説明

Fターム[2G058FB12]の内容

自動分析、そのための試料等の取扱い (28,698) | 洗浄、乾燥 (1,389) | 洗浄手段 (469) | 洗浄液の供給、排出によるもの (450)

Fターム[2G058FB12]の下位に属するFターム

Fターム[2G058FB12]に分類される特許

241 - 260 / 345


【課題】洗浄液が溢れ出ることを防止することができ、且つ微量検体の分析が可能な反応容器も適用対象とする洗浄装置を提供する。
【解決手段】洗浄装置は、洗浄液供給ノズル34と第1洗浄液吸引ノズル46と第2洗浄液吸引ノズル48とを備えている。洗浄装置には、反応容器6の内部に先端を挿入した第1洗浄液吸引ノズル46と第2洗浄液吸引ノズル48との間を反応容器の外部で電気的に接続し、洗浄液36の液面高さが、検体及び試薬が入っていた高さを超えた場合にノズル46,48間が洗浄液で電気的に接続されることを監視する導通状態監視手段56を設けてある。 (もっと読む)


【課題】本発明は液体クロマトグラフィーでの高感度測定におけるキャリーオーバーを低減させ、スループットを向上させ、定量の精度を確保するためのサンプルインジェクションの方法に関するものである。
【解決手段】サンプルインジェクションのニードルは先端、付け根、及びその間の溶媒保持部から構成され二つの内径をもつ構造となる。溶媒保持部は、大きい内径部分を持つことにより、吸引されたサンプル溶液がニードル内にとどまるようになっている。このためサンプルはシリンジ本体やチューブの内面、プランジャーの先端などのサンプル吸引装置の一部と接触を防止することができる。さらに、非特異的な検体吸着を防止するために、流路の内壁には効果的に研磨処理が施されている。キャリーオーバーを低減するためのサンプルインジェクションの方法も記載した。 (もっと読む)


【課題】検液の実際の温度を測定可能とする自動分析装置を提供すること。
【解決手段】試薬および検体を分注したキュベットCを収容したキュベットホイールを人体の体温と同一温度の環境下で回転移動して、試薬および検体からなる検液の吸光度を逐次測光することにより、検体を分析する自動分析装置において、キュベットCに分注された試薬および検体からなる検液の温度を逐次測定する非接触温度センサ315をキュベットCの回転軌跡の上方に備えるようにした。 (もっと読む)


【課題】試薬ボトル内に泡が発生しても、泡および試薬液面の検知を正確に行い、試薬の吸引を正常に行うこと。
【解決手段】試薬ボトルに充填された試薬残量から試薬の液面位置を液面算出部4aで算出し、この液面位置をもとに移動制御部5aが試薬プローブを試薬ボトル内に挿入して、試薬プローブの先端を所定位置まで移動制御する。液面検知部352b,362bは、この移動の際に試薬の液面位置を検知しており、この検知された液面位置が、前記算出した液面位置よりも上方位置の場合に、泡検知判断部4bが泡検知と判断する。 (もっと読む)


【課題】必要に応じて自動分析装置に試薬を自動で補充することができる試薬補充装置を提供し、また試薬に泡を発生させることなく自動分析装置に試薬を供給することができる試薬補充装置を提供する。
【解決手段】補充用の試薬を収容した試薬容器22を保管する試薬保管部8と、自動分析装置1の試薬格納部2(2A,2B)にある試薬容器22を当該試薬格納部2の外部に搬送して回収する一方で試薬保管部8にある試薬容器22を試薬格納部2に搬送する搬送部9とを有しており、試薬保管部8および搬送部9を自動分析装置1に対して着脱可能に設けてある。この結果、試薬の消費量が多い自動分析装置に対して必要に応じて試薬を自動で補充できる。また、搬送部9は、試薬容器22をほぼ面一な面上で移動させるため、試薬容器22を上下移動させないので、試薬容器22内の試薬に泡を発生させる事態を防止できる。 (もっと読む)


【課題】 分注プローブの停止位置を短時間で定めることができる自動分析装置及びその停止位置設定方法を提供する。
【解決手段】 位置設定部35は、各分注プローブの各停止位置の下方に中心面83を合わせて配置した治具80の上方に,第p及び第(p+1)ポイントの調整位置を設定し、各分注プローブを第p及び第(p+1)の調整位置に水平移動させた後に,各液面検出器18a,18b,18cにより検出される第p及び第(p+1)の検出位置まで下移動させて、第p及び第(p+1)ポイントの調整位置と第p及び第(p+1)の検出位置の間の距離に対応する第p及び第(p+1)の下移動距離データを生成し、生成した第p及び第(p+1)の下移動距離データに基づいて、第p及び第(p+1)の検出位置を判断する。 (もっと読む)


【課題】自動分析装置における分析を支援する分析支援用液体が自動分析装置に供給された後の品質を適確に判定し、分析の精度を適正に維持することができる自動分析装置の分析支援用液体の品質管理方法および自動分析装置を提供する。
【解決手段】試料を分注する試料分注手段、試薬を分注する試薬分注手段、反応容器を洗浄する洗浄手段または希釈液を分注する希釈液分注手段によって試料の分析を支援する分析支援用液体を反応容器に分注し、この分注した分析支援用液体を含む反応容器内の液体に対する光学的な測定を行い(ステップS1)、測定した結果を用いて分析支援用液体の分析データを生成し(ステップS2)、生成した分析データを基準データと比較することによって分析支援用液体の品質を判定する(ステップS3)。 (もっと読む)


【課題】比重や運動粘性係数を予め個々に測定しなくとも、数μL以下の微小量の液体試料を正確に分注することが可能な分注装置及び分注方法を提供すること。
【解決手段】配管14によって接続された分注ノズル2とシリンジポンプ6とを備え、シリンジポンプによって分注ノズルから液体試料を配管内に空気層を介して吸引し、吸引した液体試料を所定量吐出して分注を行う分注装置1及び分注方法。分注装置1は、分注ノズル2とシリンジポンプ6との間の分注ノズル近傍に配置される弁3と、分注ノズルから空気層を介して液体試料を吸引する吸引時に弁を開弁し、液体試料の吸引終了時に弁を閉弁し、分注ノズルとシリンジポンプとの間の空気層をシリンジポンプを作動させて圧縮した後、圧縮した空気層の圧力を直接作用させて液体試料を分注ノズルから所定量吐出させるように弁を開弁させる制御回路10とを設けた。 (もっと読む)


【課題】分注精度の向上を図ることができる分注装置を提供すること。
【解決手段】先端がプローブ19に接続してあり、内部を流体が移動する配管(13,16)と、出力された駆動信号に基づいて開閉動作することにより配管内の流体の移動を許容及び規制するバルブ25とを備え、配管内で流体を移動させることにより、プローブ19から液体試料を吸引し、吸引した液体試料を吐出して分注を行う分注装置において、駆動信号が出力されてから配管内の圧力が変化するまでの時間を計測することにより、バルブ25の動作遅延時間を算出する遅延時間算出手段(39,40)と、遅延時間算出手段によって算出された動作遅延時間に基づいてバルブ25の動作時間を制御するバルブ制御手段(41,32)とを備えたものである。 (もっと読む)


日常的にサンプルおよび/または試薬に曝されているシリンジ面の洗浄/フラッシングが不十分であることに起因するキャリオーバおよび汚染に対処する装置と方法。具体的には、この装置と方法はシリンジニードルの内側面および外側面の洗浄と共にシリンジバレル内部の洗浄を実現する。 (もっと読む)


【課題】測定精度や分注精度を適確に維持しながら処理能力を向上させることができる自動分析装置の検体分注方法、自動分析装置、およびプログラムを提供する。
【解決手段】検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置1において、細管状のプローブ151を用いて同一の検体を複数の異なる容器(反応容器51)へ分注する場合、各分注動作の間にプローブ151の洗浄を行うことなくプローブ151による分注を連続して行う。 (もっと読む)


【課題】 それぞれの異なる検定方法を使用して液体標本の複数の検定を同時に実施することができる装置および方法を有し、連続ランダムアクセスを可能にし、同じ時間中に同じ標本または異なる標本に対する複数の異なる検定を実施する自動連続ランダムアクセス分析システム、並びに、複数の液体標本に対して複数の検定を同時に実施することができる自動ランダムアクセスシステムを操作する方法を提供する。
【解決手段】 この方法では、複数の液体標本の様々な検定をスケジューリングし、それに続いて、検定反応シーケンスを開始せずに、単位用量ディスポーザブルを生成し、第1の液体標本および試薬を別々に反応槽へ移送し、それに続いて、単位用量ディスポーザブルを処理ワークステーションへ物理的に移送し、それによって、インキュベーションの際に単位用量ディスポーザブル試薬と標本との混合を行う。 (もっと読む)


【課題】簡単な操作によって装置の性能チェックを行う。
【解決手段】試料分析用の試薬カートリッジと同じ外形をした性能チェック用カートリッジを用いて装置の性能チェックを行う。性能チェック用カートリッジは、装置の性能チェック用の試薬を保持するとともに、処理条件及び判定条件を二次元ドットコードの形態で保持する。自動分析装置は、性能チェック用カートリッジに記録されている処理条件に従って、性能チェック用カートリッジに封入された試薬を用いて吸光度測定を行い、測定結果を性能チェック用カートリッジに記録されている判定条件と照合して装置性能のチェックを行う。 (もっと読む)


【課題】 簡単に反応槽の水平出しを行うことができる自動分析装置及びその水平出し方法を提供する。
【解決手段】 被検試料を反応容器4に分注するサンプル分注プローブ16と、第1及び第2の試薬を反応容器4に分注する第1及び第2試薬分注プローブ14,15と、被検試料及び試薬の混合液を測定温度に保持する熱媒体81を収容する反応槽82と、各分注プローブに対応して反応槽82に設けられた水平出し部82aa,82ab,82acと、各分注プローブの熱媒体81との接触時にその液面を検出する液面検出器18a,18b,18cとを備え、各水平出し部の上方から前記液面の検出位置まで下移動した各分注プローブの距離を求め、求めた各距離及び各水平出し部の位置の情報に基づいて、反応槽82の水平出しを行うための高さ調整量を算出する。 (もっと読む)


【課題】音波の吸収に起因した液体の温度上昇を抑制することが可能な攪拌装置及び分析装置を提供すること。
【解決手段】容器に保持された液体を音波によって攪拌する攪拌装置及び分析装置。攪拌装置20は、液体に照射する音波を発生させる表面弾性波素子24と、表面弾性波素子が照射する音波によって上昇する液体の温度を所定温度以下に制御する駆動制御部21とを備えている。駆動制御部21は、液体の熱に関する特性に応じて液体の温度を制御する。 (もっと読む)


【課題】簡単な構成でありながら検体容器の様々なフタ形状を識別する必要がなく、検体容器を設置するのと同時に、検体容器のフタの有無の確認及び混和の有無の設定を行うことである。
【解決手段】検体容器Tを保持する検体容器ホルダ6と、その検体容器ホルダ6を略水平方向に配される軸線周りに回転駆動するホルダ駆動部7と、前記検体容器ホルダ7に設置された検体容器Tの傾斜角度θを検出する傾斜角度検出部8と、前記ホルダ駆動部7を制御する制御装置9とを備え、前記制御装置9が、前記角度検出部8から角度検出信号を受け付けて、その傾斜角度θに応じて、前記検体容器T内の血液検体の混和の有無を判断し、前記ホルダ駆動部7を制御するものである。 (もっと読む)


【課題】表面弾性波素子の発熱に起因した液体の温度上昇を抑制することが可能な攪拌装置と分析装置を提供すること。
【解決手段】容器に保持された液体を音波によって攪拌する攪拌装置及び分析装置。攪拌装置20は、容器に接触した状態で液体に照射する音波を発生させる表面弾性波素子24と、音波の発生に伴う表面弾性波素子の発熱を抑制する抑制部材とを備えている。抑制部材は、表面弾性波素子24に当接し、冷却によって表面弾性波素子の発熱を抑制するペルチェ素子27又は放熱によって表面弾性波素子の発熱を抑制する放熱部材である。 (もっと読む)


【課題】サンプルプローブの詰まりを検知した場合に、詰まりの原因が液体試料またはサンプルプローブにあるかを判定する。
【解決手段】液体試薬の吸引時に詰まり検知手段によってサンプルプローブの詰まりを検知した場合(S2:Yes)、サンプルプローブで吸引した液体試料を吐出させた後の洗浄水の吐出時(S5)に詰まり検知手段によってサンプルプローブの詰まりを検知する(S6)。この結果、サンプルプローブが原因の詰まりか否かを判定できる。また、洗浄水の吐出時に詰まり検知手段によってサンプルプローブの詰まりを検知しなかった場合(S6:No)、サンプルプローブで再度同じ液体試料を吸引させて(S10)詰まり検知手段によってサンプルプローブの詰まりを検知する(S2)。この結果、液体試料が原因の詰まりか否かを判定できる。 (もっと読む)


【課題】液体の攪拌効率を向上させることができ、構造が簡単で、小型化が可能な攪拌装置と分析装置を提供すること。
【解決手段】攪拌対象の液体を保持する容器と、液体へ音波を照射すると共に、音波によって液体を攪拌する音波発生手段とを備えた攪拌装置と分析装置。攪拌装置20の表面弾性波素子22は、容器7に接触する接触面を有する圧電基板22aと、圧電基板上に形成され、液体を攪拌する音波を発生する発音部22bと、圧電基板上の接触面以外の部分に形成され、外部から供給される発音部の駆動電力を無線で受電する受電部22cとを有している。 (もっと読む)


【課題】レンズを使用しても容器に入射する光束を全波長帯域に亘って小さなスポット径とすることができ、検体や試薬を微量化することが可能な分析装置を提供すること。
【解決手段】液体を保持した容器を透過した光について測定した吸光度をもとに液体の分析を行う分析装置。容器7を透過した可視光を測定する可視光光学系81と、容器を透過した紫外光を測定する紫外光光学系82とをそれぞれ備えている。可視光光学系81は、可視域の連続スペクトル光を出射する可視光光源81aを有し、紫外光光学系82は、紫外域の単色スペクトル光を出射する少なくとも一つ以上の紫外光光源82aを有する。 (もっと読む)


241 - 260 / 345