説明

高周波センサ装置

【課題】放射パターンの制御が容易なアンテナを備えた高周波センサ装置を提供すること。
【解決手段】送信波を発生する送信部と、前記送信波を放射し、前記送信波の物体による反射波及び透過波の少なくともいずれかを受信波として受信するアンテナと、前記受信波を検知する受信部と、を備え、前記アンテナは、パッチ電極を有する給電素子と、パッチ電極を有する無給電素子と、を含み、前記無給電素子の前記パッチ電極の辺のうち、前記アンテナの励振方向と直交する一辺の中央近傍から前記励振方向に平行に延在する伝送線を設け、前記伝送線を途中で裏面側に分岐させスイッチを介して分岐路に接続可能としたことを特徴とする高周波センサ装置を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高周波を用いた高周波センサ装置に関する。
【背景技術】
【0002】
例えば水洗便器などの洗浄を自動化する場合、赤外線センサなどを用いる方法がある。この場合、一定時間以上使用者が便器の前に留まっていることを検知し、その後に使用者が便器を離れたことを検知して、一定量の洗浄水を流すようにする。しかしながら、この方法では用足しの有無や小便の量にかかわらず一定の洗浄水を流すことになり無駄が生ずる場合もある。
【0003】
便器を実際に使用していることを検知して洗浄水を流すには、ドップラー効果を利用することが考えられる。すなわち、電波や音波が移動物体に当り反射すると、反射波の周波数がドップラーシフトする。この反射波と送信波の周波数の差分周波数スペクトラムを求めることにより移動物体が検知される。さらに、この差分に相当するドップラー周波数は物体の移動速度に比例する。従って、尿や洗浄水といったボール面を流れる液流などに向けて送信波を放射することにより、使用状態に応じて適切に洗浄水を供給できる。
【0004】
送信波として電波を用いる場合、センサを構成するアンテナの放射方向を液流に向けて精度よく制御することが重要である。すなわち、液流以外の移動物体を検知して洗浄水を流すことなどを防止することが好ましい。
【0005】
本発明者らは、マイクロ波を利用したドップラーセンサを搭載した便器洗浄装置を開示した(特許文献1)。
【特許文献1】特許第3740696号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、放射パターンの制御が容易なアンテナを備えた高周波センサ装置を提供する。すなわち、給電素子の回りに併設する全ての無給電素子に接続する伝送線路をそのスイッチの先の分岐路まで含めて、アンテナの励振方向に対していずれも平行に配置することが可能となり、対称性にすぐれたアンテナを備えた高周波センサ装置を提供できる。
【課題を解決するための手段】
【0007】
本発明の一態様によれば、送信波を発生する送信部と、前記送信波を放射し、前記送信波の物体による反射波及び透過波の少なくともいずれかを受信波として受信するアンテナと、前記受信波を検知する受信部と、を備え、前記アンテナは、パッチ電極を有する給電素子と、パッチ電極を有する無給電素子と、を含み、前記無給電素子の前記パッチ電極の辺のうち、前記アンテナの励振方向と直交する一辺の中央近傍から前記励振方向に平行に延在する伝送線を設け、前記伝送線を途中で裏面側に分岐させスイッチを介して分岐路に接続可能としたことを特徴とする高周波センサ装置が提供される。
【0008】
また、本発明の他の一態様によれば、送信波を発生する送信部と、前記送信波を放射するアンテナと、前記送信波の物体による反射波及び透過波の少なくともいずれかを受信波として受信するアンテナと、前記受信波を検知する受信部と、を備え、前記送信するアンテナと前記受信するアンテナの少なくともいずれかは、パッチ電極を有する給電素子と、パッチ電極を有する無給電素子と、を含み、前記無給電素子の前記パッチ電極の辺のうち、前記アンテナの励振方向と直交する一辺の中央近傍から前記励振方向に平行に延在する伝送線を設け、前記伝送線を途中で裏面側に分岐させスイッチを介して分岐路に接続可能としたことを特徴とする高周波センサ装置が提供される。
【発明の効果】
【0009】
本発明により、放射パターンの制御が容易なアンテナを備えた高周波センサ装置が提供される。すなわち、無給電素子に接続された伝送線を分岐させてスイッチで分岐路に分岐させることによりインダクタンスを可変としたアンテナの対称性を良好にした高周波センサ装置を提供できる。
【発明を実施するための最良の形態】
【0010】
以下、図面を参照しつつ、本発明の実施の形態について説明する。
図1は、本発明の実施の形態にかかる高周波センサ20を説明するための模式図であり、同図(a)及び(b)はそのブロック図、同図(c)は水平放射パターンにおける等ゲイン線、同図(d)は放射パターンを表す模式図である。
図1(a)に表した具体例の場合、送信部12に接続されたアンテナ10からは、例えば、10.525GHzの周波数を有する送信波T1が放射される。移動物体からの反射波T2は、アンテナ10を経由して受信部14に入力される。アンテナ10は、図1(a)に表したように送信側と受信側とを共通としてもよく、または、図1(b)に表したように、送信部12にはアンテナ10aを接続し、受信部14にはアンテナ10bを接続してもよい。
【0011】
送信波の一部と受信波とは、差分検出部16にそれぞれ入力されその差分のドップラー周波数近傍の出力信号が出力される。すなわち、ドップラー周波数ΔF(Hz)は、下記の式(1)により表すことができる。

ΔF=Fs−Fb=2×Fs×v/c 式(1)

但し、Fs:送信周波数(Hz)
Fb:反射周波数(Hz)
v:物体の移動速度(m/s)
c:光速(=300×10m/s)

高周波センサ20を液流に向けると、式(1)で表されるように、その流速vに比例した周波数ΔFを含む出力信号を得ることができる。出力信号は周波数スペクトラムを有し、スペクトラムのピークに対応するピーク周波数と液流の流速vとの間には相関関係がある。従って、ドップラー周波数ΔFを測定することにより流速vを求めることができる。なお、日本においては、人体を検知する目的には10.525GHzまたは24.15GHzの周波数が使用できる。
【0012】
本発明の具体例にかかる高周波センサ20を構成するアンテナ10からの水平放射パターンは、例えば、図1(c)のようになる。アンテナの給電点を通るZ軸と直交するXY面内において、アンテナ10のゲイン(利得)の最大点をQとする。図1(c)においては、ゲインが最大値から3dB低下する領域を実線で表し、10dB低下する領域を破線で表している。Y軸はアンテナ10の給電点を通り励振方向と平行であるが、3dBゲイン低下領域をY軸に関して走査すべき一方の側(図では左側)に位置制御すると、液流を正確に検知することができる。図1(d)は、アンテナの水平放射パターンである。アンテナに関しては、後に詳細に説明する。
【0013】
図2は、本発明の具体例にかかる高周波センサ20を備えた小便器の構成を例示する模式図である。
小便器22の内部には、高周波センサ20と、機能部24が収められている。小便器22の上方には、小便器22のボール部内空間を洗浄するための水を供給する給水部30及び洗浄水吐出口32が設けられている。ボール部内空間の下方には排水口34が設けられている。
【0014】
図3は、機能部24の構成を例示するブロック図である。
差分検出部16の出力信号はアンプ40により増幅され、FFT(Fast Fourier Transform)演算部42に入力される。FFT演算部42により、差分検出部16の出力信号の周波数スペクトラムをリアルタイムで得ることができる。FFT演算部42の出力は、流量演算部44に入力され、周波数スペクトラムから流量に換算されることもできる。
【0015】
コントローラ46は、流量演算部44で演算された流量などをもとに、他の装置を作動させる。洗浄水供給バルブ36はコントローラ46の指示により開閉する。電解水生成部60は、コントローラ46により、例えば、1日に1回電解水を流すことにより排水管における尿石形成を防止する。外部インタフェース52は、尿量などの情報を外部に伝送する。
【0016】
以下、高周波センサ20の構成要素であるアンテナ10について詳細に説明する。
【0017】
図4は、本発明の高周波センサ20を構成するアンテナ10にかかる第1具体例を表し、同図(a)は模式平面図、同図(b)は模式斜視図である。
本具体例において、パッチ電極を有する給電素子60の励振方向に対して横方向に、パッチ電極を有する無給電素子62が配置されている。このアンテナ10は、給電素子60及び無給電素子62がそれぞれ平面パターンを有するパッチアンテナに属する。アンテナ10の主面はXY座標で表され、水平面内においてX軸からの角度をφで表す。また、この主面と垂直な方向をZ軸とし、垂直面において、Z軸からの角度をθで表す。Y軸は、励振方向に対して平行であり、X軸、Y軸、Z軸、φ及びθに関するこれらの定義は、本願明細書においてすべて同一とする。
【0018】
給電素子60の中心を通り、Y軸の負方向における位置Pが送信波の励振部と接続される給電点とされる。給電素子60は矩形であり励振方向の一辺の長さDは約λg/2(但しλgは波長)とする。また、無給電素子62の中心線上で、励振方向に平行かつY軸正方向には伝送線路64が設けられており、その終端は導通孔66を介して接地68へ接続されている。すなわち、伝送線路64は終端短絡とされている。
【0019】
図5は、無給電素子62をより詳細に表し、同図(a)はその模式平面図、同図(b)は同図(a)のAA’に沿った模式断面図である。
無給電素子62と給電素子60との形状は伝送線路64以外の領域においてほぼ等しい。この具体例の場合、給電点Pの横方向、かつY軸負方向の位置が整合点P’となる。伝送線路64の終端から0.3mmの位置にφ0.3mmの導通孔66が設けられており、また伝送線路64の長さをLとする。
【0020】
このアンテナは、例えば、誘電体の両面を銅板で挟んだガラスエポキシ基板などを用いて形成できる。図5(b)においては、比誘電率(εr)が3.5、tanδが0.004、誘電体厚みが0.75mmの場合を表した。このような基板により構成される伝送線路、すなわちマイクロストリップラインの波長及び特性インピーダンスはεr、誘電体厚み、マイクロストリップラインの導体幅及び厚みの関数となる。
【0021】
図6は、伝送線路64の長さLを変化させた場合、無給電素子62の整合点P’における振幅(Magnitude:dB), 位相(度)及び無給電素子62のアンテナゲイン(アンテナ利得:dB)のシミュレーション結果を表すグラフ図である。
Lが伝送線路の4分の1波長である4.8mm近傍において、整合点P’における振幅 が最小となり、位相がプラスからマイナスに急激に変化する。アンテナゲインは約6dBと最大となっている。また、位相はLが約8.1mmにおいてマイナスからプラスへと転じる。これよりLが大きい8.3mm近傍においてアンテナゲインはマイナス10dBとなり最低となる。なお、位相がプラスである場合は無給電素子62は導波器として作用し、マイナスである場合は反射器として作用する。
【0022】
図7は、アンテナ整合点P’において高周波回路パラメータであるSパラメータのうち、反射係数であるS11をシミュレーションで求めた結果を表し、同図(a)はS11の振幅(Mag.;dB)、同図(b)はS11の位相(deg)の周波数特性をそれぞれ表す。
周波数11.05GHzにおいて、伝送線路長が4.7mmの場合に位相は0度となり、3.77mmの場合に位相は110度、5.32mmの場合に位相はマイナス110度となる。
【0023】
図8は、整合点P’の位相が0乃至140度である無給電素子66を、全体のアンテナゲインが最大となる素子間スペースS(mm)に配置したゲイン(dB)と、最大放射強度が得られる放射角度θ(度)との関係を表すグラフ図である。
例えば、整合点P’の位相が110度の場合、素子間スペースSが2.2mmにおいて全体アンテナゲインが最大である7.15dBとなることを示している。このとき、角度θはほぼ27度となる。
【0024】
図9は、H面(φが0−180°である垂直断面)におけるアンテナゲインのθ依存性を、それぞれの整合点P’の位相に対して求めたシミュレーション結果を表すグラフ図である。
放射パターンは、メインビームと、これよりゲインの小さいサイドローブ(不要電波)とを含む。ここで、メインビームのゲインのピークより3dB低下した角度領域を半値角と呼ぶことにする。液流を精度よく検知するためには、メインビームのゲインが高く、メインビームとサイドローブとのゲイン差が大きく、かつ3dB利得低下する半値角範囲が0度よりも走査方向側に局在することが好ましい。
【0025】
すなわち、アンテナのゲインが最大ゲインから3dB以内となる半値角範囲が、パッチ電極を含む平面に対して垂直であり給電素子と交差する垂直面により区切られる2つの空間のいずれか一方のみに局在するように無給電素子が配置されていることが特徴とされる。
【0026】
整合点位相P’が大きくなるに従い、ゲインは増加するが、半値角が0度を越えるようになる。従って、整合点位相は120度以下、90度以上が好ましい。例えば、整合点位相が110度の場合、アンテナゲインは約マイナス19dB,半値角範囲はマイナス65乃至マイナス5度、メインビームとサイドローブとのゲイン差が11dBとなり、高周波センサとしての機能を備えることが可能となる。
【0027】
図10は、位相を0乃至140度と変化させ、素子間スペースSを1乃至5mmと変化させた場合の水平放射パターン(XY面)を表している。整合点P’のそれぞれの位相に対してアンテナゲインが最大となる素子間スペースS、最大放射強度となる放射角度θが図10の右端の1列の例示するように得られる。3dB利得低下領域が、給電点Pを含む水平面(XY面)内の軸に関して、走査したい一方の側(図10においては左側とする)に位置制御される様に、素子間スペースS,整合点P’位相を選択決定することができる。この結果、検知したい液流の領域に応じて高周波センサを動作させることが可能となる。
【0028】
図11は、第1具体例において、整合点P’の位相が90乃至130度である無給電素子62を、全体のアンテナゲインが最大となる素子間スペースS(mm)で配置したゲイン(dB)と、最大放射強度が得られる放射角度θ(度)との関係を表すグラフ図である。
【0029】
この変形例のアンテナ10は、例えば、アルミナのようなセラミック材料を用いることにより形成できる。この場合、比誘電率を9.5、tanδを0.001、厚みを1mmとしてシミュレーションを行っている。Lが4.4mmの場合、アンテナゲインは5.5dBと最大となり、このとき最大放射強度が得られる角度は30度である。
【0030】
図12は、この具体例において、H面におけるアンテナゲイン(dB)のθ(度)依存性を、それぞれの整合点P’の位相に対して求めたシミュレーション結果を表すグラフ図である。
整合点位相P’が大きくなるに従い、ゲインは増加するが、半値角が0度を越えるようになる。従って、整合点位相は120度以下、90度以上が好ましい。例えば、整合点位相が120度の場合、アンテナゲインは約マイナス21dB,半値角範囲はマイナス62乃至マイナス2度、メインビームとサイドローブとのゲイン差が11dBとなり、高周波センサとしての機能を満たす。
【0031】
図13は、アンテナ10の第2具体例の模式平面図である。なお、以下のアンテナの具体例において図4と同様の構成要素には同一番号、同一記号を伏して詳細な説明を省略する。
第2具体例においては、無給電素子62は励振方向に沿って給電素子60と隣り合って配置されている。このアンテナ10は、図5(b)と同様の材料を用いて形成することができる。終端短絡の伝送線路は、励振方向と平行な部分を有している。
図14は、整合点P’の位相が60乃至110度である無給電素子66を、全体のアンテナゲインが最大となる素子間スペースS(mm)に配置したゲイン(dB)と、最大放射強度が得られる放射角度θ(度)との関係を表すグラフ図である。
素子間スペースSが1.0mmの場合、アンテナゲインが6.92dBと最大となり、最大放射角度が約42度となる。
【0032】
図15は、E面(φが90−270°である断面)におけるアンテナゲインのθ依存性を、それぞれの整合点P’の位相に対して求めたシミュレーション結果を表すグラフ図である。
整合点位相P’が大きくなるに従い、ゲインは増加するが、半値角が0度を越えるようになる。従って、整合点位相は110度以下、90度以上が好ましい。例えば、整合点位相が110度の場合、アンテナゲインはほぼマイナス19dB,半値角範囲はプラス2乃至プラス80度、メインビームとサイドローブとのゲイン差が10dBとなり、高周波センサとしての機能を備えることが可能となる。
【0033】
図16は、整合点の位相を0乃至150度と変化させ、素子間スペースSを変化させた場合の水平放射パターンを表す。
それぞれの位相においてアンテナゲインが最大となる素子間スペースSと、最大放射強度が得られる放射角度θが本図の右端のように得られる。3dB利得低下領域が、給電点Pを含む水平面のX軸に関して、走査したい一方の側(図16においては上側とする)に位置制御される様に、素子間スペースS,整合点P’位相を選択決定することができる。この結果、検知したい液流の領域に応じて高周波センサを動作させることが可能となる。
【0034】
図17は、アンテナ10の第3具体例を表し、同図(a)は模式平面図、同図(b)は模式斜視図である。
本具体例においては、給電素子60と隣り合い励振方向に対して横方向の位置に無給電素子62及び63が配置されている。かつ、無給電素子62の終端短絡伝送線路64の電気長はλg/4より短いので整合点の位相はプラス、無給電素子63の終端短絡伝送線路65の電気長はλg/4より長いので整合点の位相はマイナスである。
【0035】
図18は、無給電素子62における整合点位相を110度に固定し、無給電素子63の位相をマイナス180度から0度と変化した場合、全体のアンテナゲインが最大となる素子間スペースSとゲイン、最大放射強度が得られる放射角度θとの関係を表すグラフ図である。素子間スペースが3.4mmの場合、アンテナゲインは7.5dBの最大値となる。また、このとき最大放射強度となる角度は39度である。
【0036】
図19は、本具体例において無給電素子62を110度、無給電素子63の位相を0度、マイナス90度、マイナス180度とした場合のH面におけるゲインのθ依存性を表すグラフ図である。
0度とマイナス90度において、メインビームの放射パターンに大きな変化を生じていない。マイナス90度からマイナス180に変化すると、メインビームのピーク位置がサイドローブに少し接近し、サイドローブゲインを約3dB抑圧できる。
【0037】
図20は、無給電素子62の位相を110度と固定し、無給電素子の位相をマイナス180乃至0度と変化させ、かつ素子間スペースSを変化させた場合の水平放射パターンを表す。アンテナゲインが最大となる素子間スペースS、最大放射強度となる角度θが本図右端のように得られる。本図において、3dB利得低下領域が一方の側(左側)に制御され、液流が走査したい側で検知できる。
【0038】
図21は、無給電素子62の位相を80乃至130度と変化させ、無給電素子63の位相を0度またはマイナス180度とした場合の、H面におけるゲインのθ依存性である。無給電素子63の位相は、マイナス180度のほうがサイドローブを4乃至6dB抑圧できるので好ましい。また無給電素子62の位相を120度以下とすると半値角を0度よりも走査方向側とできる。
【0039】
図22は、図21のように位相を変化させた場合の水平放射パターンである。アンテナゲインが最大となる素子間スペースSと、最大放射強度となる放射角度θが本図右端の様に得られ、3dB利得低下領域を一方の側(左側)に制御し液流を走査したい側で検知できることを表している、
図23は、無給電素子62の位相を0度とし、無給電素子63の位相をマイナス180度とした場合のH面における電波ビームのゲインのθ依存性を表す。メインビームとサイドローブとのゲイン差が約4dBと小さいが、半値角を0度より離して走査方向側とするのが容易である。
【0040】
図24は、無給電素子62の位相を140、150、160度とし、無給電素子63の位相を0度とした場合のH面におけるゲインのθ依存性を表す。無給電素子62の位相を140及び150度とすることにより、3dB利得低下領域を一方の側(左側)に制御し液流を走査したい側で検知できる。この場合、サイドローブとメインビームが連続し広がった放射パターンとなる。
【0041】
図25は、図17に例示された第3具体例の第1変形例であり、同図(a)は伝送線路64の特性インピーダンスが80オームであり、かつ無給電素子62の位相は110度(伝送線路の長さLは3.8mm)、無給電素子63の位相はマイナス110度(伝送線路の長さLは5.3mm)であるアンテナ10の模式平面図、同図(b)はゲインのθ依存性を表す。
また、図26は、第3具体例の第2変形例であり、同図(a)は伝送線路64の特性インピーダンスが50オームであり、かつ無給電素子62の位相は110度、63の位相はマイナス110度であるアンテナ10の模式平面図、同図(b)はゲインのθ依存性を表す。メインビームのゲインは共にマイナス19dB,ゲインが最大となる角度θは共にマイナス35度である。第2変形例の方がサイドローブを約1dB抑圧できている。
【0042】
図27は、第3具体例の第3変形例である。特性インピーダンスを80オームとし、無給電素子の励振方向と直交する一方の辺と整合点P’との距離2.3mmと等しい切り込みを他方の辺に設け、伝送線路64を長くする。図27(b)に例示されるゲインのθ依存性は図20に例示された第1変形例とほぼ同様となる。
【0043】
図28は、アンテナ10の第4具体例を表し、同図(a)は模式平面図、同図(b)はゲインのφ依存性である。第3具体例において無給電素子62及び63における伝送線路64は、X軸に関して給電素子60の給電点Pとは反対側に設けられている。本第4具体例において、伝送線路64はX軸に関して給電点Pと同一側に配置される。図28(b)において、太線で著す本第4具体例と細線で表す第3具体例とのゲインのφ依存性における相違は小さい。
【0044】
次に、終端解放伝送線路を用いた場合について説明する。
【0045】
図29は、アンテナ10の第5具体例であり、伝送線路74の終端を開放としたアンテナ10の模式平面図である。終端開放の伝送線路は電気長がλg/2で位相が0度である。本図において、無給電素子72における伝送線路74の電気長をλg/2より短く、無給電素子73における伝送線路74の電気長をλg/2より長く設定する。無給電素子72,73及び給電素子60の励振方向に沿う長さDをλg/2とする。
【0046】
図30は、無給電素子72,73を表し、同図(a)は模式平面図、同図(b)はBB’に沿った模式断面図である。深さが0.74mmである導通孔77の先端は接地68とは接続されずに開放(オープン)とする。なお、アンテナ10を構成する基板は第1具体例と同様とできるので説明を省略する。
【0047】
図31は、終端開放の伝送線路の長さLOを変化させた場合、無給電素子72及び73の整合点P’における振幅(dB)、位相(度)、無給電素子のアンテナゲイン(dB)をシミュレーションにより求めたグラフ図である。LOが7.6mmにおいて位相が0度となり、破線で表すアンテナゲインはLOが2.4乃至4.3mmの範囲でマイナスとなり、3.4mm近傍において最小値となる。
【0048】
図32は、整合点P’における反射係数S11のシミュレーション結果を表し、同図(a)はS11振幅、同図(b)は位相の周波数特性を表す。11.05GHzにおいて、終端開放の伝送線路長が7.55mmで位相は0度となり、6.64mmで位相が110度、8.14mmで位相がマイナス110度となる。
【0049】
図33は、最大放射強度が得られる放射角度θにおけるゲインの角度φ依存性を表すグラフ図である。無給電素子に接続される伝送線路が終端短絡(ショート)である場合を細線で、終端開放(オープン)である場合を太線でそれぞれ表す。細線で表す終端短絡伝送線路のほうが角度φに対して対称とできる。
【0050】
図34は、終端短絡または終端開放の伝送線路を有する無給電素子を、給電素子と隣り合うように励振方向に対して横方向に配置したアンテナ10の水平放射パターンを表す図である。
【0051】
図35は、位相が110度及びマイナス110度となる終端短絡及び終端開放伝送線路の構成を表す模式平面図である。
また、図36は、図35に表したそれぞれの伝送線路を備えた無給電素子のE面におけるゲインのθ依存性を表す。終端短絡且つ位相マイナス110度の伝送線路を有する無給電素子が一番高いゲインを有する。終端開放かつ位相110度の伝送線路を有する無給電素子のゲインが最も低い。
【0052】
また図33に例示されるように終端開放伝送線路を用いるとφが240乃至330度の間の範囲でゲインが充分には低下しない。また、図34に例示されるように、終端開放伝送線路を用いると放射パターンがこの角度(φ)近傍で曲がり(すなわち膨らみ)を生じている。この曲がりが生じると、3dB利得低下領域の制御が十分にできない場合がある。しかし、この曲がりは給電素子と無給電素子との励振方向に沿う相対位置をずらすことにより改善できる。
【0053】
図37は、アンテナ10の第6具体例の模式平面図である。終端開放伝送線路74を有する無給電素子72及び73は、給電素子60に対して励振方向かつ給電点とは反対方向に距離Gだけずらして配置されている。この場合は、無給電素子72と73とを同一にGだけずらしているが、同一でなくとも良い。図38に例示されるゲインの角度φ依存性は、図33の終端短絡伝送線路と同様にゲインを減衰させることができる。
【0054】
図39は、水平放射パターンの回転を説明するための模式図である。図39(a)に表した具体例の場合、終端開放伝送線路を有する無給電素子74は、給電素子60に対してずらして配置されておらず、両者の中心をむすぶ直線は、励振方向に対して垂直とされている。その場合の水平放射パターンを見ると、最大ゲインはθ=30度、φ=210度である。つまり、φ=180度の方向からみて30度も回転している。
【0055】
これに対して、図39(b)に表した具体例の場合、終端開放伝送線路を有する無給電素子74は、給電素子60に対してずらして配置されている。すなわち、無給電素子74は、その伝送線路が接続されている方向に向かってずらされている。このようにすると、放射パターンのφ方向の回転を抑制できる。具体的には、図39(b)に表した具体例の場合、最大ゲインはθ=27度、φ=180度であり、図39(a)において見られた水平放射パターンの回転が抑制されている。この場合、無給電素子74をずらし量は、λg/4以内に抑えることが望ましい。
【0056】
一方、水平放射パターンの回転を抑制するもうひとつの方法として、伝送線路を短絡する方法を挙げることができる。
図39(c)は、無給電素子74を給電素子60に対してずらすことなく、その伝送線路の終端を接地した具体例を表す。その結果、放射パターンの最大ゲインはθ=36度、φ=186度となり、図39(a)に表した具体例(φ=210度)と比べて、φ=180度の方向に24度も戻ったことが分かる。
【0057】
図40は、アンテナ10の第7具体例の模式平面図であり、同図(a)は給電点Pと同方向に2個の終端開放伝送線路74が延在する場合、同図(b)は互いに反対方向に延在する場合を表す模式平面図である。また、図40(c)は、ゲインの角度φ依存性を表すグラフ図であり、実線は図40(a)、破線は同図(b)であり、共にφ依存性を変化させることができている。これは、放射パターンの回転を制御できることを表している。
【0058】
図41は、第8具体例を表す模式平面図である。励振方向に沿って、給電素子60をはさんで対称位置に無給電素子62及び63が配置されている。本具体例においては、無給電素子62及び63に、終端短絡伝送線路64が設けられている。
【0059】
図42は、一方の無給電素子62の位相を110度に固定し、他方の無給電素子63の位相を0乃至マイナス180度と変化させた場合におけるアンテナゲインが最大となる素子間スペースS、及び最大放射強度となる角度θを表すグラフ図である。
素子間スペースSが1.3mmの時アンテナゲインが最大となり、最大放射強度となる角度θは63度となることが分かる。
【0060】
図43は、一方の無給電素子62の位相を110度とし、他方の無給電素子63の位相を0、マイナス90、マイナス180度とした場合のE面におけるゲインのθ依存性である。
図44は、素子間スペースSを変化させた場合の水平放射パターンを表す。
無給電素子63の位相を0からマイナス180度まで変化させるにしたがって、サイドローブが低下することが分かる。ただし、メインローブの半値幅はやや拡がる傾向にあり、無給電素子63の位相がマイナス90度付近においてもっとも良好な特性が得られているといえる。
【0061】
次に、伝送線路に高周波スイッチを接続することにより、放射パターンを切り替える具体例について説明する。
図45は、第9具体例を表し、同図(a)は模式平面図、同図(b)は模式底面図である。
本具体例においては、終端短絡伝送線路64と接地68との間に高周波スイッチ100を設けることにより電波ビームの放射パターンを切り替えることができる。伝送線路64は、導通孔66を介して高周波スイッチ100に接続される。高周波スイッチ100は、例えば、GaAsからなるダイオードまたはFETとする。本図はFETを用いた具体例を表し、ゲート電極を伝送線路64から分離できるのでFET電源回路が容易になる。ゲート電極は基板裏面の引き出し電極102に接続され、供給電圧によりオン−オフを制御を行う。
【0062】
図46及び図47は、無給電素子から伝送線路への接続構造の2つの具体例を表す。
すなわち、図46に表した具体例においては、無給電素子62に終端短絡伝送線路64の一方の端部が接続されており、他方の端部が導通孔66へと接続される。この場合には、伝送線路64はマイクロストリップラインとなる。一方、図47に表した具体例においては、無給電素子62のパターン内部に導通孔66が設けられ、基板の裏面において伝送線路64に接続される。この場合には、伝送線路64は厳密にはマイクロストリップラインではないが、その形状パラメータによってはマイクロストリップラインに近似して取り扱うことができる場合もある。
図48は、高周波スイッチ100の位置精度を改善する構造を例示する模式図であり、同図(a)は基板の裏面側を表し、同図(b)は高周波スイッチのインダクタンス成分を説明するための概念図である。
アンテナ10の励振周波数は高いので、高周波スイッチ100の位置決めには高精度が必要であり、このためにはマーカ104などを設けると良い。また、高周波スイッチ100は、寄生インダクタンスL2,L3を有し、その切替状態により寄生インダクタンスが変化する。
【0063】
図49は、高周波スイッチ100のオン−オフに伴うインダクタンスの変化を説明する模式図である。
ここで、L1は伝送線路のインダクタンスを表す。また、図49において、CASE1とCASE1'は、それぞれ高周波スイッチ100がオフ状態とオン状態の寄生インダクタンスを表す。またここでは、高周波スイッチ100がオン状態においても接地されない。このように、高周波スイッチ100のオン−オフにより寄生容量が変化する。このような場合、例えば、CASE1(L1+L2)の状態においてアンテナ特性が最適となるように設計することができる。また、これとは逆に、CASE2(L1+L2+L3)の状態においてアンテナ特性が最適となるように設計してもよい。
【0064】
また、高周波スイッチ100がオン状態において接地される場合(CASE3’とCASE4)にも同様に、高周波スイッチ100がオフ状態(CASE3)においてアンテナ特性が最適となるように設計してもよく、または、高周波スイッチ100がオン状態(CASE4)においてアンテナ特性が最適となるように設計してもよい。
【0065】
これらいずれの場合も、高周波スイッチ100のオン−オフの切替に伴って寄生インダクタンスが変化するので、アンテナ特性を切り替えることができる。
図50は、図45に例示したアンテナ10のH面における電波ビームのゲインのθ依存性を表すグラフ図である。
高周波スイッチ100がオン状態においては、マイナス30度付近をピークとしたメインローブと、プラス50度付近をピークとしたサイドローブが表れるが、高周波スイッチ100がオフ状態に遷移すると、0度付近をピークとした単峰性のアンテナ特性が得られる。このように、高周波スイッチ100を切り替えることにより、アンテナ特性を変化させることができる。
【0066】
図51は、第10具体例を表し、同図(a)は模式平面図、同図(b)は模式断面図である。
本具体例においては、伝送線路64をRにおいて分岐し、一方は導通孔67、高周波スイッチ100a(または100b)を介し接地68と接続し、他方は導通孔66を介して接地68へ直接接続する。
【0067】
図52は、図51のアンテナの回路構成を表す図であり、整合点P’の位相を110度とする時は高周波スイッチ100a(または100b)をオンとし、マイナス90度とする時は高周波スイッチをオフとすればよいことを表す。従って、高周波スイッチ100a(または100b)のオン−オフを切り替えることにより接地への接続経路を切り替えて、アンテナ特性を変化させることができる。
図53は、図51のアンテナのH面におけるゲインのθ依存性を表すグラフ図である。 同図において、例えば(110、−90)とは、無給電素子62の整合点P’における位相が110度で、無給電素子63の整合点P’における位相がマイナス90度であることを表す。すなわち、この時、高周波スイッチ100aはオン状態で、高周波スイッチ100bはオフ状態である。
【0068】
図53から、高周波スイッチ100a、100bがいずれもオン状態(110、110)またはオフ状態(−90、−90)においては、放射パターンは0度を中心として左右対称であるが、高周波スイッチ100a、100bの一方をオン状態、他方をオフ状態として切り替えると、放射パターンは0度を中心として反転することが分かる。すなわち、(110、−90)と(−90、110)とは、放射パターンの角度分布が反転している。従って、高周波スイッチ100a、100bを切り替えることにより、例えば、(110、110)あるいは(−90、−90)のように幅広い放射パターンを得たり、あるいは(110、−90)や(−90、110)のように局在的な放射パターンを選択することが可能となる。
図54は、第10具体例の第1変形例を表し、同図(a)は模式平面図、同図(b)は模式底面図、同図(c)はH面におけるゲインのθ依存性である。
導通孔66は、無給電素子62及び63のパターン領域内に設けられ、基板の裏面において伝送線路64が設けられる。伝送線路64と高周波スイッチ100との接続点近傍には終端短絡の伝送線路が分岐されており、高周波スイッチ100のオン−オフ切り替えにより伝送線路長を変化させ、図54(c)のようにゲインのθ依存性を制御できる。なお、図54(c)は、無給電素子62、63の位相がそれぞれ110度、マイナス90度の状態を表す。図53に表した(110、−90)の具体例と同様に、角度θのマイナス側にメインローブ、プラス側にサイドローブが表れていることが分かる。
【0069】
図55は、第10具体例の第2変形例を表し、同図(a)はその模式平面図、同図(b)はその底面拡大図である。無給電素子62及び63の裏面において、伝送線路64は導通孔66を介して高周波スイッチ100へ接続される。この接続点からは終端短絡の伝送線路が分岐されており、高周波スイッチ100のオン−オフにより伝送線路長を変化させる。
図56は、第10具体例の第1及び第2変形例の回路構成を表す模式図である。すなわち、同図(a)に表した具体例の場合には、高周波スイッチ100がオンであると無給電素子は導波器となり、オフであると反射器となるようにインダクタンスが変化する。一方、同図(b)に表した具体例の場合には、高周波スイッチ100がオフの時に無給電素子は導波器となり、オンの時は反射器となるようにインダクタンスが変化する。
【0070】
図57は、第11具体例を表し、同図(a)は模式平面図、同図(b)はゲインのθ依存性である。伝送線路64は分岐されており、一方は高周波スイッチを介して接地され、他方は直接接地される。この結果、無給電素子62、63における位相の組み合わせは、(110度、−180度)、(−180度、110度)、(−180度、-180度)、及び(110度、110度)の4通りとなる。
図57(b)はこれらの組み合わせに対応する放射パターンをそれぞれに表すグラフ図である。例えば、(110度、110度)及び(−180度、-180度)においてはθ=0°においてゲインが最大となる左右対称の放射パターンが得られる。また、(110度、−180度)と(−180度、110度)とは、それぞれ左右非対称で0度を中心に反転した放射パターンとなる。
【0071】
図58は、第12具体例を表し、同図(a)はその模式平面図、同図(b)はその模式底面図である。
伝送線路64の終端が導通孔66を介して接地68に短絡され、伝送線路64の中間に分岐点が設けられ導通孔67を介して高周波スイッチ100と接続されている。無給電素子62と63は、給電素子60をはさんで励振方向に対して横方向に配置されている。また、無給電素子162と163は、給電素子60をはさんで励振方向に配置されている。
【0072】
このようにすると、伝送線路からスイッチ100を介して分岐した線路もすべて励振方向に対して平行に配置することができる。線路が励振方向に対して垂直になる場合には、それらの線路を給電素子60を中心として対称に形成することが望ましいが、スイッチ100の接続端子の形状に制限があるため、これが難しい場合が多い。これに対して、本具体例においては、スイッチ100において分岐した部分も含めて、全ての無給電素子の伝送線路を励振方向に対して平行に形成することができるので、対称性に優れたアンテナを実現できる。
【0073】
図59は、高周波スイッチ100a,100b、100c、100dをそれぞれにオン−オフした場合におけるゲインのθ依存性を表し、それぞれ左側はH面、右側はE面である。
これらいずれも、高周波スイッチをオンにした時の無給電素子の位相は110度であり、一方、高周波スイッチをオフにした時の無給電素子の位相はマイナス180度(図59(a))、マイナス90度(図59(b))、または0度(図59(c))とされている。サイドローブを抑制する観点からは、高周波スイッチをオフにした時に無給電素子の位相がマイナス180度のものが有利である。
【0074】
図60(a)、(b)、(c)は、図59(a)、(b)、(c)とそれぞれに対応したH面及びE面における垂直放射パターンを表しており、H面はXZ平面、E面はYZ平面である。
一方、図61は、第12具体例において無給電素子の一方を110度、他方を170度とした場合のゲインのシータ依存性を表す。図59(a)、図60(a)に表したように、無給電素子の他方の位相をマイナス180度にした場合と近似した特性が得られることが分かる。
【0075】
図62は、アンテナ10の第13具体例を表す模式図である。
導通孔66を介して高周波スイッチ100が基板裏面の終端短絡伝送線路に接続される。本図において、基板裏面には励振方向に対して横方向に延在する終端短絡伝送線路が設けられている。このようにするとアンテナ10を全体として小型化できる。
【0076】
次に、位相が同一の複数の無給電素子を設けた具体例について説明する。
図63は、アンテナ10の第14具体例の模式平面図である。本具体例においては、無給電素子62及び63は同一位相とする。無給電素子62及び63の位相が同一であり、160乃至マイナス160度まで変化させた場合、各給電素子−無給電素子間スペースSに対するゲイン変化率を(表1)に、最大放射強度方向(θ、φ)を(表2)に表す。
【表1】

【表2】

無給電素子の位相が170度から180度までの範囲は、図6に例示されるようにアンテナゲインがマイナスとなる領域である。本具体例におけるように、導波器−導波器として作用する無給電素子62及び63によっても放射パターンが制御可能である。
図64は、本具体例の放射パターンを表す模式図である。
【0077】
図65は、第15具体例の模式平面図である。
また、図66は、本具体例の放射パターンを表す模式図である。
【0078】
本具体例においては、無給電素子62及び63の位相を同一とし、給電素子60をはさんで励振方向に沿って配置されている。無給電素子62及び63の位相を変化させた場合、給電素子−無給電素子間スペースにおけるゲイン変化率を(表3)に、最大放射強度方向(θ、φ)を(表4)に表す。
【0079】
【表3】

【0080】
【表4】

【0081】
本具体例におけるように、導波器−導波器として作用する無給電素子62及び63によっても放射パターンが制御可能である。
以上、図面を参照しつつ、本発明の実施の形態につき説明した。しかし、本発明は、これらに限定されない。高周波センサを構成するアンテナ、送信部、受信部、差分検出器、給電素子、無給電素子、伝送線路、高周波スイッチなどの材質、形状、サイズに関して各種設計変更を行ったものであっても、本発明の主旨を逸脱しない限り本発明の範囲に包含される。
【0082】
また、本実施形態の高周波センサは、図2に例示したような小用便器のみならず、腰掛便器や、その他、トイレ、洗面所、浴室、キッチンをはじめとして、各種の用途において設けることができる。
【図面の簡単な説明】
【0083】
【図1】本発明の具体例にかかる高周波センサを説明する図である。
【図2】本具体例にかかる高周波センサを備えた小便器の構成を表す図である。
【図3】図2の小便器の機能図である。
【図4】高周波センサを構成するアンテナの第1具体例である。
【図5】無給電素子の構造を表す図である。
【図6】無給電素子の特性を表すグラフ図である。
【図7】無給電素子の整合点におけるS11を表すグラフ図である。
【図8】素子間スペースと、最大ゲイン及びθとの関係を表すグラフ図である。
【図9】第1具体例のゲインのθ依存性を表すグラフ図である。
【図10】第1具体例の放射パターンである。
【図11】第1具体例の変形例における素子間スペースと、最大ゲイン及びθとの関係を表すグラフ図である。
【図12】変形例におけるゲインのθ依存性を表すグラフ図である。
【図13】アンテナの第2具体例の模式平面図である。
【図14】第2具体例における素子間スペースと、最大ゲイン及びθとの関係を表すグラフ図である。
【図15】第2具体例におけるゲインのθ依存性である。
【図16】第2具体例における水平放射パターンである。
【図17】アンテナの第3具体例である。
【図18】第3具体例における素子間スペースと、最大ゲイン及びθとの関係を表すグラフ図である。
【図19】第3具体例におけるゲインのθ依存性である。
【図20】第3具体例における水平放射パターンである。
【図21】ゲインのθ依存性である。
【図22】図21に対応する水平放射パターンである。
【図23】ゲインのθ依存性の他の例である。
【図24】ゲインのθ依存性の他の例である。
【図25】第3具体例の第1変形例である。
【図26】第3具体例の第2変形例である。
【図27】第3具体例の第3変形例である。
【図28】アンテナの第4具体例である。
【図29】アンテナの第5具体例である。
【図30】終端開放伝送線路を有する無給電素子の構造を表す図である。
【図31】終端開放伝送線路を有する無給電素子の特性を表すグラフ図である。
【図32】終端開放伝送線路を有する無給電素子の整合点におけるS11を表すグラフ図である。
【図33】ゲインのφ依存性を表すグラフ図である。
【図34】水平放射パターンの比較を表す図である。
【図35】終端開放または短絡線路の構成の比較を表す図である。
【図36】図35の構成におけるゲインのθ依存性を比較するグラフ図である。
【図37】アンテナの第6具体例の模式平面図である。
【図38】第6具体例のゲインのφ依存性である。
【図39】水平放射パターンである。
【図40】アンテナの第7具体例である。
【図41】アンテナの第8具体例である。
【図42】第8具体例における素子間スペースと、最大ゲイン及びθとの関係を表すグラフ図である。
【図43】第8具体例におけるゲインのθ依存性である。
【図44】第8具体例における水平放射パターンである
【図45】第9具体例である。
【図46】伝送線路の接続構造である。
【図47】伝送線路の他の接続構造である。
【図48】高周波スイッチの固定方法を表す図である。
【図49】高周波スイッチのインダクタンスを説明する図である。
【図50】ゲインのθ依存性である。
【図51】アンテナの第10具体例である。
【図52】分岐点を設けた回路の構成を表す図である。
【図53】図52におけるゲインのθ依存性を表すグラフ図である。
【図54】第10具体例の第1変形例である。
【図55】第10具体例の第2変形例である。
【図56】回路構成の例である。
【図57】アンテナの第11具体例である。
【図58】アンテナの第12具体例である。
【図59】第12具体例におけるゲインのθ依存性である。
【図60】図59に対応する垂直放射パターンである。
【図61】ゲインのθ依存性の他の例である。
【図62】アンテナの第13具体例である。
【図63】アンテナの第14具体例である。
【図64】第14具体例の水平放射パターンである。
【図65】アンテナの第15具体例である。
【図66】第15具体例の水平放射パターンである。
【符号の説明】
【0084】
10 アンテナ、12 送信部、14 受信部、16 差分検出器、20 高周波センサ装置、60 給電素子、62、63、72、73 無給電素子、64、74 伝送線路、66、67、77 導通孔、100 高周波スイッチ、102 引き出し電極

【特許請求の範囲】
【請求項1】
送信波を発生する送信部と、
前記送信波を放射し、前記送信波の物体による反射波及び透過波の少なくともいずれかを受信波として受信するアンテナと、
前記受信波を検知する受信部と、
を備え、
前記アンテナは、パッチ電極を有する給電素子と、パッチ電極を有する無給電素子と、を含み、
前記無給電素子の前記パッチ電極の辺のうち、前記アンテナの励振方向と直交する一辺の中央近傍から前記励振方向に平行に延在する伝送線を設け、前記伝送線を途中で裏面側に分岐させスイッチを介して分岐路に接続可能としたことを特徴とする高周波センサ装置。
【請求項2】
送信波を発生する送信部と、
前記送信波を放射するアンテナと、
前記送信波の物体による反射波及び透過波の少なくともいずれかを受信波として受信するアンテナと、
前記受信波を検知する受信部と、
を備え、
前記送信するアンテナと前記受信するアンテナの少なくともいずれかは、パッチ電極を有する給電素子と、パッチ電極を有する無給電素子と、を含み、
前記無給電素子の前記パッチ電極の辺のうち、前記アンテナの励振方向と直交する一辺の中央近傍から前記励振方向に平行に延在する伝送線を設け、前記伝送線を途中で裏面側に分岐させスイッチを介して分岐路に接続可能としたことを特徴とする高周波センサ装置。
【請求項3】
前記高周波スイッチをオン状態とオフ状態との間で遷移させることにより前記アンテナの放射パターンを可変としたことを特徴とする請求項1または2に記載の高周波センサ装置。
【請求項4】
前記伝送線及び前記分岐路は、前記励振方向に対して略平行に延在することを特徴とする請求項1〜3のいずれか1つに記載の高周波センサ装置。
【請求項5】
前記無給電素子は、前記給電素子と隣り合い、且つ前記励振方向に対して平行な方向に併設されたことを特徴とする請求項1〜4のいずれか1つに記載に高周波センサ装置。
【請求項6】
前記無給電素子は、前記給電素子と隣り合い、且つ前記励振方向に対して垂直な方向に併設されたことを特徴とする請求項1〜4のいずれか1つに記載の高周波センサ装置。
【請求項7】
前記スイッチは、FETであることを特徴とする請求項1〜6のいずれか1つに記載の高周波センサ装置。


【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図11】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図21】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図49】
image rotate

【図50】
image rotate

【図52】
image rotate

【図53】
image rotate

【図56】
image rotate

【図59】
image rotate

【図61】
image rotate

【図1】
image rotate

【図10】
image rotate

【図12】
image rotate

【図16】
image rotate

【図20】
image rotate

【図22】
image rotate

【図34】
image rotate

【図39】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図51】
image rotate

【図54】
image rotate

【図55】
image rotate

【図57】
image rotate

【図58】
image rotate

【図60】
image rotate

【図62】
image rotate

【図63】
image rotate

【図64】
image rotate

【図65】
image rotate

【図66】
image rotate


【公開番号】特開2008−22289(P2008−22289A)
【公開日】平成20年1月31日(2008.1.31)
【国際特許分類】
【出願番号】特願2006−192237(P2006−192237)
【出願日】平成18年7月13日(2006.7.13)
【出願人】(000010087)TOTO株式会社 (3,889)
【Fターム(参考)】