誘導性にせよ又は容量性にせよ任意の加熱ステップの前にまず焼結されることを要求する。誘導加熱のための従来技術に開示されている低い周波数の場合、誘導加熱の効果は、おそらく電極材料及び基板の両方を一緒に加熱する要求のため、非常に制限されてしまい、それほど高速でない。更に、マイクロ波による容量加熱を使用する従来プロセスの場合、共振キャビティが、容量加熱及びマイクロ波の性質のため、必要とされる。図3は、厚さdを有する焼結された電極材料Sの層に対する、例えば100kHzの低周波数場の印加を示している。焼結プロセスのため、焼結された電極材料Sは、誘導電流Iを示す。電極材料Sを通る誘導電流Iは、電極材料Sの加熱を引き起こす。加熱は、電極材料Sの予備焼結、低周波磁場の印加及び電極材料Sにおける電流Iの誘導の副産物である。このプロセスは、あまりに多くの努力を要するが、同じ結果が、異なるプロセスにより、より容易に達成されることができる。
【0036】
本発明によれば、図4に示されるように、電極材料の予備焼結は、粒径Qを有する銀のような個別の金属粒子24に結合する例えば2−200MHzのより高い周波数場のため、不要である。粒径Qは、典型的には、図3の電極材料の厚さdよりはるかに小さい。個別の粒子Qの結合の結果として、高導電性電極層Sは全く必要とされない。更に、図4の高周波結合の効率は、従来プロセスより大きい。このより大きな効率のため、加熱のスピードは、より低い周波数で行われる誘導加熱を含む従来技術より大幅に高い。
【0037】
基板12は、金属ペースト14よりも高い熱容量を有することができる。従って、基板12は、選択的に誘導結合される金属ペースト14の迅速な冷却を提供するヒートシンクになりうる。迅速な冷却は、選択的な結合及び選択的な加熱を補足し、ゆえに、相対的に少ないエネルギーしか基板を加熱するために使用されず、大きなエネルギー量が、従来技術と比較して節約される。
【0038】
基板12は、シリコン、ガリウム砒素化合物、ゲルマニウム、インジウム−テルル化合物、銅−インジウム−ガリウム−硫黄化合物及び上述の材料と同様の熱容量及び導電特性を有する他の化合物又は材料を含む多くの材料から作られることができる。より多数の材料が、非常にエネルギー効率の良い態様で集積回路及び厚膜金属層を製造するために、開示された方法によって使用されることができる。
【0039】
金属ペースト14は、銀、アルミニウム、銅及びステンレススチール又は開示された方法に従って処理されることが可能な他の金属を含むさまざまな金属を含みうる。それぞれ異なる特性を有するさまざまな種類の金属が、エネルギー効率の良い態様で集積回路又は厚膜層を生成するために、開示された方法に従って使用されることができる。
【0040】
金属ペースト14は、非常に高い周波数のRFエネルギー18と選択的に結合されることができる。相補的なRF周波数及び金属粒径が、より高い制御能力を提供する。別の実施形態によれば、RFエネルギー18の周波数は、約27メガヘルツである。この特定の周波数レンジは、マイクロ波エネルギーの場合のようにRF遮蔽の必要性を回避しつつ、結合による金属ペースト14の十分な浸透の利点を提供する。
【0041】
金属ペースト14の金属粒子は、RFエネルギー18に応答するようにサイズ設計をされる。相補的な粒径に対してのRFエネルギー18の適当な選択は、基板12内の過剰な加熱及び関連するエネルギー浪費なしに、金属ペースト14の金属粒子の効率的且つ選択的な加熱をもたらす。他の実施形態において、金属粒子は、例えば5−50μmのマイクロ粒子であり、これは、2−200MHzのレンジの、特に約27MHzの、RFエネルギー18に応答する。しかしながら、粒子は、選択される特定の金属に依存して、50μmより大きくてもよい。マイクロ粒子は、直径約12μmであってもよい。マイクロ粒子は、マイクロ波エネルギーのタイプの周波数の使用及び対応する遮蔽要求を必要とするナノ粒子よりはるかに大きい。従って、27メガヘルツの周波数とマイクロ粒子との組み合わせは、効率的に且つ容易に制御される。
【0042】
図6に示されるように、金属ペースト14を有する基板12は、RFコイル16下において予め決められたレートで移動されることができる。この構造は、RFコイル16から金属ペースト14へのRFエネルギー18の均一な分布を提供する。
【0043】
基板12は、基板12の導電特性の変化を生じさせるために予熱されることができる。例えばシリコンのような特定の材料は、図5に示されるように、それらの温度変化と共に、それらの導電特性の大きな変化を呈する。図5は、RF場を通過することによる基板12の温度変化ΔTが、基板12の初期温度Tに依存することを示している。シリコン基板の例の場合、特性温度Kは約400°である。すなわち、導電特性がそれらが効果的に有利に使用されることができるポイントまで変化した温度は、約400°である。約400°を下回る場合、例えば導電特性のような特徴的な特性は、それほど大きくない。シリコンに関して、約400°では、シリコンに結合されるRFエネルギーは、伝導/対流のため熱損失に等しい。こうして、この特徴的な又は「臨界の」温度を上回る場合、RF場は、大きな温度上昇をもたらすことができるが、この温度を下回ると、それが出来ない。
【0044】
従って、特性温度Kより高いポイントまで基板12の温度を上昇させることによって、基板12の導電性の増加及びその安定性の増加が、選択的に結合された、例えば選択的に加熱された、金属ペースト14に対して、基板12のより効率的なヒートシンク構造をもたす。すなわち、基板材料が、金属ペースト層14にあわせて適切に選択され、適合されると、加熱された基板12は、基板12が冷たいときよりも、金属ペースト14の熱エネルギーの吸収に関してより良好であり、より安定的である。
【0045】
図6は、基板12を支持するための基板テーブル20を具える、厚膜金属層を有する集積回路を製造する装置を示している。基板テーブル20は、RF生成器16の下において、予め決められた態様でRFエネルギーを印加するために予め決められたレートで基板12を移動させるために使用されることができる。更に、装置は、その特性温度Kより高いところでの基板12の導電特性の変化を利用するために、基板12を予熱する基板ヒータ22を有することができる。基板12がRF生成器16の下を通過するときにRF生成器16へのRFパワーを変化させることによって、パワー負荷P又はプログラム可能なパワー波形が、基板12の各位置について決定され、適用されることができる。これは、所望の通り、RF印加及び結果として得られる温度の不均一性の改善された均一性を達成するために使用されることができる。
【0046】
金属ペースト14の層は、図2に示されるように、予め決められた3次元ジオメトリを伴って基板12上に構成されることができ、この場合、結合される金属ペースト14の温度が、ジオメトリの結果として操作されることができる。金属ペースト14との結合のために必要なRFエネルギーは、それが金属ペースト14の過剰浸透に関して超過せずに、所望の深さまで金属ペースト14に浸透するように、計算可能である。基板12の特定エリアの金属ペースト14のさまざまな加熱及び冷却構造は、所望の導電性結果を達成するように、基板12上の適用された金属ペースト14の厚さ、幅及び長さのようなさまざまなジオメトリによって生成されることができる。
【0047】
1つの例において、本発明は、銀を含有する金属ペースト14へのRFエネルギー18の選択的な結合に依存する。この場合、銀の熱容量及び周囲の基板12への小さいエネルギー損失のみが、RFエネルギーを送り出すために考慮される必要がある。これは、従来のプロセスにおいて必要とされるより、結合を介して非常に速く所望の温度まで銀を加熱するための非常に少ないパワーの要求を生じさせる。しかしながら、銀は、一旦加熱されると、基板及び銀導体の組み合わされた電気特性に対する不利益な効果を防ぐために、すばやく冷却される必要がある。この問題は、RFエネルギー18による金属ペースト14の選択的な結合のため、基板12が高い温度にまで加熱されず、銀のみが冷却される必要があるという点において、解決される。
【0048】
加熱及び冷却レートの制限は、通常、金属ペースト14を含む基板全体への熱パワー伝達によって支配される。従来、1秒あたりの所与のパワー入力に対する要求される温度上昇を計算するために、基板12及び銀のような金属ペースト14の総熱容量が考慮される必要がある。この例において、シリコンのような基板12の熱容量は、基板12上に存在する銀の熱容量よりはるかに大きい。この異種の比率は、従来の方法が同じ時間量で同じ温度上昇を達成するために使用される場合、金属ペーストを加熱するためにはるかに大きいパワーが必要であることを確実にする。
【0049】
これとは反対に、おおむね同じ計算が、従来の方法を使用して必要な冷却パワーを決定するために適用されることができる。従来の方法を使用する場合、銀のような金属ペースト14がRFパワー18を使用して選択的に結合される場合よりもはるかに大きいパワーが、シリコンのような基板12を冷却するために必要とされる。上述したように、利点は、基板12自体が、基板12の数度の温度上昇のたびに金属ペースト14を大きい温度冷却するためのヒートシンクとして作用することである。これは、効果的に、基板12上の金属ペースト14が実質的にすぐに基板温度にまで冷却されることができることを意味する。
【0050】
金属ペースト14のマイクロ粒子のような銀粒子の小さい寸法Qは、1−50MHzのレンジの、特に27MHzの、非常に高いRF周波数とのみ選択的に結合されることができる。RFエネルギー18の浸透深さは、下式によって支配される:
δ=503√(ρ/f*μ
ここで使用される値は、μ=1、ρ=16*10−9Ωm、及びf=27*10Hzである。ここで、
δ=浸透深さ(m);
ρ=導電率(Ωm);
f=RF周波数(Hz);及び
μ=比透磁率。
【0051】
この式に基づく算定は、27MHzでの浸透深さδが、12マイクロメートルであることを示し、これは、この例における金属ペースト14の銀粒子のサイズと同じオーダーである。結合のために必要な粒径とRF周波数との間の関係は、浸透深さよりはるかに大きい典型的なサイズを有する粒子/オブジェクトが加熱されるように、確立される。概して、粒径は、最適な結合のためにRF場の浸透深さの6倍より大きいべきである。しかしながら、RF結合は、RF場の浸透深さに等しい粒径について機能することが分かっている。粒径が非常に小さい場合、効率は低下される。従って、例えばRF場の浸透深さのような、粒径に対するおよその下限がある。
【0052】
図8は、銀、アルミニウム及びニッケルの粒子に関する浸透深さδとRF周波数fとの間の関係を示している。所与の周波数fによって誘導加熱されることができる粒径の下限は、浸透深さδ=503√(ρ/f*μ)によって決定される。ここで、ρ及びμは、材料特性である。所与の粒径について、使用されるべき周波数は、同じ式によって与えられる最小値に従う。例えば:
15μmの銀粒子は、18MHz(より大きい)の周波数を必要とする;
15μmのアルミニウム粒子は、30MHz(より大きい)周波数を必要とする;
15μmのニッケル粒子は、0.8MHz(より大きい)周波数を必要とする;
10μmの銀粒子は、40MHz(より大きい)の周波数を必要とする;
5μmの銀粒子は、160MHz(より大きい)の周波数を必要とする。
【0053】
RF場による粒子24の個別の励起は、金属粒子24を加熱し、それらを互いに焼結する。RF浸透の効率は、x及びy方向の付加の電気接続のため、増大されることができ、ゆえに、より大きい電流が流れることを可能にする。更なる洞察は、基板12上に配される金属ペースト14のジオメトリが、温度分布を変化させるために使用されることができることである。図2は、RFコイル16の下において、金属導電性ペースト14の適用されるパターンを有する集積回路用基板12の側断面図を示している。より多くの金属ペースト14が存在する場合、例えばそれがより厚い場合、図2の素子Aを参照して、金属ペースト14の温度は、低下される。逆に、図2の素子Bは、より薄い金属ペースト層14を示しており、これは、RF結合に応答してはるかに速く熱くなる。同様の効果が、x軸及びy軸における金属ペースト層14の分布によって生成されることができる。
【0054】
この原理は、例えば特定のタイプの太陽電池において使用されることができる。この原理は、RF場から構造の感受性部分を遮蔽するために金属層が使用されることができる他のアプリケーションにおいても使用されることができる。代替として、図7に示されるように、多層集積回路構造が使用されることができる。他の洞察は、金属ペースト14の厚さのようなz軸方向の寸法が、方法の実現可能性のために決定され、金属ペースト14の金属粒子の予備焼結が、方法の効率を向上させることである。
【0055】
他の洞察は、RFエネルギー18から銀のような金属ペースト14の金属粒子へのパワー伝達の均一性が、RFコイル16下において予め決められたレートで基板12を移動させることによって大きく高められる。基板は、金属ペースト14を有する基板12の各部分に対するRFエネルギー18の所望の印加に依存して、安定したレート又は可変のレートで移動されることができる。
【0056】
他の洞察は、RFエネルギー18から銀のような金属ペースト14の金属粒子に対するパワー伝達の均一性は、基板12上の金属ペースト14の各部分が、同じ温度に達し又は基板12の当該部分について望まれるユニークな温度に達するように、精密な基板位置に依存してRFエネルギー18を変化させることによって、大きく向上される。
【0057】
多層化集積回路は、図7A−図7Dに示されている。図7Aは、図7B及び図7Cに示されるように、基板12上に構成される2つの金属層32、34を有する多層集積回路装置30の側面図を示している。第1の金属層32及び第2の金属層34は、金属ペースト14を含むことができ、絶縁層36によって隔てられて図示されている。本発明によれば、第1及び第2の金属層32、34の両方と同時に結合するように、多層集積回路装置30の全体に誘導RF場が印加されることができる。本教示によれば、金属ペースト12の粒径並びにRF磁場強度及び周波数は、十分な浸透深さを確実にするように選択されるべきである。
【0058】
図7Dは、基板12が各々の側面に2つの金属層を有する多層集積回路装置46の代替の実施形態を示している。基板12の片側は、絶縁層36によって隔てられた第1及び第2の金属層32、34を有する。基板12の反対側は、絶縁層42によって隔てられた第3及び第4の金属層38、40を有する。基板12は、金属粒子で充填されたバイア44を有しうる。本発明によれば、金属層32、34、38、40のすべてと同時に結合するように、多層集積回路装置46の全体に誘導RF場が印加されることができる。RF場は、金属層32、34、38、40の全てと効果的に誘導結合するように、基板12の2つの側から同時に提供されることもできる。RF場は、RF場に対するバイア44の直交する向きのため、バイア44にあまり効果的には結合されず、従って、バイアにおいて達成される温度は、4つの金属層の内部の温度よりも低い。
【0059】
このようにして、開示される装置及び方法は、適用される金属ペースト内に基板を有する集積回路を製造する際の効果的且つ安価な方法を提供する。
【0060】
本発明は、図面及び前述の説明において詳しく図示され記述されているが、このような図示及び記述は、制限的でなく、説明的又は例示的なものであると考えられる。本発明は、開示される実施形態に制限されない。開示された実施形態に対する他の変更例は、図面、開示及び添付の請求項の研究から、請求項に記載の本発明を実施する際に当業者によって理解され達成されることができる。
【0061】
請求項において、「含む、有する」という語は、他の構成要素又はステップを除外せず、不定冠詞「a」又は「an」は、複数性を除外しない。単一のプロセッサ又は他のユニットは、請求項に列挙されるいくつかのアイテムの機能を果たすことができる。特定の手段が相互に異なる従属請求項に列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用されることができないことを示さない。請求項における任意の参照符号は、本発明の範囲を制限するものとして解釈されるべきでない。

【特許請求の範囲】
【請求項1】
厚膜金属層を有する集積回路を製造する装置であって、
熱伝導性基板上に、予め決められたサイズの金属粒子を有する金属ペーストの層を適用する適用手段と、
前記金属ペーストにRFエネルギーを選択的に誘導結合するためのRF生成器であって、前記予め決められたサイズの金属粒子は、前記RFエネルギーと選択的に誘導結合可能であり、前記金属粒子の前記予め決められたサイズは、前記金属粒子を加熱するための前記RFエネルギーの結合周波数に対応する、RF生成器と、
を有する装置。
【請求項2】
前記基板が、前記金属ペーストより高い熱容量を有する、請求項1に記載の装置。
【請求項3】
前記基板は、シリコン、ガリウム砒素、ゲルマニウム、インジウム−テルル化合物及び銅−インジウム−ガリウム−硫黄化合物のうち少なくとも1つである、請求項1に記載の装置。
【請求項4】
前記基板は、前記選択的に結合された金属ペーストを迅速に冷却するヒートシンクである、請求項1に記載の装置。
【請求項5】
前記金属ペーストは、銀、アルミニウム、銅及びステンレススチールのうち少なくとも1つの金属粒子を含む、請求項1に記載の装置。
【請求項6】
前記結合周波数は、2乃至200MHzのレンジにあり、特に27MHzである、請求項1に記載の装置。
【請求項7】
前記金属ペーストの前記金属粒子は、前記RFエネルギーと誘導結合可能であるように5乃至50μmのレンジにサイズ設計される、請求項6に記載の装置。
【請求項8】
前記RF生成器下において、予め決められたレートで前記金属ペーストを有する前記基板を移動させる基板テーブルを更に有し、前記RFエネルギーは、予め決められた態様で分布される、請求項1に記載の装置。
【請求項9】
前記予め決められたレートは一定であり、前記予め決められた態様は、変更可能であり、前記基板の位置に関連付けられる、請求項8に記載の装置。
【請求項10】
前記予め決められたレートは変更可能であり、前記予め決められた態様は一定である、請求項8に記載の装置。
【請求項11】
前記基板を予熱する基板ヒータを更に有し、前記基板の導電特性が、温度変化によって変化しうる、請求項1に記載の装置。
【請求項12】
金属ペースト適用手段を更に有し、
前記金属ペースト適用手段は、前記基板上に、予め決められた3次元ジオメトリを有する前記金属ペーストの層を適用するように構成され、前記誘導結合される金属粒子の温度が、前記ジオメトリによって操作可能である、請求項1に記載の装置。
【請求項13】
厚膜金属層を有する集積回路を製造する方法であって、
熱伝導基板上に、予め決められたサイズの金属粒子を有する金属ペーストの層を適用するステップと、
RF生成器から前記金属ペーストにRFエネルギーを選択的に誘導結合させるステップであって、前記金属粒子の予め決められたサイズが、前記RFエネルギーの結合周波数に対応し、前記予め決められたサイズの金属粒子が、前記金属粒子を加熱するために前記RFエネルギーと選択的に誘導結合可能である、ステップと、
を含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図7D】
image rotate

【図8】
image rotate


【公表番号】特表2012−522360(P2012−522360A)
【公表日】平成24年9月20日(2012.9.20)
【国際特許分類】
【出願番号】特願2012−501466(P2012−501466)
【出願日】平成22年3月24日(2010.3.24)
【国際出願番号】PCT/IB2010/051295
【国際公開番号】WO2010/109430
【国際公開日】平成22年9月30日(2010.9.30)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【Fターム(参考)】