説明

高分子化合物、化合物およびその用途

【課題】光電変換素子に含まれる有機層に用いた場合に、光電変換素子の光電変換効率が高くなる高分子化合物を提供することを目的とする。
【解決手段】式(1)で表される構造単位を有する高分子化合物。


(1)
〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Wは、シアノ基、フッ素原子を有する1価の有機基又はハロゲン原子を表す。Wは、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特定の構造を有する高分子化合物に関する。
【背景技術】
【0002】
近年、地球温暖化防止のため、大気中に放出されるCO2の削減が求められている。例えば、家屋の屋根にpn接合型のシリコン系太陽電池などを用いるソーラーシステムへの切り替えが提唱されているが、上記シリコン系太陽電池に用いられる単結晶、多結晶及びアモルファスシリコンは、その製造過程において高温、高真空条件が必要であるという問題がある。
【0003】
一方、光電変換素子の一態様である有機薄膜太陽電池は、シリコン系太陽電池の製造プロセスに用いられる高温、高真空プロセスが省略でき、塗布プロセスのみで安価に製造できる可能性があり、近年注目されてきている。有機薄膜太陽電池に用いる高分子化合物としては、繰り返し単位(A)及び繰り返し単位(B)からなる高分子化合物が記載されている(特許文献1)。
【0004】

繰り返し単位(A) 繰り返し単位(B)
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特表2009−506519号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、前記高分子化合物を含む有機層を有する光電変換素子は、光電変換効率が必ずしも十分ではない。
【0007】
本発明は、光電変換素子に含まれる有機層に用いた場合に、光電変換素子の光電変換効率が高くなる高分子化合物を提供することを目的とする。
【課題を解決するための手段】
【0008】
即ち、本発明は第一に、式(1)で表される構造単位を有する高分子化合物を提供する。

(1)
〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Wは、シアノ基、フッ素原子を有する1価の有機基又はハロゲン原子を表す。Wは、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
【0009】
本発明は第二に、式(3a)で表される化合物を提供する。

(3a)
〔式中、X3a1及びX3a2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3a1は、硫黄原子を表す。Z3a1及びZ3a2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3a1及びQ3a2は、同一又は相異なり、水素原子、ジヒドロキシボリル基又は1価の有機基を表す。〕
【0010】
本発明は第三に、式(3b)で表される化合物を提供する。

(3b)
〔式中、X3b1及びX3b2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3b1は、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Z3b1及びZ3b2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3b1は、塩素原子、臭素原子、ヨウ素原子、ジヒドロキシボリル基又は1価の有機基を表す。Q3b1は、ハロゲン原子、ジヒドロキシボリル基又は1価の有機基を表す。〕
【0011】
本発明は第四に、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に前記高分子化合物又は前記化合物を含有する光電変換素子を提供する。
【0012】
本発明は第五に、ゲート電極と、ソース電極と、ドレイン電極と、活性層とを有し、該活性層に前記高分子化合物又は前記化合物を含有する有機薄膜トランジスタを提供する。
【0013】
本発明は第六に、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に発光層を有し、該発光層に前記高分子化合物又は前記化合物を含有する有機エレクトロルミネッセンス素子を提供する。
【発明の効果】
【0014】
本発明の高分子化合物を含む有機層を有する光電変換素子は、光電変換効率が大きいため、本発明は極めて有用である。
【発明を実施するための形態】
【0015】
以下、本発明を詳細に説明する。
【0016】
本発明の高分子化合物は、式(1)で表される構造単位を有することを特徴とする。

(1)
〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。
は、硫黄原子、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Wは、シアノ基、フッ素原子を有する1価の有機基又はハロゲン原子を表す。Wは、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
【0017】
〜Rで表される置換基としては、ハロゲン原子、アルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルキルチオ基、置換されていてもよいアリール基、置換されていてもよいアリールオキシ基、置換されていてもよいアリールチオ基、置換されていてもよいアリールアルキル基、置換されていてもよいアリールアルコキシ基、置換されていても良いアリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。
【0018】
ここで、アルキル基は、直鎖状でも分岐状でもよく、環状であってもよい。アルキル基の炭素数は、通常1〜30である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、3,7−ジメチルオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。
【0019】
アルコキシ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルコキシ基は、置換基を有していてもよい。アルコキシ基の炭素数は、通常1〜20であり、置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基及び2−メトキシエチルオキシ基が挙げられる。
【0020】
アルキルチオ基のアルキル部分は、直鎖状でも分岐状でもよく、環状であってもよい。アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の炭素数は、通常1〜20であり、置換基としては、ハロゲン原子が挙げられる。置換基を有していてもよいアルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基及びトリフルオロメチルチオ基が挙げられる。
【0021】
アリール基とは、芳香族炭化水素から芳香環上の水素原子1個を除いた基を意味し、その炭素数は通常6〜60である。アリール基は、置換基を有していてもよく、置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアリール基の具体例としては、フェニル基、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基及びペンタフルオロフェニル基が挙げられる。C1〜C12アルコキシフェニル基の中で、好ましい態様はC1〜C8アルコキシフェニル基であり、より好ましい態様はC1〜C6アルコキシフェニル基である。C1〜C8アルコキシ及びC1〜C6アルコキシの具体例としては、上記アルコキシ基に関して例示したアルコキシの中の、C1〜C8及びC1〜C6のものが挙げられる。
【0022】
アリールオキシ基は、その炭素数が通常6〜60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアリールオキシ基の具体例としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基及びペンタフルオロフェノキシ基が挙げられる。
【0023】
アリールチオ基は、その炭素数が通常6〜60であり、アリール部分が置換基を有していてもよい。置換基を有していてもよいアリールチオ基の具体例としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。
【0024】
アリールアルキル基は、その炭素数が通常7〜60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアリールアルキル基の具体例としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基及び2−ナフチル−C1〜C12アルキル基が挙げられる。
【0025】
アリールアルコキシ基は、その炭素数が通常7〜60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアリールアルコキシ基の具体例としては、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基及び2−ナフチル−C1〜C12アルコキシ基が挙げられる。
【0026】
アリールアルキルチオ基は、その炭素数が通常7〜60であり、アリール部分が置換基を有していてもよい。置換基としては、ハロゲン原子及びアルコキシ基(例えば、炭素数1〜20)が挙げられる。置換基を有していてもよいアリールアルキルチオ基の具体例としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基及び2−ナフチル−C1〜C12アルキルチオ基が挙げられる。
【0027】
アシル基とは、カルボン酸(−COOH)中の水酸基を除いた基を意味し、その炭素数は通常2〜20である。アシル基の具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、トリフルオロアセチル基等の炭素数2〜20のハロゲンで置換されていてもよいアルキルカルボニル基、ベンゾイル基、ペンタフルオロベンゾイル基等のハロゲンで置換されていてもよいフェニルカルボニル基が挙げられる。
【0028】
アシルオキシ基とは、カルボン酸(−COOH)中の水素原子を除いた基を意味し、その炭素数は通常2〜20である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。
【0029】
アミド基とは、アミドから窒素原子に結合した水素原子1個を除いた基を意味し、その炭素数は通常2〜20である。アミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。
【0030】
イミド基とは、イミド(−CO−NH−CO−)から窒素原子に結合した水素原子1個を除いた基を意味し、具体例としては、スクシンイミド基、フタルイミド基が挙げられる。
【0031】
置換アミノ基とは、アミノ基の水素原子の1個又は2個が置換されたものであり、置換基は、例えば、アルキル基及び置換されていてもよいアリール基である。アルキル基及び置換されていてもよいアリール基の具体例は、Rで表されるアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換アミノ基の炭素数は通常1〜40である。置換アミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基及び2−ナフチル−C1〜C12アルキルアミノ基が挙げられる。
【0032】
置換シリル基とは、シリル基の水素原子の1個、2個又は3個が置換されたもの、一般に、シリル基の3水素原子全てが置換されたものであり、置換基は、例えば、アルキル基及び置換されていてもよいアリール基である。アルキル基及び置換されていてもよいアリール基の具体例は、Rで表されるアルキル基及び置換されていてもよいアリール基の具体例と同じである。置換シリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。
【0033】
置換シリルオキシ基とは、上記の置換シリル基に酸素原子が結合した基である。置換シリルオキシ基の具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリプロピルシリルオキシ基、トリイソプロピルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基、トリベンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、tert−ブチルジフェニルシリルオキシ基及びジメチルフェニルシリルオキシ基が挙げられる。
【0034】
置換シリルチオ基とは、上記の置換シリル基に硫黄原子が結合した基である。置換シリルチオ基の具体例としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリプロピルシリルチオ基、トリイソプロピルシリルチオ基、tert−ブチルジメチルシリルチオ基、トリフェニルシリルチオ基、トリ−p−キシリルシリルチオ基、トリベンジルシリルチオ基、ジフェニルメチルシリルチオ基、tert−ブチルジフェニルシリルチオ基及びジメチルフェニルシリルチオ基が挙げられる。
【0035】
置換シリルアミノ基とは、アミノ基の水素原子の1個又は2個が置換シリル基で置換されたものであり、該置換シリル基は上記の通りである。置換シリルアミノ基の具体例としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリプロピルシリルアミノ基、トリイソプロピルシリルアミノ基、tert−ブチルジメチルシリルアミノ基、トリフェニルシリルアミノ基、トリ−p−キシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、tert−ブチルジフェニルシリルアミノ基、ジメチルフェニルシリルアミノ基、ビス(トリメチルシリル)アミノ基、ビス(トリエチルシリル)アミノ基、ビス(トリプロピルシリル)アミノ基、ビス(トリイソプロピルシリル)アミノ基、ビス(tert−ブチルジメチルシリル)アミノ基、ビス(トリフェニルシリル)アミノ基、ビス(トリ−p−キシリルシリル)アミノ基、ビス(トリベンジルシリル)アミノ基、ビス(ジフェニルメチルシリル)アミノ基、ビス(tert−ブチルジフェニルシリル)アミノ基及びビス(ジメチルフェニルシリル)アミノ基が挙げられる。
【0036】
複素環基としては、置換基を有していてもよいフラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β-カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジン等の複素環化合物から水素原子を1個除いた基が挙げられる。芳香族複素環基が好ましい。
【0037】
複素環オキシ基としては、上記の複素環基に酸素原子が結合した式(11)で表される基が挙げられる。複素環チオ基としては、上記の複素環基に硫黄原子が結合した式(12)で表される基が挙げられる。

(11) (12)
〔式(11)及び式(12)中、Arは複素環基を表す。〕
【0038】
複素環オキシ基は、その炭素数が通常4〜60である。複素環オキシ基の具体例としては、チエニルオキシ基、C1〜C12アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C1〜C12アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基及びチアジアゾールオキシ基が挙げられる。
複素環チオ基は、その炭素数が通常4〜60である。複素環チオ基の具体例としては、チエニルメルカプト基、C1〜C12アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C1〜C12アルキルピリジルメルカプト基、イミダゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基及びチアジアゾールメルカプト基が挙げられる。
【0039】
アリールアルケニル基は、通常、その炭素数が8〜20であり、アリールアルケニル基の具体例としては、スチリル基が挙げられる。
【0040】
アリールアルキニル基は、通常、その炭素数が8〜20であり、アリールアルキニル基の具体例としては、フェニルアセチレニル基が挙げられる。
【0041】
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
【0042】
として好ましくは、硫黄原子、酸素原子、セレン原子であり、さらに好ましくは硫黄原子、酸素原子であり、特に好ましくは硫黄原子である。
【0043】
は、シアノ基、フッ素原子を有する1価の有機基又はハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0044】
フッ素原子を有する1価の有機基としては、フルオロアルキル基、フルオロアルコキシ基、フルオロアルキルチオ基、フルオロアリール基、フルオロアリールオキシ基、フルオロアリールチオ基などが挙げられる。
【0045】
フルオロアルキル基は、通常、炭素数1〜30のアルキル基の1以上の水素原子がフッ素原子で置換されたものであり、該アルキル基の具体例はRで表されるアルキル基の具体例と同じである。フルオロアルキル基の具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ジフルオロエチル基、ペンタフルオロメチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基及びトリデカフルオロヘキシル基が挙げられる。
【0046】
フルオロアルコキシ基は、通常、炭素数1〜20のアルコキシル基の1以上の水素原子がフッ素原子で置換されたものであり、該アルコキシ基の具体例はRで表されるアルコキシ基の具体例と同じである。フルオロアルコキシ基の具体例としては、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、ジフルオロエトキシ基、ペンタフルオロメトキシ基、ヘプタフルオロプロポオキシ基、ノナフルオロブトキシ基及びトリデカフルオロヘキシルオキシ基が挙げられる。
【0047】
フルオロアルキルチオ基は、通常、炭素数1〜20のアルキルチオ基の1以上の水素原子がフッ素原子で置換されたものであり、該アルキルチオ基の具体例はRで表されるアルキルチオ基の具体例と同じである。フルオロアルキルチオ基の具体例としては、フルオロメチルチオ基、ジフルオロメチルチオ基、トリフルオロメチルチオ基、ジフルオロエチルチオ基、ペンタフルオロメチルチオ基、ヘプタフルオロプロピルチオ基、ノナフルオロブチルチオ基及びトリデカフルオロヘキシルチオ基が挙げられる。
【0048】
フルオロアリール基は、通常、フェニル基又はナフチル基の1以上の水素原子がフッ素原子で置換されたものであり、フルオロアリール基の具体例としては、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基、ペンタフルオロフェニル基、フルオロビフェニル基、ノナフルオロビフェニル基、フルオロナフチル基及びヘプタフルオロナフチル基が挙げられる。
【0049】
フルオロアリールオキシ基とは、上記のフルオロアリール基に酸素原子が結合した基である。フルオロアリールオキシ基の具体例としては、フルオロフェノキシ基、ジフルオロフェノキシ基、トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、フルオロビフェニルオキシ基、ノナフルオロビフェニルオキシ基、フルオロナフチルオキシ基、ヘプタフルオロナフチルオキシ基が挙げられる。
【0050】
フルオロアリールチオ基とは、上記のフルオロアリール基に硫黄原子が結合した基である。フルオロアリールチオ基の具体例としては、フルオロフェニルチオ基、ジフルオロフェニルチオ基、トリフルオロフェニルチオ基、ペンタフルオロフェニルチオ基、フルオロビフェニルチオ基、ノナフルオロビフェニルチオ基、フルオロナフチルチオ基及びヘプタフルオロナフチルチオ基が挙げられる。
【0051】
としては、好ましくはハロゲン原子であり、さらに好ましくはフッ素原子、塩素原子であり、特に好ましくはフッ素原子である。
【0052】
は、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。フッ素原子を有する1価の有機基の定義、具体例は、Wで表されるフッ素原子を有する1価の有機基と同じである。
【0053】
は、好ましくはハロゲン原子であり、さらに好ましくはフッ素原子、塩素原子であり、特に好ましくはフッ素原子である。
【0054】
及びXは、同一又は相異なり、窒素原子又は=CH−を表す。好ましくは、X及びXの少なくとも一方が窒素原子であり、より好ましくは、X及びXが、窒素原子である。
【0055】
式(1)で表される構造単位としては、式(1001)〜式(1240)で表される構造単位が挙げられる。
【0056】

【0057】

【0058】

【0059】

【0060】

【0061】

【0062】

【0063】

【0064】

【0065】

【0066】

【0067】

【0068】

【0069】

【0070】

【0071】

【0072】

【0073】

【0074】

【0075】

【0076】

【0077】

【0078】

【0079】

【0080】
式(1001)〜式(1240)中、R、R及びRは前述と同じ意味を表す。式(1001)〜式(1240)で表される構造単位の中でも、光電変換効率を高める観点からは、好ましくは、式(1001)、式(1002)、式(1041)、式(1042)、式(1081)、式(1082)、式(1121)、式(1122)、式(1161)、式(1162)、式(1201)、式(1202)で表される構造単位であり、より好ましくは、式(1001)、式(1002)、式(1041)、式(1042)、式(1201)、式(1202)で表される構造単位であり、さらに好ましくは、式(1001)、式(1002)、式(1041)、式(1042)で表される構造単位であり、より好ましくは、式(1001)、式(1041)で表される構造単位であり、特に好ましくは、式(1001)で表される構造単位である。
【0081】
本発明の高分子化合物は、さらに、式(2)で表される構造単位を有していてもよい。

(2)
〔式中、Arは、アリーレン基又はヘテロアリーレン基を表す。〕
【0082】
ここで、アリーレン基とは、置換されていてもよい芳香族炭化水素から、水素原子2個を除いた原子団であり、アリーレン基に含まれる芳香環を構成する炭素数は通常6〜60程度であり、好ましくは6〜20である。芳香族炭化水素としては、ベンゼン環をもつもの、縮合環をもつもの、独立したベンゼン環又は縮合環2個以上が直接結合したもの又はビニレン等の基を介して結合したものも含まれる。
【0083】
ヘテロアリーレン基とは、置換されていてもよい芳香族複素環式化合物から水素原子2個を除いた原子団であり、ヘテロアリーレン基に含まれる芳香環を構成する炭素数は通常2〜60程度であり、好ましくは3〜20である。芳香族複素環式化合物とは、芳香族環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素、ケイ素などのヘテロ原子を環内に含むものをいう。
【0084】
式(2)で表される構造単位は、本発明の高分子化合物中において、2つ以上連続して存在していてもよいし、式(2)で表される構造単位の両隣りに式(1)で表される構造単位が存在していてもよい。2つ以上連続して存在する場合、連続して存在する式(2)で表される構造単位は同じであってもよいし、互いに異なっていてもよい。
【0085】
式(2)で表される構造単位としては、例えば、式(D−1)で表される構造単位、式(D−2)で表される構造単位が挙げられる。

〔式中、d環は、置換基を有していてもよい芳香族炭素環又は置換基を有していてもよい芳香族複素環を表す。mは、1以上の整数を表す。Zは、式(z−1)〜式(z−8)で表される基である。d環が複数個ある場合、それらは同一でもあっても相異なってもよい。Zが複数個ある場合、それらは同一であっても相異なってもよい。

(式(z−1)〜式(z−8)中、Rは、水素原子又は置換基を表す。Rが複数個ある場合、それらは同一でも相異なってもよい。Rが互いに結合し、環状構造を形成していてもよい。)〕
【0086】
芳香族炭素環としては、ベンゼン環、ナフタレン環、アントラセン環などが挙げられる。
芳香族複素環としては、フラン環、チオフェン環、ピロール環、シロール環、ボロール環、ホスホール環、イミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、イソオキサゾール環、ピラゾール環、イソチアゾール環、ピリジン環、ピラジン環、ピリミジン環、キノリン環、イソキノリン環、インドール環、ベンゾフラン環、イソベンゾフラン環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾチアゾール環、ベンゾオキサゾール環などが挙げられる。
【0087】
mは、1以上の整数を表す。好ましくは、1〜3であり、さらに好ましくは、1〜2であり、特に好ましくは1である。
【0088】
Rで表される置換基の例としては、フッ素原子で置換されていてもよいアルキル基、フッ素原子で置換されていてもよいアルコキシ基、フッ素原子で置換されていてもよいアルキルチオ基、フッ素原子で置換されていてもよいアリール基、フッ素原子で置換されていてもよいアリールオキシ基、フッ素原子で置換されていてもよいアリールチオ基、フッ素原子で置換されていてもよいアリールアルキル基、フッ素原子で置換されていてもよいアリールアルコキシ基、フッ素原子で置換されていてもよいアリールアルキルチオ基、フッ素原子で置換されていてもよいアリールアルケニル基、フッ素原子で置換されていてもよいアリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、複素環基、カルボキシル基、アルコキシカルボニル基、ニトロ基及びシアノ基が挙げられる。
【0089】
Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基及び複素環基の定義及び具体例は、前述のRで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基及び複素環基の定義及び具体例と同じである。
【0090】
アルコキシカルボキシル基としては、通常炭素数2〜20のものが用いられ、メチルエステル構造を有する基、エチルエステル構造を有する基、ブチルエステル構造を有する基などが挙げられる。
【0091】
Rは、好ましくは、アルキル基、アルコキシ基、アリール基、アリールオキシ基であり、さらに好ましくは、炭素数が9〜18のアルキル基、アルコキシ基、アリール基、アリールオキシ基であり、特に好ましくは、炭素数が9〜18のアルキル基である。
【0092】
芳香族炭素環及び芳香族複素環は置換基を有していてもよい。芳香族炭素環又は芳香族複素環が置換基を2つ以上有する場合、該置換基は互いに結合して環状構造を形成していてもよい。芳香族炭素環及び芳香族複素環が有していてもよい置換基としては、前述のRで表される置換基と同じ基が挙げられる。
【0093】
式(D−2)で表される構造単位としては、式(D−3)で表される構造単位、式(D−4)で表される構造単位、式(D−5)で表される構造単位が挙げられる。

〔式中、e環は、置換基を有していてもよい単環の芳香族炭素環又は置換基を有していてもよい単環の芳香族複素環を表す。nは、1以上の整数を表す。pは、0〜5の整数を表す。e環が複数個ある場合、それらは、同一であっても相異なってもよい。〕
【0094】
nは1以上の整数を表す。好ましくは、1〜4であり、さらに好ましくは1〜3であり、特に好ましくは1〜2である。
pは、0〜5の整数を表す。好ましくは0〜4であり、より好ましくは0〜3であり、さらに好ましくは0〜2である。
【0095】
単環の芳香族炭素環及び単環の芳香族複素環が有していてもよい置換基は、d環中の芳香族炭素環又は芳香族複素環が有していてもよい置換基と同じ基が挙げられる。
【0096】
本発明の高分子化合物を光電変換素子に使用する場合、光電変換効率を高める観点からは、式(D−1)〜式(D−5)で表される構造単位の中でも、式(D−1)で表される構造単位、式(D−5)で表される構造単位が好ましく、式(D−1)で表される構造単位がさらに好ましい。
【0097】
本発明の高分子化合物を有機薄膜トランジスタに使用する場合、ホール移動度を高める観点からは、式(D−1)〜式(D−5)で表される構造単位の中でも、式(D−1)で表される構造単位、式(D−4)で表される構造単位が好ましく、式(D−1)で表される構造単位がさらに好ましい。
【0098】
式(D−1)で表される構造単位としては、式1〜式152で表される基が挙げられる。
【0099】

【0100】

【0101】

【0102】

【0103】

【0104】

【0105】

【0106】

【0107】

【0108】

【0109】

【0110】

【0111】

【0112】

【0113】

【0114】

【0115】
式1〜式152中、Rは前述と同じ意味を表す。
【0116】
式(D−3)で表される構造単位としては、式201〜式234で表される基が挙げられる。
【0117】

【0118】

【0119】

【0120】

【0121】
式201〜式234中、Rは前述と同じ意味を表す。
【0122】
式(D−4)で表される構造単位としては、式235〜式238で表される基が挙げられる。

【0123】
式235〜式238中、Rは前述と同じ意味を表す。
【0124】
式(D−5)で表される構造単位としては、式301〜式323で表される基が挙げられる。
【0125】

【0126】

【0127】
式301〜式323中、Rは前述と同じ意味を表す。
【0128】
本発明の高分子化合物を光電変換素子用材料として使用する場合、光電変換効率を高める観点からは、式1〜式152、式201〜式238、式301〜式323で表される基の中でも、式1、式5、式7、式8、式12、式14、式15、式25、式35、式39、式41、式49、式50、式54、式60、式62、式63、式67、式73、式75、式76、式80、式86、式101、式106、式112、式114、式119、式125、式127、式132、式138、式140、式145、式151、式215、式218、式229、式230、式234、式309、式310、式311、式312、式313、式314、式318、式321、式322、式323で表される基が好ましく、式1、式8、式15、式25、式35、式49、式62、式75、式101、式114、式127、式140、式215、式234、式309、式310、式311、式314、式321、式322、式323で表される基がより好ましく、式75、式309、式314、式322、式323で表される基がさらに好ましく、式75で表される基が特に好ましい。
【0129】
本発明の高分子化合物を有機薄膜トランジスタに使用する場合、ホール移動度を高める観点からは、式1〜式152、式201〜式238、式301〜式323で表される基の中でも、式1、式8、式25、式35、式49、式54、式62、式67、式75、式80、式101、式114、式201、式202、式203、式204、式205、式206、式207、式208、式209、式210、式215、式216、式217、式218、式219、式220、式221、式222、式229、式230、式231、式232、式233、式235、式236、式237、式238、式309、式310、式311、式312、式313、式314、式318、式319、式322、式323で表される基が好ましく、式25、式75、式80、式114、式203、式204、式207、式208、式215、式216、式217、式218、式219、式220、式232、式233、式235、式236、式309、式314、式322で表される基がより好ましく、式75、式114、式204、式208、式215、式216、式217、式232、式236、式309、式314で表される基がさらに好ましく、式75で表される基が特に好ましい。
【0130】
本発明の高分子化合物は、2種類以上の式(D−1)〜式(D−5)で表される構造単位が結合した基を有していてもよい。該基としては、例えば、式401〜式414で表される基が挙げられる。
【0131】

【0132】

【0133】

【0134】
式401〜式414中、a及びbは、同一又は相異なり、1〜5の整数を表す。好ましくは1〜3であり、特に好ましくは1である。式401〜式414中、Rは前述と同じ意味を表す。
【0135】
本発明の高分子を光電変換素子用材料として使用する場合、光電変換効率を高める観点からは、式401〜式414で表される基の中でも、式401、式402、式409、式410、式411、式412、式413、式414で表される基が好ましく、式401、式409、式413、式414で表される基がより好ましく、式401、式409で表される基が特に好ましい。
【0136】
Arの好ましい一態様は、チオフェン環を含むヘテロアリーレン基である。
【0137】
本発明の高分子化合物が、式(2)で表される構造単位を有する場合、本発明の高分子化合物中の式(1)で表される構造単位の数と式(2)で表される構造単位の数の割合は、本発明の高分子化合物の溶媒への溶解性を高める観点からは、下式で表されるSの数値が、0.10〜0.80であることが好ましく、0.15〜0.60であることがさらに好ましく、0.20〜0.50であることが特に好ましい。

S=(式(1)で表される構造単位の数)/{(式(1)で表される構造単位の数))+(式(2)で表される構造単位の数)}
【0138】
本発明における高分子化合物とは、ゲルパーミエーションクロマトグラフィー(以下GPCと呼称することもある)で測定したポリスチレン換算の数平均分子量が2000以上の化合物を指す。本発明の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは2000〜1000000であり、さらに好ましくは2500〜1000000であり、特に好ましくは3000〜100000である。
【0139】
本発明の高分子化合物中の式(1)で表される構造単位の含有量は、化合物中に少なくとも1つ含まれていればよい。好ましくは高分子化合物中、高分子鎖一本あたり平均2個以上、さらに好ましくは高分子鎖一本あたり平均3個以上含まれる。
【0140】
また、本発明の高分子化合物は、素子に用いられる場合、デバイス作製の容易性から、溶媒への溶解度が高いことが望ましい。具体的には、本発明の高分子化合物が、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.4wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。
【0141】
本発明の高分子化合物は、π共役高分子化合物であることが好ましい。π共役高分子化合物とは、主鎖中、多重結合が単結合を間に1個はさんで存在する高分子化合物を指す。

【0142】
本発明の高分子化合物の製造方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応やStilleカップリング反応を用いる方法が好ましい。
【0143】
Suzukiカップリング反応を用いる方法としては、例えば、式(100):
100−E1−Q200 (100)
〔式中、E1は、芳香環を含む2価の基を表す。Q100及びQ200は、同一又は相異なり、ジヒドロキシボリル基[−B(OH)2]又はホウ酸エステル残基を表す。〕
で表される1種類以上の化合物と、式(200):
1−E2−T2 (200)
〔式中、E2は、式(1)で表される構造単位を表す。T1及びT2は、同一又は相異なり、ハロゲン原子又はスルホン酸残基を表す。〕
で表される1種類以上の化合物とを、パラジウム触媒及び塩基の存在下で反応させる工程を有する製造方法が挙げられる。Eとして好ましくはアリーレン基、ヘテロアリーレン基であり、さらに好ましくは前述の式1〜式255で表される基が挙げられる。
この場合、反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計が、式(100)で表わされる1種類以上の化合物のモル数の合計に対して、過剰であることが好ましい。反応に用いる式(200)で表わされる1種類以上の化合物のモル数の合計を1モルとすると、式(100)で表わされる1種類以上の化合物のモル数の合計が0.6〜0.99モルであることが好ましく、0.7〜0.95モルであることがさらに好ましい。
【0144】
ホウ酸エステル残基とは、ホウ酸ジエステルから水酸基を除去した基を意味し、ジアルキルエステル残基、ジアリールエステル残基、ジ(アリールアルキル)エステル残基などが挙げられる。ホウ酸エステル残基の具体例としては、下記式:

(式中、Meはメチル基を表し、Etはエチル基を表す。)
で表される基が例示される。
【0145】
式(200)における、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましく、臭素原子であることがさらに好ましい。
【0146】
式(200)における、T及びTで表されるスルホン酸残基とは、スルホン酸(−SOH)から酸性水素を除いた原子団を意味し、具体例としては、アルキルスルホネート基(例えば、メタンスルホネート基、エタンスルホネート基)、アリールスルホネート基(例えば、ベンゼンスルホネート基、p−トルエンスルホネート基)、アリールアルキルスルホネート基(例えば、ベンジルスルホネート基)及びトリフルオロメタンスルホネート基が挙げられる。
【0147】
具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法等が挙げられる。
【0148】
Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。
パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.1モルである。
【0149】
Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。
【0150】
Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウムが挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。
塩基の添加量は、式(100)で表される化合物1モルに対して、通常、0.5モル〜100モル、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。
【0151】
Suzukiカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランが例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。また、塩基は、水溶液として加え、2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、水溶液として加えて反応させる。
なお、塩基を水溶液として加え、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
【0152】
Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、50〜160℃程度であり、高分子化合物の高分子量化の観点からは、60〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。
【0153】
Suzukiカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd(0)触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(100)で表される化合物、式(200)で表される化合物、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、この溶液に、あらかじめ窒素ガスでバブリングすることにより脱気した塩基、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
【0154】
Stilleカップリング反応を用いる方法としては、例えば、式(300):
300−E−Q400 (300)
〔式中、Eは、芳香環を含む2価の基を表す。Q300及びQ400は、同一又は相異なり、置換スタンニル基を表す。〕
で表される1種類以上の化合物と、前記式(200)で表される1種類以上の化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。Eとして好ましくはアリーレン基、ヘテロアリーレン基であり、さらに好ましくは前述の式1〜式255で表される基である。
【0155】
置換スタンニル基としては、-SnR100で表される基等が挙げられる。ここでR100は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基などが挙げられる。
該アルキル基の炭素数は通常1〜30であり、具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル墓、n−ペンチル基、イソペンチル基、2−メチルブチル基、1−メチルブチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基、2一メチルペンチル基、1−メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等のシクロアルキル基が挙げられる。アリール基としてはフェニル基、ナフチル基などが挙げられる。置換スタンニル基として好ましくは-SnMe、-SnEt、-SnBu、-SnPhであり、さらに好ましくは-SnMe、-SnEt、-SnBuである。上記好ましい例において、Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。
【0156】
具体的には、触媒として、例えば、パラジウム触媒下で任意の溶媒中で反応する方法が挙げられる。
Stilleカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、パラジウム[テトラキス(トリフェニルホスフィン)]、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。
Stilleカップリング反応に使用するパラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(100)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.2モルである。
【0157】
また、Stilleカップリング反応において、必要に応じて配位子や助触媒を用いることもできる。配位子としては、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン、トリス(2−フリル)ホスフィン等のリン化合物やトリフェニルアルシン、トリフェノキシアルシン等の砒素化合物が挙げられる。助触媒としてはヨウ化銅、臭化銅、塩化銅、2−テノイル酸銅(I)などが挙げられる。
配位子又は助触媒を用いる場合、配位子又は助触媒の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。
【0158】
Stilleカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、トルエン、ジメトキシエタン、テトラヒドロフラン等が挙げられる。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。
【0159】
Stilleカップリング反応を行う温度は、前記溶媒にもよるが、通常、50〜160℃程度であり、高分子化合物の高分子量化の観点から、60〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。
前記反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。
【0160】
Stilleカップリング反応は、アルゴンガス、窒素ガス等の不活性雰囲気下、Pd触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(300)で表される化合物、式(200)で表される化合物、パラジウム触媒を仕込み、さらに、重合容器を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、必要に応じて配位子や助触媒を加え、その後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
【0161】
本発明の高分子化合物の末端基は、Q100〜Q400、T、Tで表されるような重合活性基が残っていると、素子の作製に用いたときに得られる素子の特性や寿命が低下する可能性があるため、安定な基で保護されていてもよい。該安定な基は、主鎖の共役構造と連続した共役結合を有している基が好ましい。また、該安定な基は、ビニレン基を介してアリール基又は複素環基と結合している構造を有していてもよい。該安定な基としては、置換基を有さないフェニル基、ナフチル基、メチル基、エチル基、プロピル基、ブチル基、トリフルオロメチル基、ペンタフルオロエチル基などが挙げられる。
【0162】
本発明の高分子化合物に含まれる金属元素の量は、少ないほうが、光電変換効率やホール移動度が高まるため好ましい。中でも、本発明の高分子化合物に含まれる遷移金属元素の量が少ないことが好ましい。遷移金属元素としては、パラジウム、鉄、スズ、ニッケル、銅が挙げられる。中でも、パラジウム、鉄、スズの量が少ないことが好ましい。本発明の高分子化合物に含まれる不純物の量は元素分析で測定されるが、パラジウム、鉄、スズの合計量が、好ましくは1000ppm以下であり、さらに好ましくは500ppm以下であり、さらにより好ましくは100ppm以下であり、特に好ましくは30ppm以下である。
元素分析の方法としては、原子吸光分析、発光分光分析、プラズマ発光分析、蛍光X線分析、プラズマ質量分析、グロー放電質量分析、イオンクロマトグラフ分析などが挙げられる。
【0163】
本発明の高分子化合物は、式(1)で表される構造単位を有することを特徴とするが、該高分子化合物は、例えば、式(3)で表される化合物を原料の一つとして用いることにより合成することが出来る。

(3)
〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Wは、水素原子、シアノ基、フッ素原子を有する1価の有機基又はフッ素原子を表す。2個あるWは、同一でも相異なってもよい。ただし、少なくとも1のWは、シアノ基、フッ素原子を有する1価の有機基又はフッ素原子である。Qは、水素原子、ハロゲン原子、ジヒドロキシボリル基又は1価の有機基を表す。2個あるQは、同一でも相異なってもよい。〕
【0164】
式(3)中、X及びXの少なくとも一方が窒素原子であることが好ましく、X及びXの両方が窒素原子であることがさらに好ましい。
【0165】
式(3)中、Yは、好ましくは硫黄原子、酸素原子、−N(R)−、−CR=CR−であり、より好ましくは硫黄原子、酸素原子、−CR=CR−であり、さらに好ましくは硫黄原子、−CR=CR−である。
【0166】
Qで表される1価の有機基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、ホウ酸エステル残基及び置換スタンニル基が挙げられる。
【0167】
アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基及びアリールアルキニル基の定義及び具体例としては、前述のRで説明した定義及び例示と同じものが挙げられる。ホウ酸エステル残基、置換スタンニル基の定義及び具体例としては、前述のQ100又はQ300で説明した定義及び例示と同じものが挙げられる。
【0168】
Qで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
【0169】
Qとして好ましくは臭素原子、ジヒドロキシボリル基、ホウ酸エステル残基、置換スタンニル基、置換シリル基であり、さらに好ましくは臭素原子、ジヒドロキシボリル基、ホウ酸エステル残基であり、特に好ましくは臭素原子である。
【0170】
式(3)中、Wで表されるフッ素原子を有する1価の有機基の具体例は、Wで表されるフッ素原子を有する1価の有機基の具体例と同じである。
【0171】
式(3)で表される化合物としては、式501〜式652で表される化合物が例示される。
【0172】

【0173】

【0174】

【0175】

【0176】

【0177】

【0178】

【0179】

【0180】

【0181】

【0182】

【0183】

【0184】

【0185】

【0186】

【0187】
式501〜式652の中で、R、R、R及びRは前述と同じ意味を表す。
式501〜式652で表される化合物の中でも、重合した高分子化合物を含む光電変換素子の光電変換効率を高める観点からは、式501〜式510、式531〜式550、式571〜式590、式611〜式620、式621、式624、式625、式628、式629、式632、式633〜642、式643〜式652が好ましい。さらに好ましくは式501〜式510、式541〜式550、式581〜式590、式621、式625、式629、式633〜式637、式643〜式647で表される化合物である。さらにより好ましくは、式501、式507、式541、式547、式581、式587、式621、式634、式643で表される化合物である。合成の容易さからは、式501、式507、式541、式581、式634、式643で表される化合物が好ましい。
【0188】
式(3)で表される化合物の中でも、さらに好ましくは式(3C)で表される化合物である。

(3C)
〔式中、X、X、Y及びQは前述と同じ意味を表す。Z及びZは、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。〕
【0189】
式(3C)中、Z及びZで表されるフッ素原子を有する1価の有機基の具体例は、Wで表されるフッ素原子を有する1価の有機基の具体例と同じである。
【0190】
式(3C)で表される化合物の一態様は、式(3a)で表される化合物である。

(3a)
【0191】
式(3a)中、X3a1及びX3a2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3a1は、硫黄原子を表す。Z3a1及びZ3a2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3a1及びQ3a2は、同一又は相異なり、水素原子、ジヒドロキシボリル基又は1価の有機基を表す。
【0192】
式(3a)中、Z3a1及びZ3a2で表されるフッ素原子を有する1価の有機基の具体例は、Wで表されるフッ素原子を有する1価の有機基の具体例と同じである。Q3a1及びQ3a2で表される1価の有機基の具体例は、Qで表される1価の有機基の具体例と同じである。
【0193】
3a1及びQ3a2の好ましい一態様は、水素原子である。Q3a1及びQ3a2の好ましい他の態様は、ジヒドロキシボリル基、ホウ酸エステル残基、置換スタンニル基、置換シリル基である。ジヒドロキシボリル基、ホウ酸エステル残基、置換スタンニル基、置換シリル基の中でも、ホウ酸エステル残基、置換スタンニル基が好ましい。
【0194】
式(3C)で表される化合物の他の態様は、式(3b)で表される化合物である。

(3b)
【0195】
式(3b)中、X3b1及びX3b2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3b1は、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、前述と同じ意味を表す。Z3b1及びZ3b2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3b1は、塩素原子、臭素原子、ヨウ素原子、ジヒドロキシボリル基又は1価の有機基を表す。Q3b2は、ハロゲン原子、ジヒドロキシボリル基又は1価の有機基を表す。
【0196】
式(3b)中、Z3b1及びZ3b2で表されるフッ素原子を有する1価の有機基の具体例は、Wで表されるフッ素原子を有する1価の有機基の具体例と同じである。Q3b1及びQ3b2で表される1価の有機基の具体例は、Qで表される1価の有機基の具体例と同じである。Q3b2で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0197】
3b1及びQ3b2として好ましくは、塩素原子、臭素原子、ヨウ素原子、ジヒドロキシボリル基、ホウ酸エステル残基、置換スタンニル基、置換シリル基であり、さらに好ましくは臭素原子、ヨウ素原子、ジヒドロキシボリル基、ホウ酸エステル残基、置換スタンニル基、置換シリル基であり、特に好ましくは臭素原子、ヨウ素原子、ホウ酸エステル残基、置換スタンニル基である。
3b1として好ましくは酸素原子、セレン原子、−CR=CR−であり、さらに好ましくは酸素原子、−CR=CR−である。
【0198】
式(3)で表される化合物の他の態様としては、式(3D)で表される化合物が挙げられる。

(3D)
〔式中、X、X、Y、Z及びZは、前述と同じ意味を表す。Qは、水素原子、塩素原子、臭素原子、ヨウ素原子、ジヒドロキシボリル基又は1価の有機基を表す。Qは、水素原子、ハロゲン原子又は1価の有機基を表す。〕
【0199】
式(3D)中、Q及びQで表される1価の有機基の具体例は、Qで表される1価の有機基の具体例と同じである。Qで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0200】
式(3)で表される化合物の一態様である式(3−1)

(3−1)
(式中、Yは前記と同じ意味を表す。)
で表される化合物は、式(3−2)

(3−2)
(式中、Yは前記と同じ意味を表す。)
で表される化合物を臭素化することで製造することが可能である。
【0201】
臭素化は公知の方法を用いることができるが、例えば、無溶媒で、又は、溶媒中で臭素化剤を用いて臭素化する方法を挙げることができる。
溶媒を用いる場合、反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサンなどのハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化不飽和炭化水素などが挙げられる。
臭素化剤としては臭素、N−ブロモスクシンイミド(以下、NBSと呼称することもある)、四塩化炭素、臭化水素酸などが挙げられる。これらの臭素化剤を複数組み合わせて使用することも可能である。臭素化剤の使用量は、式(3−2)で表される化合物のモル数に対して、通常2〜100000当量である。
【0202】
また、臭素化の際に臭素化を促進するための触媒を共存させることも可能である。触媒としては鉄、コバルト、ニッケル、銅などの金属、ハロゲン化鉄、ハロゲン化コバルト、ハロゲン化ニッケル、ハロゲン化銅などのハロゲン化金属、ベンゾイルパーオキシド、アゾイソブチロニトリルなどのラジカル発生剤などを挙げることができる。触媒として好ましくは金属、ハロゲン化金属であり、さらに好ましくは鉄、臭化鉄である。触媒の使用量は、通常式(3−2)で表される化合物のモル数に対して、0.001〜10当量であり、好ましくは0.01〜1当量である。反応温度は通常−50〜200℃であり、好ましくは0〜150℃である。
反応後は、例えば、水を加えて反応を停止した後に生成物を有機溶媒で抽出し、溶媒を留去するなどの通常の後処理を行い、式(3−1)で表される化合物を得ることができる。生成物の単離後及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
【0203】
式(3−2)で表される化合物のうち、Yが硫黄原子である化合物は、例えば、式(3−3)で表される化合物と塩化チオニルを反応させることによって製造することが可能である。

(3−3)
【0204】
塩化チオニルの使用量は、式(3−3)で表される化合物のモル数に対して、通常1〜100000当量である。反応温度は通常−50〜200℃であり、好ましくは0〜150℃である。
塩化チオニルと式(3−3)で表される化合物との反応は、無溶媒で、又は、溶媒中で行うことができる。溶媒を用いる場合、反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサンなどのハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化不飽和炭化水素などが挙げられる。
式(3−3)で表される化合物と塩化チオニルとを反応させる際には、塩基性の化合物を共存させることによって反応を促進することができる。塩基性の化合物としてはトリメチルアミン、トリエチルアミン、トリブチルアミン、ピリジン、キノリン、ピラジンなどが挙げられる。塩基性の化合物の使用量は、式(3−3)で表される化合物のモル数に対して、通常1〜100000当量、好ましくは2〜10000当量である。
反応後は、例えば、水を加えて反応を停止した後に生成物を有機溶媒で抽出し、溶媒を留去するなどの通常の後処理を行い、式(3−2)で表される化合物を得ることができる。生成物の単離後及び精製はクロマトグラフィーによる分取や再結晶などの方法により行うことができる。
【0205】
本発明の高分子化合物は、高い電子及び/又はホール輸送性を発揮し得ることから、該高分子化合物を含む有機薄膜を素子に用いた場合、電極から注入された電子やホール、或いは、光吸収によって発生した電荷を輸送することができる。これらの特性を活かして光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の素子に好適に用いることができる。以下、これらの素子について個々に説明する。
【0206】
本発明の高分子化合物は、光吸収末端波長が長波長であることが好ましい。光吸収末端波長は以下の方法で求めることができる。
測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、日本分光製、紫外可視近赤外分光光度計JASCO−V670)を用いる。JASCO−V670を用いる場合、測定可能な波長範囲が200〜1500nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、石英基板、ガラス基板等を用いる。次いで、その基板の上に高分子化合物を含む溶液若しくは高分子化合物を含む溶融体から高分子化合物を含む薄膜を形成する。溶液からの製膜では、製膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。
該薄膜の吸収スペクトルは、縦軸が高分子化合物の吸光度を、横軸が波長を示す。最も大きい吸収ピークの吸光度が0.5〜2程度になるよう、薄膜の膜厚を調整することが望ましい。吸収ピークの中で一番長波長の吸収ピークの吸光度を100%とし、その50%の吸光度を含む横軸(波長軸)に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第1の点とする。その25%の吸光度を含む波長軸に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第2の点とする。第1の点と第2の点とを結ぶ直線と基準線の交点を光吸収末端波長と定義する。ここで、基準線とは、最も長波長の吸収ピークにおいて、該吸収ピークの吸光度を100%とし、その10%の吸光度を含む波長軸に平行な直線と該吸収ピークの交点であって、該吸収ピークのピーク波長よりも長波長である交点の波長を基準として、基準となる波長より100nm長波長である吸収スペクトル上の第3の点と、基準となる波長より150nm長波長である吸収スペクトル上と第4の点を結んだ直線をいう。
【0207】
<光電変換素子>
本発明の高分子化合物を有する光電変換素子は、第1の電極と第2の電極との間に、本発明の高分子化合物を含む1層以上の活性層を有する。
本発明の高分子化合物を有する光電変換素子の好ましい形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の有機半導体とn型の有機半導体との有機組成物から形成される活性層を有する。本発明の高分子化合物は、p型の有機半導体として用いることが好ましい。この形態の光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーがフラーレン誘導体等の電子受容性化合物(n型の有機半導体)及び/又は本発明の高分子化合物等の電子供与性化合物(p型の有機半導体)で吸収され、電子とホールが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
【0208】
本発明の高分子化合物を用いて製造される光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
【0209】
本発明の高分子化合物を有する光電変換素子の他の態様は、少なくとも一方が透明又は半透明である一対の電極間に、本発明の高分子化合物を含む第1の活性層と、該第1の活性層に隣接して、フラーレン誘導体等の電子受容性化合物を含む第2の活性層を含む光電変換素子である。
【0210】
本発明の光電変換素子は、前記高分子化合物を含有する活性層にかえて、式(3)で表される化合物を含有する活性層を有していてもよい。
【0211】
本発明の光電変換素子は、前記高分子化合物を含有する活性層を有することが好ましい。
【0212】
前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESAや、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
【0213】
一方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
【0214】
光電変換効率を向上させるための手段として活性層以外の付加的な中間層を使用してもよい。中間層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物、PEDOT(ポリ−3,4−エチレンジオキシチオフェン)などが挙げられる。
【0215】
<活性層>
前記活性層は、本発明の高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記活性層のホール輸送性を高めるため、前記活性層中に電子供与性化合物及び/又は電子受容性化合物として、本発明の高分子化合物以外の化合物を混合して用いることもできる。なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
【0216】
前記電子供与性化合物としては、本発明の高分子化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
【0217】
前記電子受容性化合物としては、本発明の高分子化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
フラーレン、フラーレン誘導体としてはC60、C70、C76、C78、C84及びその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
【0218】
フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。

(I) (II) (III) (IV)

(式(I)〜(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
【0219】
及びRで表されるアルキル基及びアリール基の定義、具体例は、Rで表されるアルキル基及びアリール基の定義、具体例と同じである。
【0220】
で表されるヘテロアリール基は、例えば、チオフェンジイル基、ピリジンジイル基、フランジイル基、ピロールジイル基が挙げられる。
【0221】
で表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。

(V)
(式中、u1は、1〜6の整数を表す、u2は、0〜6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
【0222】
で表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。
【0223】
60の誘導体の具体例としては、以下のようなものが挙げられる。

【0224】
70の誘導体の具体例としては、以下のようなものが挙げられる。

【0225】
また、フラーレン誘導体の例としては、[6,6]フェニル−C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル−C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル−C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チェニル−C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。
【0226】
活性層中に本発明の高分子化合物とフラーレン誘導体とを含む場合、フラーレン誘導体の割合が、本発明の高分子化合物100重量部に対して、10〜1000重量部であることが好ましく、20〜500重量部であることがより好ましい。
【0227】
活性層の厚さは、通常、1nm〜100μmが好ましく、より好ましくは2nm〜1000nmであり、さらに好ましくは5nm〜500nmであり、より好ましくは20nm〜200nmである。
【0228】
前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、高分子化合物と溶媒とを含む溶液からの成膜や、真空蒸着法による成膜方法が挙げられる。
【0229】
<光電変換素子の製造方法>
光電変換素子の好ましい製造方法は、第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する素子の製造方法であって、該第1の電極上に本発明の高分子化合物と溶媒とを含む溶液(インク)を塗布法により塗布して活性層を形成する工程、該活性層上に第2の電極を形成する工程を有する素子の製造方法である。
【0230】
溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであればよい。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
【0231】
溶液を用いて成膜する場合、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。
成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。
【0232】
<有機薄膜トランジスタ>
本発明の高分子化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられ、有機半導体層が上述した有機薄膜によって構成されるものである。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。
【0233】
電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。
特に、ソース電極及びドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。電界効果型有機薄膜トランジスタにおいては、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。
【0234】
静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層(活性層)、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。静電誘導型有機薄膜トランジスタにおいても、有機半導体層が、本発明の高分子化合物を含む有機薄膜によって構成される。
【0235】
本発明の有機薄膜トランジスタは、前記高分子化合物を含有する活性層にかえて、式(3)で表される化合物を含有する活性層を有していてもよい。
【0236】
本発明の有機薄膜トランジスタは、前記高分子化合物を含有する活性層を有することが好ましい。
【0237】
<素子の用途>
本発明の高分子化合物を用いた光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
【0238】
また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
上述の有機薄膜トランジスタは、例えば電気泳動ディスプレイ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ等の画素の制御や、画面輝度の均一性や画面書き換え速度を制御のために用いられる画素駆動素子等として用いることができる。
【0239】
<太陽電池モジュール>
有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の高分子化合物を用いて製造される有機薄膜太陽電池も使用目的や使用場所及び環境により、適宜これらのモジュール構造を選択できる。
【0240】
代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム 又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。
支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
【0241】
<有機エレクトロルミネッセンス素子>
本発明の高分子化合物は、有機エレクトロルミネッセンス素子(有機EL素子)に用いることもできる。有機EL素子は、第1の電極と第2の電極との間に発光層を有する。有機EL素子は、発光層の他にも、正孔輸送層、電子輸送層を含んでいてもよい。該発光層、正孔輸送層、電子輸送層のいずれかの層中に本発明の高分子化合物が含まれる。発光層中には、本発明の高分子化合物の他にも、電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)を含んでいてもよい。有機EL素子としては、陽極と発光層と陰極とを有する素子、さらに陰極と発光層の間に、該発光層に隣接して電子輸送材料を含有する電子輸送層を有する陽極と発光層と電子輸送層と陰極とを有する素子、さらに陽極と発光層の間に、該発光層に隣接して正孔輸送材料を含む正孔輸送層を有する陽極と正孔輸送層と発光層と陰極とを有する素子、陽極と正孔輸送層と発光層と電子輸送層と陰極とを有する素子等が挙げられる。第1の電極と第2の電極の少なくとも一方は、透明又は半透明であることが好ましい。
【0242】
本発明の有機EL素子は、前記高分子化合物を含有する活性層にかえて、式(3)で表される化合物を含有する活性層を有していてもよい。
【0243】
本発明の有機EL素子は、前記高分子化合物を含有する活性層を有することが好ましい。
【実施例】
【0244】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
【0245】
(NMR測定)
NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(Varian社製、INOVA300)を用いて行った。
【0246】
(数平均分子量および重量平均分子量の測定)
数平均分子量及び重量平均分子量については、ゲルパーミエーションクロマトグラフィー(GPC)(島津製作所製、商品名:LC−10Avp)によりポリスチレン換算の数平均分子量及び重量平均分子量を求めた。測定する高分子化合物は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに30μL注入した。GPCの移動相はテトラヒドロフランを用い、0.6mL/分の流速で流した。カラムは、TSKgel SuperHM−H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製、商品名:RID−10A)を用いた。
【0247】
参考例1
(化合物1の合成)

フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのn−ブチルリチウム(n−BuLi)のヘキサン溶液31mL(80.6mmol)を滴下した。反応液を−78℃で2時間反応させた後、3−チオフェンアルデヒド8.96g(80.0mmol)をジエチルエーテル20mLに溶解させた溶液を滴下した。滴下後、−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、ヨウ素60g(236mmol)をジエチルエーテル1000mLに溶解させた溶液を30分かけて滴下した。滴下後、室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。ジエチルエーテルを加えて反応生成物を含む油層を抽出した後、硫酸マグネシウムで反応生成物を含む油層を乾燥し、ろ過後、ろ液を濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。
【0248】
参考例2
(化合物2の合成)

300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物1)を10.5g(23.4mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物2を10.0g(22.4mmol)得た。
【0249】
参考例3
(化合物3の合成)

フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物2を10.0g(22.4mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、反応液に水500mLを加え、さらにクロロホルムを加えて反応生成物を含む油層を抽出した。クロロホルム溶液である油層を硫酸マグネシウムで乾燥し、油層をろ過し、ろ液を濃縮して粗製物を得た。展開液がクロロホルムであるシリカゲルカラムで粗製物を精製し、化合物3を3.26g得た。ここまでの操作を複数回行った。
【0250】
参考例4
(化合物4の合成)

メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した300mL4つ口フラスコに、化合物3を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物5.99g(60mmol)を加え、室温(25℃)で45分間攪拌した。その後、反応液に水200mLを加え、さらにクロロホルムを加えて反応生成物を含む有機層を抽出し、クロロホルム溶液である有機層をシリカゲルカラムに通し、エバポレーターでろ液の溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物4を534mg得た。
【0251】
H NMR in CDCl(ppm):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H)
【0252】
参考例5
(化合物5cの合成)

フラスコ内の気体をアルゴンで置換した100mL四つ口フラスコに、化合物4を1.00g(4.80mmol)、脱水テトラヒドロフラン(THF)を30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、反応液に1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。その後、30分かけて温度を−5℃まで上げ、そのまま反応液を30分攪拌した。その後、10分かけて温度を0℃に上げ、そのまま反応液を1.5時間攪拌を行った。その後、反応液に水を加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、酢酸エチル溶液をシリカゲルカラムに通し、ろ液の溶媒を留去し、化合物5cを1.50g得た。
【0253】
H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58‐1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
【0254】
参考例6
(化合物6cの合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5cを1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れ、100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を含む有機層を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、溶媒を留去した。得られた粗生成物を展開溶媒がヘキサンであるシリカゲルカラムで精製し、化合物6cを1.33g得た。ここまでの操作を複数回行った。
【0255】
H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58‐1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
【0256】
参考例7
(化合物7の合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6cを2.16g(4.55 mmol)、脱水THFを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−ブチルリチウムのヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られたオイル状の物質を展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5重量(wt)%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物7を3.52g(3.34mmol)得た。
【0257】
H NMR in CDCl(ppm):6.72(d、1H)、6.68(d、1H)、1.95−1.80(b、4H)、1.65‐1.00(b、56H)、0.90−0.83(m、36H)
【0258】
実施例1
(化合物8の合成)

100mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(東京化成工業製)を2.00g(13.9mmol)、ジクロロメタンを10ml、トリエチルアミンを3.84g(37.9mmol)入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニル1.82g(15.3mmol)をジクロロメタン10mlに溶解させた溶液を滴下した。滴下後、フラスコを40℃に加熱し、4時間反応を行った。その後、フラスコを室温(25℃)まで冷却し、水50mlを加え、さらにクロロホルを加えて反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、ろ過した。ろ液をエバポレーターで濃縮し、析出した固体をカラムクロマトグラフィ(ヘキサン:酢酸エチル=4:1(容積比))で精製し、化合物8を0.80g(4.65mmol)得た。
【0259】
H NMR(CDCl、ppm):7.75(t、2H)
19F NMR(CDCl、ppm):−128.3(s、2F)
【0260】
実施例2
(化合物8の合成)

500mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(東京化成工業製)を10.2g(70.8mmol)、ピリジンを150mL入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニル16.0g(134mmol)を滴下した。滴下後、フラスコを25℃に温めて、6時間反応を行った。その後、反応液に水250mlを加え、さらにクロロホルムを加えて反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、ろ過した。ろ液をエバポレーターで濃縮し、析出した固体を再結晶で精製した。再結晶の溶媒には、メタノールを用いた。精製後、化合物8を10.5g(61.0mmol)得た。
【0261】
H NMR(CDCl、ppm):7.75(t、2H)
19F NMR(CDCl、ppm):−128.3(s、2F)
【0262】
実施例3
(化合物9の合成)

100mLフラスコに、化合物8を2.00g(11.6mmol)、鉄粉を0.20g(3.58mmol)入れ、フラスコを90℃に加熱した。このフラスコに、臭素31g(194mmol)を1時間かけて滴下した。滴下後、反応液を90℃で38時間攪拌した。その後、フラスコを室温(25℃)まで冷却し、クロロホルム100mLを入れて希釈した。得られた溶液を、5wt%の亜硫酸ナトリウム水溶液300mLに注ぎ込み、1時間攪拌した。得られた混合液の有機層を分液ロートで分離し、水層をクロロホルムで3回抽出した。得られた抽出液を有機層に混合し、混合した溶液を硫酸ナトリウムで乾燥した。ろ過後、ろ液をエバポレーターで濃縮し、溶媒を留去した。得られた黄色の固体を、55℃に熱したメタノール90mLに溶解させ、その後、25℃まで冷却した。析出した結晶をろ過して回収し、その後、室温(25℃)で減圧乾燥して化合物9を1.50g得た。
【0263】
19F NMR(CDCl、ppm):−118.9(s、2F)
【0264】
実施例4
(高分子化合物Aの合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を500mg(0.475mmol)、化合物9を141mg(0.427mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.52mg(0.007mmol)、トリス(2−トルイル)ホスフィンを13.0mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体185mgを得た。以下、この重合体を高分子化合物Aと呼称する。GPCで測定した高分子化合物Aのポリスチレン換算の分子量は、重量平均分子量(Mw)が29000であり、数平均分子量(Mn)が14000であった。
【0265】
実施例5
(インク及び有機薄膜太陽電池の作製、評価)
スパッタ法によりITO膜を150nmの厚みで付けたガラス基板を、オゾンUV処理することで、表面処理を行った。次に、高分子化合物A及びフラーレンC60PCBM(フェニルC61−酪酸メチルエステル)(phenyl C61-butyric acid methyl ester、フロンティアカーボン社製)を、高分子化合物Aに対するC60PCBMの重量比が3となるよう、オルトジクロロベンゼンに溶解し、インク1を製造した。インク1中、高分子化合物Aの重量とC60PCBMの重量との合計は、インク1の重量に対して2.0重量%であった。該インク1を用い、スピンコートにより基板上に塗布して、高分子化合物Aを含む有機膜を作製した。該有機膜の膜厚は、約100nmであった。有機膜の光吸収末端波長を測定したところ、890nmであった。その後、有機膜上に、真空蒸着機によりフッ化リチウムを厚さ2nmで蒸着し、次いでAlを厚さ100nmで蒸着し、有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放端電圧、フィルファクターを求めた。Jsc(短絡電流密度)は12.2mA/cmであり、Voc(開放端電圧)は0.71Vであり、ff(フィルファクター(曲線因子))は0.64であり、光電変換効率(η)は5.54%であった。
【0266】
実施例6
(有機薄膜太陽電池の作製、評価)
実施例5において、フラーレンC60PCBMの代わりにフラーレンC70PCBM([6,6]フェニル−C71酪酸メチルエステル([6,6]-Phenyl C71 butyric acid methyl ester)、フロンティアカーボン社製)を用いた以外は同様にして有機薄膜太陽電池を作製し、光電変換効率、短絡電流密度、開放端電圧、フィルファクターを求めた。有機膜の光吸収末端波長は890nmであった。Jsc(短絡電流密度)は15.9mA/cmであり、Voc(開放端電圧)は0.72Vであり、ff(フィルファクター(曲線因子))は0.59であり、光電変換効率(η)は6.72%であった。
【0267】
参考例8
(化合物16の合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物15を1.78g(10.0mmol)、2−エチルヘキシルブロミドを5.83g(25.0mmol)、ヨウ化カリウムを41.5mg(0.25mmol)、水酸化カリウムを1.68g(30.0mmol)入れ、ジメチルスルホキシド35mLに溶解させ、室温(25℃)で24時間攪拌した。反応後、反応液に水100mLを加え、ヘキサンで生成物を抽出し、展開溶媒がヘキサンであるシリカゲルカラムで精製を行い、化合物16を2.61g得た。
【0268】
参考例9
(化合物17の合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物16を1.31g(3.25mmol)、DMFを25mL加え、フラスコを0℃に冷却して、NBSを1.21g加え、12時間攪拌した。反応液中に水100mLを入れて反応を停止し、エーテルで生成物を抽出した。展開溶媒がヘキサンであるシリカゲルカラムで精製を行い、化合物17を1.70g得た。
【0269】
参考例10
(高分子化合物Eの合成)

フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物17を561mg(1.00mmol)、化合物10(4,7−bis(4,4,5,5−tetramethyl−1,3,2−dioxaborolan−2−yl)−2,1,3−benzothiadiazole)(Aldrich社製)を388.1mg(1.00mmol)、メチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)を202mg加え、トルエン20mlに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、反応液に酢酸パラジウムを2.25mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)を12.3mg、16.7wt%の炭酸ナトリウム水溶液を6.5mL加え、100℃で5時間攪拌を行った。その後、反応液にフェニルホウ酸50mgを加え、さらに70℃で2時間反応させた。その後、反応液にジエチルジチオカルバミン酸ナトリウム2gと水20mLを加え、2時間還流下で攪拌を行った。水層を除去後、有機層を水20mlで2回洗浄し、次いで、3wt%の酢酸水溶液20mLで2回洗浄し、さらに水20mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解し、アルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、精製された重合体280mgを得た。以下、この重合体を高分子化合物Eと呼称する。GPCで測定した高分子化合物Eのポリスチレン換算の分子量は、Mwが30000であり、Mnが14000であった。
【0270】
比較例1
(有機薄膜太陽電池の作製、評価)
実施例5において、高分子化合物Aの代わりに高分子化合物Eを用いた以外は同様にして有機薄膜太陽電池を作製し、光電変換効率、短絡電流密度、開放端電圧、フィルファクターを求めた。また、高分子化合物EとC60PCBMからなる有機膜の光吸収末端波長を測定した。結果を表1に示す。
【0271】
【表1】

【0272】
実施例7
(化合物18の合成)

四つ口フラスコに、化合物9を12.30g(37.28mmol)、ビス(ピナコラート)ジボロンを23.67g(93.20mmol)、酢酸カリウムを9.15g(93.20mmol)及び、ジオキサンを500mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液にジフェニルホスフィノフェロセンパラジウムジクロリドを1.52g(1.86mmol)、ジフェニルホスフィノフェロセンを1.03mg(1.86mmol)加えた後、加熱還流を60時間行った。還流後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液をセライトろ過して不溶分を分離した後、ろ液を乾燥させて溶媒を除去し、褐色固体を得た。得られた褐色固体に、熱ヘキサン200mLを加えてろ過し、ろ液を乾燥させて溶媒を除去して粗結晶を得た。続いて、粗結晶をヘキサンで再結晶した。再結晶を2回行い、化合物18を3.12g得た。
【0273】
1H-NMR(CDCl3, δ(ppm)) : 1.45(s, 24H)
19F-NMR(CDCl3, δ(ppm)) : -117(s, 2F)
【0274】
参考例11
(化合物19の合成)

四つ口フラスコに、化合物6cを3.00g(6.32mmol)、テトラヒドロフランを60mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−30℃に冷却後、N−ブロモスクシイミドを1.01g(5.69mmol)加え、−10℃で2時間攪拌した。攪拌後、液体クロマトグラフィーにより90%の原料の消失を確認し、反応を停止した。反応溶液に水及びジエチルエーテルを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物19を2.84g得た。
【0275】
1H-NMR(CDCl3, δ(ppm)) : 0.83 (m, 18H), 1.08-1.47 (m, 20H), 1.95 (q, 4H),
6.65 (s, 1H), 6.66 (s, 1H), 6.98 (s, 1H)
【0276】
実施例8
(化合物20の合成)

四つ口フラスコに、化合物19を1.352g(2.442mmol)、及び、テトラヒドロフランを25mL加え、室温(25℃)で30分間アルゴンバブリングを行った。
その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを21.6mg(0.024mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを27.4mg(0.094mmol)及び、2mol/Lのリン酸カリウム水溶液を5.90g(11.79mmol)加えた。反応溶液を80℃で攪拌しながら、0.500gの化合物18(1.179mmol)を10mLのテトラヒドロフランに溶かした溶液を、20分かけて滴下した。2時間後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及びヘキサンを加え、有機層を抽出し、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物20を665mg得た。
【0277】
1H-NMR(CDCl3, δ(ppm)) : 0.82(m, 36H), 1.08-1.47(m, 40H), 1.95(m, 8H),
6.71(d, 2H), 7.07(d, 2H), 7.92(d, 2H)
19F-NMR(CDCl3, δ(ppm)) : -125(s, 2F)
【0278】
実施例9
(化合物21の合成)

四つ口フラスコに、化合物20を657mg(0.588mmol)、テトラヒドロフラン(THF)を10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を0℃まで冷却後、NBSを230mg(1.30mmol)加え、40℃まで昇温した。1時間後に、液体クロマトグラフィーにより原料の消失を確認した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え、さらにヘキサンを加えて有機層の抽出を行った。その後、展開溶媒にヘキサンを用いたカラムで有機層の分離を行い、分離して得られた成分を乾燥させて溶媒を除去し、化合物21を685mg得た。
【0279】
1H-NMR(CDCl3, δ(ppm)) : 0.82(m, 36H), 1.08-1.47(m, 40H), 1.95(m, 8H),
6.73(s, 2H), 7.90(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -129(s, 2F)
【0280】
参考例12
(化合物22の合成)

四つ口フラスコに、マグネシウムを3.50g(144.1mmol)、テトラヒドロフランを72 mL、3,7,11−トリメチルドデシルブロマイドを20.98g(72.03mmol)加え、1 mol/Lのグリニャー試薬を調製した。別の四つ口フラスコに、化合物4を5.00g(24.01mmol)、テトラヒドロフランを200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−40℃に冷却後、調製したグリニャー試薬を加え、0℃まで昇温しながら攪拌した。3時間後に、液体クロマトグラフィーにより原料の消失を確認した。
反応溶液に水及びクロロホルムを加え、有機層の抽出を行い、展開溶媒にクロロホルムを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させることで、化合物22を含む混合オイルを得た。
【0281】
参考例13
(化合物23の合成)

四つ口フラスコに、参考例12で合成した化合物22を含む混合オイルを全量、トルエンを100mL加え、室温(25℃)で30分間アルゴンバブリングを行った。次に、反応溶液にパラ−トルエンスルホン酸1水和物を500mg加えた後、120℃に昇温して攪拌を行い、1時間後に、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及び酢酸エチルを加え、有機層の抽出を行った。展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物23を15.6g得た。
【0282】
1H-NMR(CDCl3, δ(ppm)) : 0.80〜0.88 (m, 24H), 0.97〜1.62 (m, 34H), 1.87 (q, 4H),
6.67 (d, 1H), 6.69 (d, 1H), 6.96 (d, 1H), 7.03 (d, 1H)
【0283】
参考例14
(化合物24の合成)

四つ口フラスコに、化合物23を7.995g(13.00mmol)、テトラヒドロフランを160mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−30℃に冷却後、N−ブロモスクシイミドを1.85g(10.4mmol)加え、−10℃で2時間攪拌した。液体クロマトグラフィーにより90%の原料が消失したことを確認し、反応を停止した。反応溶液に水及びジエチルエーテルを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物24を7.47g得た。
【0284】
1H-NMR(CDCl3, δ(ppm)) : 0.82〜0.88 (m, 24H), 0.95〜1.60 (m, 34H), 1.82 (q, 4H),
6.64 (s, 1H), 6.65 (s, 1H), 6.98 (d, 1H)
【0285】
実施例10
(化合物25の合成)

四つ口フラスコに、化合物24を1.729g(2.491mmol)、及び、塩化メチレンを25mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを21.6mg(0.024mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを27.4mg(0.094mmol)及び、2mol/Lのリン酸カリウム水溶液を5.90g(11.79mmol)加えた。反応溶液を45℃で攪拌しながら、0.500gの化合物18(1.179mmol)を20mLの塩化メチレンに溶かした溶液を、20分かけて滴下した。2時間後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及びヘキサンを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物25を1.21g得た。
【0286】
1H-NMR(CDCl3, δ(ppm)) : 0.70-0.95(m, 48H), 0.96-1.60(m, 68H), 1.97(m, 8H),
6.72(d, 2H), 7.08(d, 2H), 7.93(d, 2H)
19F-NMR(CDCl3, δ(ppm)) : -125(s, 2F)
【0287】
実施例11
(化合物26の合成)

四つ口フラスコに、化合物25を1.214g(0.868mmol)、テトラヒドロフラン(THF)を40mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を0℃まで冷却後、NBSを340mg(1.91mmol)加え、40℃まで昇温した。1時間後に、液体クロマトグラフィーにより原料の消失を確認した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え、さらにヘキサンを加えて有機層の抽出を行った。その後、展開溶媒にヘキサンを用いたカラムで有機層の分離を行い、分離して得られた成分を乾燥させて溶媒を除去し、化合物26を1.23g得た。
【0288】
1H-NMR(CDCl3, δ(ppm)) : 0.65-0.96(m, 48H), 0.98-1.62(m, 68H), 1.95(m, 8H),
6.73(s, 2H), 7.90(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -129(s, 2F)
【0289】
参考例15
(化合物27の合成)

四つ口フラスコに、化合物4を10.00g(48.02mmol)、テトラヒドロフランを400mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−40℃に冷却後、n−ドデシルマグネシウムブロミドを1.0mol/L含むジエチルエーテル溶液を144mL加え、0℃まで昇温しながら攪拌した。3時間後に、液体クロマトグラフィーにより原料の消失を確認した。
反応溶液に水及びクロロホルムを加え、有機層の抽出を行い、展開溶媒にクロロホルムを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させることで、化合物27を含む混合オイルを得た。
【0290】
参考例16
(化合物28の合成)

四つ口フラスコに、参考例15で合成した化合物27を含む混合オイルを全量、トルエンを200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。次に、反応溶液にパラ−トルエンスルホン酸1水和物を1000mg加えた後、120℃に昇温して攪拌を行い、1時間後に、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及び酢酸エチルを加え、有機層の抽出を行った。展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物28を21.1g得た。
【0291】
1H-NMR(CDCl3, δ(ppm)) : 0.83(t, 6H), 1.21(m, 36H), 1.43(m, 4H), 1.96(t, 4H),
6.67 (d, 1H), 6.69 (d, 1H), 6.96 (d, 1H), 7.03 (d, 1H)
【0292】
参考例17
(化合物29の合成)

四つ口フラスコに、化合物28を21.1g(39.8mmol)、テトラヒドロフランを420mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−30℃に冷却後、N−ブロモスクシイミドを6.38g(35.8mmol)加え、−10℃で2時間攪拌した。液体クロマトグラフィーにより90%の原料が消失したことを確認し、反応を停止した。反応溶液に水及びジエチルエーテルを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物29を23.0g得た。
【0293】
1H-NMR(CDCl3, δ(ppm)) : 0.83(t, 6H), 1.21(m, 36H), 1.43(m, 4H), 1.96(t, 4H),
6.65(d, 1H), 6.66(s, 1H), 6.98(s, 1H)
【0294】
実施例12
(化合物30の合成)

四つ口フラスコに、化合物29を3.388g(5.556mmol)、及び、塩化メチレンを50mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを86.4mg(0.094mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを109.5mg(0.377mmol)及び、2mol/Lのリン酸カリウム水溶液を11.79g(23.58mmol)加えた。反応溶液を45℃で攪拌しながら、1.000gの化合物18(2.358mmol)を50mLの塩化メチレンに溶かした溶液を、20分かけて滴下した。2時間後、液体クロマトグラフィーにより原料の消失を確認した。
反応溶液に水及びヘキサンを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物30を1.88g得た。
【0295】
1H-NMR(CDCl3, δ(ppm)) : 0.86(t, 12H), 0.95-1.50(m, 80H), 1.97(m, 8H),
6.71(d, 2H), 7.07(d, 2H), 7.92(d, 2H)
19F-NMR(CDCl3, δ(ppm)) : -125(s, 2F)
【0296】
実施例13
(化合物31の合成)

四つ口フラスコに、化合物30を1.884g(1.532mmol)、テトラヒドロフラン(THF)を60mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を0℃まで冷却後、NBSを600mg(3.37mmol)加え、40℃まで昇温した。1時間後に、液体クロマトグラフィーにより原料の消失を確認した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え、さらにヘキサンを加えて有機層の抽出を行った。その後、展開溶媒にヘキサンを用いたカラムで有機層の分離を行い、分離して得られた成分を乾燥させて溶媒を除去し、化合物31を1.88g得た。
【0297】
1H-NMR(CDCl3, δ(ppm)) : 0.86(t, 12H), 1.18-1.50(m, 80H), 1.95(m, 8H),
6.72(s, 2H), 7.90(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -129(s, 2F)
【0298】
参考例18
(化合物32の合成)

四つ口フラスコに、化合物4を6.00g(28.81mmol)、テトラヒドロフランを240mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−40℃に冷却後、n−ペンタデシルマグネシウムブロミドを0.5mol/L含むテトラヒドロフラン溶液を173mL加え、0℃まで昇温しながら攪拌した。3時間後に、液体クロマトグラフィーにより原料の消失を確認した。
反応溶液に水及びクロロホルムを加え、有機層の抽出を行い、展開溶媒にクロロホルムを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させることで、化合物32を含む混合オイルを得た。
【0299】
参考例19
(化合物33の合成)

四つ口フラスコに、参考例18で合成した化合物32を含む混合オイルを全量、トルエンを120mL加え、室温(25℃)で30分間アルゴンバブリングを行った。次に、反応溶液にパラ−トルエンスルホン酸1水和物を600mg加えた後、120℃に昇温して攪拌を行い、1時間後に、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及び酢酸エチルを加え、有機層の抽出を行った。展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物33を18.4g得た。
【0300】
1H-NMR(CDCl3, δ(ppm)) : 0.82(t, 6H), 1.21(m, 48H), 1.43(m, 4H), 1.96(t, 4H),
6.67 (d, 1H), 6.69 (d, 1H), 6.96 (d, 1H), 7.03 (d, 1H)
【0301】
参考例20
(化合物34の合成)

四つ口フラスコに、化合物33を23.2g(37.8mmol)、テトラヒドロフランを340mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−30℃に冷却後、N−ブロモスクシイミドを6.05g(34.0mmol)加え、−10℃で2時間攪拌した。液体クロマトグラフィーにより90%の原料が消失したことを確認し、反応を停止した。反応溶液に水及びジエチルエーテルを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物34を23.3g得た。
【0302】
1H-NMR(CDCl3, δ(ppm)) : 0.83(t, 6H), 1.23(m, 48H), 1.44(m, 4H), 1.98(t, 4H),
6.65(d, 1H), 6.66(s, 1H), 6.98(s, 1H)
【0303】
実施例14
(化合物35の合成)

四つ口フラスコに、化合物34を1.695g(2.442mmol)、及び、塩化メチレンを50mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを21.6mg(0.024mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを27.4mg(0.094mmol)及び、2mol/Lのリン酸カリウム水溶液を5.90g(11.79mmol)加えた。反応溶液を45℃で攪拌しながら、0.500gの化合物18(1.179mmol)を10mLの塩化メチレンに溶かした溶液を、20分かけて滴下した。2時間後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及びヘキサンを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物35を1.00g得た。
【0304】
1H-NMR(CDCl3, δ(ppm)) : 0.87(t, 12H), 0.90-1.46(m, 104H), 1.97(m, 8H),
6.71(d, 2H), 7.07(d, 2H), 7.93(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -125(s, 2F)
【0305】
実施例15
(化合物36の合成)

四つ口フラスコに、化合物35を1.001g(0.716mmol)、テトラヒドロフラン(THF)を30mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を0℃まで冷却後、NBSを280mg(1.573mmol)加え、40℃まで昇温した。1時間後に、液体クロマトグラフィーにより原料の消失を確認した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え、さらにヘキサンを加えて有機層の抽出を行った。その後、展開溶媒にヘキサンを用いたカラムで有機層の分離を行い、分離して得られた成分を乾燥させて溶媒を除去し、化合物36を1.04g得た。
【0306】
1H-NMR(CDCl3, δ(ppm)) : 0.87(t, 12H), 0.95-1.50(m, 104H), 1.95(m, 8H),
6.72(s, 2H), 7.90(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -129(s, 2F)
【0307】
参考例21
(化合物37の合成)

四つ口フラスコに、マグネシウムを3.50g(144.1mmol)、テトラヒドロフランを72 mL、n−オクタデシルブロマイドを24.01g(72.03mmol)加え、1mol/Lのグリニャー試薬を調製した。別の四つ口フラスコに、化合物4を5.00g(24.01mmol)、テトラヒドロフランを200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−40℃に冷却後、調製したグリニャー試薬を加え、0℃まで昇温しながら攪拌した。3時間後に、液体クロマトグラフィーにより原料の消失を確認した。
反応溶液に水及びクロロホルムを加え、有機層の抽出を行い、展開溶媒にクロロホルムを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させることで、化合物37を含む混合オイルを得た。
【0308】
参考例22
(化合物38の合成)

四つ口フラスコに、参考例21で合成した化合物37を含む混合オイルを全量、トルエンを200mL加え、室温(25℃)で30分間アルゴンバブリングを行った。次に、反応溶液にパラ−トルエンスルホン酸1水和物を1000mg加えた後、120℃に昇温して攪拌を行い、1時間後に、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及び酢酸エチルを加え、有機層の抽出を行った。展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物38を23.1g得た。
【0309】
1H-NMR(CDCl3, δ(ppm)) : 0.81(t, 6H), 1.21(m, 60H), 1.43(m, 4H), 1.96(t, 4H),
6.67 (d, 1H), 6.69 (d, 1H), 6.96 (d, 1H), 7.03 (d, 1H)
【0310】
参考例23
(化合物39の合成)

四つ口フラスコに、化合物38を1.500g(2.145mmol)、テトラヒドロフランを150mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を−30℃に冷却後、N−ブロモスクシイミドを343.3mg(1.931mmol)を加え、−10℃で2時間攪拌した。液体クロマトグラフィーにより90%の原料が消失したことを確認し、反応を停止した。反応溶液に水及びジエチルエーテルを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物39を1.657g得た。
【0311】
1H-NMR(CDCl3, δ(ppm)) : 0.83(t, 6H), 1.21(m, 60H), 1.43(m, 4H), 1.97(t, 4H),
6.65(d, 1H), 6.66(s, 1H), 6.97(s, 1H)
【0312】
実施例16
(化合物40の合成)

四つ口フラスコに、化合物39を1.657g(2.129mmol)、及び、塩化メチレンを22mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを38.8mg(0.042mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを49.2mg(0.170mmol)及び、2mol/Lのリン酸カリウム水溶液を5.30g(10.60mmol)加えた。反応溶液を45℃で攪拌しながら、0.450gの化合物18(1.061mmol)を20mLの塩化メチレンに溶かした溶液を、20分かけて滴下した。2時間後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及びヘキサンを加え、有機層の抽出を行い、展開溶媒にヘキサンを用いたカラムで有機層の精製を行った後、精製した有機層を乾燥させて溶媒を除去し、化合物40を1.657g得た。
【0313】
1H-NMR(CDCl3, δ(ppm)) : 0.88(t, 12H), 0.95-1.53(m, 128H), 1.97(m, 8H),
6.71(d, 2H), 7.08(d, 2H), 7.93(d, 2H)
19F-NMR(CDCl3, δ(ppm)) : -125(s, 2F)
【0314】
実施例17
(化合物41の合成)

四つ口フラスコに、化合物40を1.166g(0.744mmol)、テトラヒドロフラン(THF)を120mL加え、室温(25℃)で30分間アルゴンバブリングを行った。反応溶液を0℃まで冷却後、NBSを291mg(1.64mmol)加え、40℃まで昇温した。1時間後に、液体クロマトグラフィーにより原料の消失を確認した。その後、反応溶液にチオ硫酸ナトリウム水溶液を加え、さらにヘキサンを加えて有機層の抽出を行った。その後、展開溶媒にヘキサンを用いたカラムで有機層の分離を行い、分離して得られた成分を乾燥させて溶媒を除去し、化合物41を1.18g得た。
【0315】
1H-NMR(CDCl3, δ(ppm)) : 0.87(t, 12H), 0.95-1.50(m, 128H), 1.95(m, 8H),
6.72(s, 2H), 7.90(s, 2H)
19F-NMR(CDCl3, δ(ppm)) : -129(s, 2F)
【0316】
実施例18
(高分子化合物Fの合成)

四つ口フラスコに、化合物21を191.3mg(0.150mmol)、及び、塩化メチレンを24mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを2.75mg(0.003mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを3.48mg(0.012mmol)、2mol/Lのリン酸カリウム水溶液を0.8g(1.6mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、63.6mgの化合物18(0.150mmol)を6mLの塩化メチレンに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を15.0mg(0.123mmol)加え、さらに1時間攪拌した後、反応を停止した。
なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1g及び純水を10mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水50mlで2回、3重量(wt)%の酢酸水溶液50mLで2回、さらに水50mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Fを50mg得た。
GPCで測定した高分子化合物Fの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が25,000であり、数平均分子量(Mn)が10,000であった。高分子化合物Fの吸収端波長は940nmであった。
【0317】
実施例19
(高分子化合物Gの合成)

四つ口フラスコに、化合物26を440.0mg(0.280mmol)、及び、塩化メチレンを50mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを5.49mg(0.006mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを6.96mg(0.024mmol)、2mol/Lのリン酸カリウム水溶液を1.5g(3.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、120.0mgの化合物18(0.280mmol)を12mLの塩化メチレンに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を150mg(1.23mmol)加え、さらに1時間攪拌した後、反応を停止した。
なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを10g及び純水を100mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水500mlで2回、3重量(wt)%の酢酸水溶液200mLで2回、さらに水200mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Gを150mg得た。
GPCで測定した高分子化合物Gの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が8,500であり、数平均分子量(Mn)が4,000であった。高分子化合物Gの吸収端波長は940nmであった。
【0318】
実施例20
(高分子化合物Hの合成)

四つ口フラスコに、化合物26を50.5mg(0.032mmol)、及び、テトラヒドロフランを10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。
その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを5.49mg(0.006mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを6.96mg(0.024mmol)、2mol/Lのリン酸カリウム水溶液を1.5g(3.0mmol)を加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、12.4mgの化合物10(0.032mmol)を5mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を30.0mg(0.246mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1.5g及び純水を13.5mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水15mlで2回、3重量(wt)%の酢酸水溶液15mLで2回、さらに水15mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Hを24mg得た。
GPCで測定した高分子化合物Hの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が25,000であり、数平均分子量(Mn)が10,000であった。高分子化合物Hの吸収端波長は940nmであった。
【0319】
実施例21
(高分子化合物Iの合成)

四つ口フラスコに、化合物31を416.3mg(0.300mmol)、及び、塩化メチレンを10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを10.99mg(0.012mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを13.93mg(0.048mmol)、2mol/Lのリン酸カリウム水溶液を1.5g(3.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、127.2mgの化合物18(0.300mmol)を10mLの塩化メチレンに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を30.0mg(0.246mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを2.5g及び純水を22.5mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水30mlで2回、3重量(wt)%の酢酸水溶液30mLで2回、さらに水30mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Iを156mg得た。
GPCで測定した高分子化合物Iの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が76,000であり、数平均分子量(Mn)が31,000であった。高分子化合物Iの吸収端波長は940nmであった。
【0320】
実施例22
(高分子化合物Jの合成)

四つ口フラスコに、化合物31を277.5mg(0.200mmol)、及び、テトラヒドロフランを40mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを3.66mg(0.004mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを4.64mg(0.016mmol)、2mol/Lのリン酸カリウム水溶液を1.0g(2.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、77.6mgの化合物10(0.200mmol)を10mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を20.0mg(0.164mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1.0g及び純水を9.0mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Jを44mg得た。
GPCで測定した高分子化合物Jの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が35,000であり、数平均分子量(Mn)が15,000であった。高分子化合物Jの吸収端波長は950nmであった。
【0321】
実施例23
(高分子化合物Kの合成)

四つ口フラスコに、化合物36を311.2mg(0.200mmol)、及び、塩化メチレンを10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを7.32mg(0.008mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを9.28mg(0.032mmol)、2mol/Lのリン酸カリウム水溶液を1.0g(2.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、84.8mgの化合物18(0.200mmol)を10mLの塩化メチレンに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を20.0mg(0.164mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1.7g及び純水を15.0mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水20mlで2回、3重量(wt)%の酢酸水溶液20mLで2回、さらに水20mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Kを197mg得た。
GPCで測定した高分子化合物Kの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が240,000であり、数平均分子量(Mn)が90,000であった。高分子化合物Kの吸収端波長は950nmであった。
【0322】
実施例24
(高分子化合物Lの合成)

四つ口フラスコに、化合物36を252.2mg(0.162mmol)、及び、テトラヒドロフランを20mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを3.66mg(0.004mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを4.64mg(0.016mmol)、2mol/Lのリン酸カリウム水溶液を1.0g(2.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、62.9mgの化合物10(0.162mmol)を10mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を20.0mg(0.164mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1.0g及び純水を9.0mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Lを165mg得た。
GPCで測定した高分子化合物Lの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が300,000であり、数平均分子量(Mn)が100,000であった。高分子化合物Lの吸収端波長は950nmであった。
【0323】
実施例25
(高分子化合物Mの合成)

四つ口フラスコに、化合物41を344.9mg(0.200mmol)、及び、テトラヒドロフランを12mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを3.66mg(0.004mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを4.64mg(0.016mmol)、2mol/Lのリン酸カリウム水溶液を1.0g(2.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、77.6mgの化合物10(0.200mmol)を10mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を20.0mg(0.164mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを1.0g及び純水を9.0mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Mを236mg得た。
GPCで測定した高分子化合物Mの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が101,000であり、数平均分子量(Mn)が32,000であった。高分子化合物Mの吸収端波長は940nmであった。
【0324】
実施例26
(有機トランジスタの作製)
厚さ300nmの熱酸化膜を有する高濃度にドーピングされたn−型シリコン基板をアセトン中で10分間超音波洗浄した後、オゾンUVを20分間照射した。その後、トルエン10mlに5滴(シリンジで採取して滴下)の割合で希釈したβ−フェニチルトリクロロシランをスピンコートすることにより熱酸化膜表面をシラン処理した。
次に、高分子化合物Hを、オルトジクロロベンゼンに溶解し、高分子化合物Hの濃度が0.5重量%の溶液を調製し、該溶液をメンブランフィルターでろ過して塗布液を作製した。該塗布液を、上記表面処理した基板上にスピンコート法により塗布し、高分子化合物Hの塗布膜を形成した。該塗布膜の厚みは約30nmであった。さらに該塗布膜を窒素雰囲気中で170℃にて30分熱処理することにより、高分子化合物Hの有機半導体薄膜を形成した。
更に、メタルマスクを用いた真空蒸着法により、有機半導体薄膜上に、有機半導体薄膜側から三酸化モリブデン及び金の積層構造を有するソース電極及びドレイン電極を作製することにより、有機トランジスタを製造した。
【0325】
実施例27
(有機トランジスタの評価)
有機トランジスタの電気特性を、半導体パラメータ4200(KEITHLEY社製)を用いて測定した。その結果、ドレイン電圧(Vd)に対するドレイン電流(Id)の変化曲線は、良好であり、ゲート電極に印加する負のゲート電圧を増加させると、負のドレイン電流も増加することから、有機トランジスタは、p型の有機トランジスタであることを確認することができた。有機トランジスタにおけるキャリアの電界効果移動度μは、有機トランジスタの電気特性の飽和領域におけるドレイン電流Idを表す下記式(a)を用いて算出した。
Id=(W/2L)μCi(Vg−Vt) ・・・(a)
(式中、Lは有機トランジスタのチャネル長、Wは有機トランジスタのチャネル幅、Ciはゲート絶縁膜の単位面積当たりの容量、Vgはゲート電圧、Vtはゲート電圧のしきい値電圧を表す。)
その結果、キャリアの電界効果移動度(キャリア移動度)は0.03cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0326】
実施例28
高分子化合物Hにかえて高分子化合物Iを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は0.07cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0327】
実施例29
高分子化合物Hにかえて高分子化合物Jを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は0.06cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0328】
実施例30
高分子化合物Hにかえて高分子化合物Kを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は0.13cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0329】
実施例31
高分子化合物Hにかえて高分子化合物Lを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は0.25cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0330】
実施例32
高分子化合物Hにかえて高分子化合物Mを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は0.12cm/Vsであり、オン/オフ電流比は10であった。結果を表2に示す。
【0331】
表2 有機トランジスタ素子評価結果

【0332】
実施例33
(インク及び有機薄膜太陽電池の作製、評価)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、オゾンUV処理して表面処理を行った。次に、高分子化合物H及びフラーレンC60PCBM(フェニルC61−酪酸メチルエステル)(phenyl C61-butyric acid methyl ester、フロンティアカーボン社製)を、高分子化合物Hの重量に対するC60PCBMの重量の比が3となるようにオルトジクロロベンゼンに溶解し、インク2を製造した。インク2の重量に対して、高分子化合物Hの重量とC60PCBMの重量の合計は2.0重量%であった。該インク2をスピンコートによりガラス基板上に塗布し、高分子化合物Hを含む有機膜を作製した。膜厚は約100nmであった。このようにして作製した有機膜の光吸収端波長は940nmであった。その後、有機膜上に真空蒸着機によりフッ化リチウムを厚さ2nmで蒸着し、次いでAlを厚さ100nmで蒸着し、有機薄膜太陽電池を製造した。得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放端電圧、フィルファクターを求めた。Jsc(短絡電流密度)は11.20mA/cmであり、Voc(開放端電圧)は0.62Vであり、ff(フィルファクター(曲線因子))は0.67であり、光電変換効率(η)は4.63%であった。
結果を表3に表す。
【0333】
実施例34
高分子化合物Hにかえて高分子化合物Iを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は5.00mA/cmであり、Voc(開放端電圧)は0.69Vであり、ff(フィルファクター(曲線因子))は0.56であり、光電変換効率(η)は1.96%であった。結果を表3に表す。
【0334】
実施例35
高分子化合物Hにかえて高分子化合物Kを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は6.67mA/cmであり、Voc(開放端電圧)は0.71Vであり、ff(フィルファクター(曲線因子))は0.66であり、光電変換効率(η)は3.11%であった。結果を表3に表す。
【0335】
実施例36
高分子化合物Hにかえて高分子化合物Lを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は10.73mA/cmであり、Voc(開放端電圧)は0.58Vであり、ff(フィルファクター(曲線因子))は0.65であり、光電変換効率(η)は4.02%であった。結果を表3に表す。
【0336】
表3 光電変換素子評価結果

【0337】
実施例37
(高分子化合物Nの合成)

フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7を500mg(0.475mmol)、化合物9を123mg(0.373mmol)、化合物42を24mg(0.088mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.33mg(0.007mmol)、トリス(2−トルイル)ホスフィンを12.6mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン30mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体40mgを得た。以下、この重合体を高分子化合物Nと呼称する。
【0338】
実施例38
(高分子化合物Pの合成)
実施例37において、化合物7を500mg(0.475mmol)、化合物9を101mg(0.306mmol)、化合物42を45mg(0.166mmol)用いた以外は同様にして重合体を62mg得た。この重合体を高分子化合物Pと呼称する。
【0339】
実施例39
(インク及び有機薄膜太陽電池の作製、評価)
高分子化合物Hにかえて高分子化合物Nを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は12.64mA/cmであり、Voc(開放端電圧)は0.75Vであり、ff(フィルファクター(曲線因子))は0.61であり、光電変換効率(η)は5.74%であった。
【0340】
実施例40
(インク及び有機薄膜太陽電池の作製、評価)
高分子化合物Hにかえて高分子化合物Pを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は11.30mA/cmであり、Voc(開放端電圧)は0.76Vであり、ff(フィルファクター(曲線因子))は0.62であり、光電変換効率(η)は5.28%であった。
【0341】
参考例24
(化合物43の合成)

フラスコ内の気体をアルゴンで置換した200mLの3つ口フラスコに、化合物9を5.00g(15.2mmol)、粉末状の亜鉛を991mg(152mmol)、酢酸を60mL、水を30mL入れ、80℃で2時間攪拌した。攪拌後、反応液を室温まで冷却し、ろ過助剤としてセライトを用いてろ過した。ろ液を炭酸水素ナトリウムで中和し、析出した固体をろ過して回収した。得られた固体をクロロホルムに懸濁させ、ポアサイズが0.45μmであるポリテトラフルオロエチレン製フィルターで不溶物をろ別し、ろ液の溶媒をエバポレーターで留去し、淡褐色の固体である化合物43を2.86g得た。
【0342】
実施例41
(化合物44の合成)

フラスコ内の気体をアルゴンで置換した100mLの3つ口フラスコに、4,4’−ジフルオロベンジルを816mg、化合物43を1000mg、エタノールを25mL入れ、エタノールが還流する温度で40時間攪拌した。反応液を室温まで冷却し、溶媒を留去した。析出した固体を、酢酸エチルの容積に対するヘキサンの容積比が5となるようにヘキサンと酢酸エチルとを混合した混合溶媒を展開溶媒として用いたシリカゲルカラムで溶出させた。溶出液をエバポレーターで乾固し、粗生成物を2.32g得た。その後、イソプロパノール80mLを用いて粗生成物の再結晶を行い、化合物44を816mg得た。
【0343】
H NMR in CDCl(ppm):7.64(t、4H)、7.09(t、4H)
19F NMR in CDCl(ppm):−110.5、−118.7
【0344】
実施例42
(高分子化合物Qの合成)

フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7を300mg(0.285mmol)、化合物44を145mg(0.283mmol)、トルエンを23ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを3.89mg(0.0042mmol)、トリス(2−トルイル)ホスフィンを7.76mg(0.025mmol)加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを100mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール200mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン12mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン12mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体159mgを得た。以下、この重合体を高分子化合物Qと呼称する。
【0345】
実施例43
(インク及び有機薄膜太陽電池の作製、評価)
高分子化合物Hにかえて高分子化合物Qを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は5.20mA/cmであり、Voc(開放端電圧)は0.90Vであり、ff(フィルファクター(曲線因子))は0.40であり、光電変換効率(η)は1.84%であった。
【0346】
実施例44
(高分子化合物Rの合成)


フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7を208.3mg(0.198mmol)、化合物9を52.1mg(0.158mmol)、化合物44を20mg(0.039mmol)、トルエンを14ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを2.70mg(0.00295mmol)、トリス(2−トルイル)ホスフィンを5.40mg(0.0177mmol)加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを100mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール200mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン10mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム0.5gと水20mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン10mLに再度溶解し、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体75mgを得た。以下、この重合体を高分子化合物Rと呼称する。
【0347】
実施例45
(インク及び有機薄膜太陽電池の作製、評価)
高分子化合物Hにかえて高分子化合物Rを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は8.84mA/cmであり、Voc(開放端電圧)は0.75Vであり、ff(フィルファクター(曲線因子))は0.48であり、光電変換効率(η)は3.15%であった。
【0348】
実施例46
(化合物46の合成)

200mLフラスコ内に、化合物45(CHEMSTEP社製)を2.00g、ヨウ素を5.00g、三酸化硫黄を30重量%含む発煙硫酸を20mL入れて均一溶液とした。得られた溶液を60℃のオイルバスに浸して12時間加熱下で攪拌した。その後、反応液を25℃まで冷却し、砕いた氷1Kgに徐々に注いだ。得られた懸濁液にクロロホルムを100mL加え、分液ロートでクロロホルム層を分離して回収した。得られたクロロホルム層を硫酸ナトリウムで乾燥させ、ろ過した。得られたろ液をエバポレーターで濃縮した。得られた粗生成物を、展開溶媒にヘキサンと酢酸エチルとをヘキサンの容積に対する酢酸エチルの容積比が4となるよう混合した混合溶媒を用いたシリカゲルカラムを備えたクロマトグラフィで精製し、化合物46を1.23g得た。
【0349】
19F NMR in CDCl(ppm):−112.0
【0350】
実施例47
(高分子化合物Sの合成)

フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物7を500mg(0.475mmol)、化合物46を190mg(0.466mmol)、トルエンを36ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.40mg(0.00700mmol)、トリス(2−トルイル)ホスフィンを12.8mg(0.042mmol)加え、100℃で18時間攪拌した。その後、反応液にフェニルブロミドを68mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール500mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、o−ジクロロベンゼン34mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム0.4gと水50mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水100mlで2回洗浄し、次いで、3wt%の酢酸水溶液100mLで2回洗浄し、次いで、水100mLで2回洗浄し、次いで、水100mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン34mLに再度溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体52mgを得た。以下、この重合体を高分子化合物Sと呼称する。
【0351】
実施例48
(インク及び有機薄膜太陽電池の作製、評価)
高分子化合物Hにかえて高分子化合物Sを用いた以外は、実施例33と同様の方法でインク及び有機薄膜太陽電池を作製し、評価した。Jsc(短絡電流密度)は3.20mA/cmであり、Voc(開放端電圧)は0.87Vであり、ff(フィルファクター(曲線因子))は0.45であり、光電変換効率(η)は1.25%であった。
【0352】
参考例25
(化合物48の合成)

四つ口フラスコに、化合物47を6.847g(10.00mmol)、ビスピナコラートジボロンを10.16g(40.00mmol)、及び、ジオキサンを150mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応液に、ジフェニルホスフィノフェロセンパラジウムジクロリドを408.3mg、ジフェニルホスフィノフェロセンを277.2mg、及び、酢酸カリウムを3.926g(40.00mmol)加えた後、加熱環流を10時間行った。反応後、反応液を高速液体クロマトグラフィー(HPLC)で分析し、原料の消失を確認した。
その後、フィルターを用いて反応液に難溶である塩基を分離した。次いで、溶液をエバポレータで30分程乾燥させ、ジオキサンを除去した。その後、展開溶媒にヘキサンを用いたカラムを用いて反応生成物の分離を行い、分離して得られた成分のメタノール洗浄を3時間行うことで、淡褐色粉末を得た。該粉末を100mLのヘキサンに溶解させた後、100mLのエタノールを加えて放置することで再結晶を行い、化合物48を1.386g得た。
【0353】
1H-NMR(CDCl3, δ(ppm)) : 0.880 (t, 6H), 1.261 (m, 36H) , 1.409 (m, 24H) ,
1.793 (m, 4H) , 3.208 (t, 4H) , 8.022 (s, 2H)
【0354】
実施例49
(高分子化合物Tの合成)


四つ口フラスコに、化合物31を138.8mg(0.100mmol)、及び、テトラヒドロフランを7mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを1.83mg(0.002mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを2.32mg(0.008mmol)、2mol/Lのリン酸カリウム水溶液を0.5g(1.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、77.9mgの化合物48(0.100mmol)を3mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を10.0mg(0.082mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを0.8g及び純水を7.5mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Tを160mg得た。
GPCで測定した高分子化合物Tの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が125,000であり、数平均分子量(Mn)が41,000であった。高分子化合物Tの吸収端波長は800nmであった。
【0355】
実施例50
(高分子化合物Uの合成)


四つ口フラスコに、化合物41を172.4mg(0.100mmol)、及び、テトラヒドロフランを7mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを1.83mg(0.002mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを2.32mg(0.008mmol)、2mol/Lのリン酸カリウム水溶液を0.5g(1.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、39.2mgの化合物49(0.100mmol)を3mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。化合物49はTetrahedron、2005年、第61巻、1699頁に記載された方法で合成した。その後、反応溶液にフェニルホウ酸を10.0mg(0.082mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを0.8g及び純水を7.5mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Uを150mg得た。
GPCで測定した高分子化合物Uの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が226,000であり、数平均分子量(Mn)が52,000であった。高分子化合物Uの吸収端波長は840nmであった。
【0356】
実施例51
(高分子化合物Vの合成)

四つ口フラスコに、化合物41を172.4mg(0.100mmol)、及び、テトラヒドロフランを7mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応溶液にトリス(ジベンジリデンアセトン)パラジウムを1.83mg(0.002mmol)、[トリ(ターシャリーブチル)ホスホニウム]テトラフルオロボレートを2.32mg(0.008mmol)、2mol/Lのリン酸カリウム水溶液を0.5g(1.0mmol)加えた。反応溶液をオイルバスの温度が40℃の条件で撹拌しながら、41.8mgの化合物50(0.100mmol)を3mLのテトラヒドロフランに溶解させた溶液を10分かけて滴下し、30分間攪拌した。その後、反応溶液にフェニルホウ酸を10.0mg(0.082mmol)加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応溶液にジエチルジチオカルバミン酸ナトリウムを0.8g及び純水を7.5mL加え、3時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水10mlで2回、3重量(wt)%の酢酸水溶液10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーろ過後、乾燥し、高分子化合物Vを130mg得た。
GPCで測定した高分子化合物Vの分子量(ポリスチレン換算)は、重量平均分子量(Mw)が42,000であり、数平均分子量(Mn)が18,000であった。高分子化合物Vの吸収端波長は830nmであった。
【0357】
実施例52
(有機トランジスタの作製及び評価)
高分子化合物Hにかえて高分子化合物Tを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。
キャリア移動度は1.2×10−2cm/Vsであり、オン/オフ電流比は10であった。結果を表4に示す。
【0358】
実施例53
(有機トランジスタの作製及び評価)
高分子化合物Hにかえて高分子化合物Uを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。キャリア移動度は0.35cm/Vsであり、オン/オフ電流比は10であった。結果を表4に示す。
【0359】
実施例54
(有機トランジスタの作製及び評価)
高分子化合物Hにかえて高分子化合物Vを用いた以外は、実施例26と同様の方法で有機トランジスタ素子を作製し、実施例27と同様の方法でトランジスタ特性を評価した。キャリア移動度は0.20cm/Vsであり、オン/オフ電流比は10であった。結果を表4に示す。
【0360】
表4 有機トランジスタ素子評価結果

【0361】
実施例55
(インク及び有機薄膜太陽電池の作製、評価)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、オゾンUV処理して表面処理を行った。次に、高分子化合物U及びフラーレンC60PCBM(フェニルC61−酪酸メチルエステル)(phenyl C61-butyric acid methyl ester、フロンティアカーボン社製)を、高分子化合物Uの重量に対するC60PCBMの重量の比が3となるようにオルトジクロロベンゼンに溶解させ、インクを製造した。インクの重量に対して、高分子化合物Uの重量とC60PCBMの重量の合計は2.0重量%であった。該インクをスピンコートによりガラス基板上に塗布し、高分子化合物Uを含む有機膜を作製した。膜厚は約100nmであった。このようにして作製した有機膜の光吸収端波長は840nmであった。その後、有機膜上に真空蒸着機によりフッ化リチウムを厚さ2nmで蒸着し、次いでAlを厚さ100nmで蒸着し、有機薄膜太陽電池を製造した。得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して光電変換効率、短絡電流密度、開放端電圧、フィルファクターを求めた。Jsc(短絡電流密度)は4.72mA/cmであり、Voc(開放端電圧)は0.56Vであり、ff(フィルファクター(曲線因子))は0.61であり、光電変換効率(η)は1.63%であった。結果を表5に表す。
【0362】
表5 光電変換素子評価結果

【0363】
実施例56
(化合物51の合成)

四つ口フラスコに、ジイソプロピルアミンを149.8mg(1.480mmol)、及び、テトラヒドロフランを10mL加え、室温(25℃)で30分間アルゴンバブリングを行った。その後、反応系中の温度を−78℃まで冷却した後、1.62mol/Lのノルマルブチルリチウムを含むヘキサン溶液を0.82mL加え、20分攪拌を続けた。反応溶液に、化合物8を102mg(0.592mmol)加え、−78℃で10分間攪拌を続けた。その後、反応溶液に、トリメチルシリルクロリドを176.9mg(1.628mmol)加え、−78℃で30分間攪拌を行った。攪拌後、液体クロマトグラフィーにより原料の消失を確認した。反応溶液に水及びクロロホルムを加え、有機層の抽出を行い、展開溶媒にクロロホルムを用いたカラムクロマトグラフィーにより、有機層の精製を行った。精製した有機層を乾燥させて溶媒を除去し、化合物51を106mg得た。
【0364】
1H-NMR(CDCl3, δ(ppm)) : 1.45(s, 24H)
19F-NMR(CDCl3, δ(ppm)) : -117(s, 2F)

【特許請求の範囲】
【請求項1】
式(1)で表される構造単位を有する高分子化合物。

(1)
〔式中、X及びXは、同一又は相異なり、窒素原子又は=CH−を表す。Yは、硫黄原子、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Wは、シアノ基、フッ素原子を有する1価の有機基又はハロゲン原子を表す。Wは、シアノ基、フッ素原子を有する1価の有機基、ハロゲン原子又は水素原子を表す。〕
【請求項2】
π共役高分子化合物である請求項1記載の高分子化合物。
【請求項3】
がフッ素原子である請求項1又は2に記載の高分子化合物。
【請求項4】
がフッ素原子である請求項1〜3のいずれか一項に記載の高分子化合物。
【請求項5】
及びXの少なくとも一方が、窒素原子である請求項1〜4のいずれか一項に記載の高分子化合物。
【請求項6】
及びXが、窒素原子である請求項5に記載の高分子化合物。
【請求項7】
が、硫黄原子又は酸素原子である請求項1〜6のいずれか一項に記載の高分子化合物。
【請求項8】
さらに、式(2)で表される構造単位を含む請求項1〜7のいずれか一項に記載の高分子化合物。

(2)
〔式中、Arは、アリーレン基又はヘテロアリーレン基を表す。〕
【請求項9】
Arが、ヘテロアリーレン基である請求項8に記載の高分子化合物。
【請求項10】
ヘテロアリーレン基がチオフェン環を含む基である請求項9に記載の高分子化合物。
【請求項11】
式(3a)で表される化合物。

(3a)
〔式中、X3a1及びX3a2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3a1は、硫黄原子を表す。Z3a1及びZ3a2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3a1及びQ3a2は、同一又は相異なり、水素原子、ジヒドロキシボリル基又は1価の有機基を表す。〕
【請求項12】
3a1及びQ3a2が、水素原子である請求項11に記載の化合物。
【請求項13】
3a1及びQ3a2が、ジヒドロキシボリル基、ホウ酸エステル残基又は置換スタンニル基である請求項11に記載の化合物。
【請求項14】
式(3b)で表される化合物。

(3b)
〔式中、X3b1及びX3b2は、同一又は相異なり、窒素原子又は=CH−を表す。Y3b1は、酸素原子、セレン原子、−N(R)−又は−CR=CR−を表す。R、R及びRは、同一又は相異なり、水素原子又は置換基を表す。Z3b1及びZ3b2は、同一又は相異なり、フッ素原子を有する1価の有機基又はフッ素原子を表す。Q3b1は、塩素原子、臭素原子、ヨウ素原子、ジヒドロキシボリル基又は1価の有機基を表す。Q3b2は、ハロゲン原子、ジヒドロキシボリル基又は1価の有機基を表す。〕
【請求項15】
3b1及びQ3b2が、臭素原子、ヨウ素原子、ジヒドロキシボリル基、ホウ酸エステル残基又は置換スタンニル基である請求項14に記載の化合物。
【請求項16】
第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有し、該活性層に請求項1〜10のいずれかに記載の高分子化合物又は請求項11〜15のいずれか一項に記載の化合物を含有する光電変換素子。
【請求項17】
ゲート電極と、ソース電極と、ドレイン電極と、活性層とを有し、該活性層に請求項1〜10のいずれか一項に記載の高分子化合物又は請求項11〜15のいずれか一項に記載の化合物を含有する有機薄膜トランジスタ。
【請求項18】
第1の電極と第2の電極とを有し、該第1の電極と該第2の電極との間に発光層を有し、該発光層に請求項1〜10のいずれか一項に記載の高分子化合物又は請求項11〜15のいずれか一項に記載の化合物を含有する有機エレクトロルミネッセンス素子。

【公開番号】特開2012−107187(P2012−107187A)
【公開日】平成24年6月7日(2012.6.7)
【国際特許分類】
【出願番号】特願2011−94772(P2011−94772)
【出願日】平成23年4月21日(2011.4.21)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】