説明

Fターム[2G059EE01]の内容

光学的手段による材料の調査、分析 (110,381) | 分析法(原理) (16,272) | 光透過、光吸収 (4,171)

Fターム[2G059EE01]に分類される特許

4,081 - 4,100 / 4,171


複数の化学又は生物学的物質のオンサイト分析が必要とされているところで、かかる物質の濃度を測定するための携帯型システム及び方法。新規の、また元のハンドヘルドセンサシステムでは、ディスポーザル光学試験エレメントと、光吸収度、ルミネセンス、及び他の形の光に基づく応答の変化によって特定の検体に対する試験エレメントの応答を測定する分光検出器とを使用する。このようにして、試験エレメントの応答を示す反射光強度を使用して、対象検体の濃度を測定することができる。また、センサシステムは、情報処理ユニット又はコンピュータにインターフェースすることもでき、その結果、分析データを電子的に操作又は記憶することができる。 (もっと読む)


金属ナノ粒子を撮像するための装置および方法。本発明は、金コロイド粒子を検出し、操作者に正確に報告するための装置および方法を教示する。装置は、基材を保持するための基材・ホルダと、プロセッサおよびメモリ・デバイスと、撮像モジュールと、照明モジュールと、入力モジュールと、出力モジュールとを含む。装置は、互いに最も近くに配置された定置式基材・ホルダと撮像モジュールを有することができる。この装置は、基材の端から端までカメラを移動させるのに複雑なモータ駆動式デバイスを必要としない、小型のシステムを提供する。さらに、装置および方法は、基材上のスポット/ウェルの自動検出、基材上のスポットの自動定量、および決定統計に基づいたスポットの自動解釈を提供する。 (もっと読む)


【課題】高分子電解質膜(PEM)内の水和水を測定するための方法及び装置を提供する。
【解決手段】本方法及び装置は、PEM上の入力部位に向けられた入力放射線源と、入力部位に相対して出力部位に応答可能に配置されてPEM内の水の水和レベルを示す入力放射線における検知可能な変化を測定する検出器とを使用する。本方法は、PEM内に入力部位を形成する段階と、放射線源(34)を入力部位内に発射してPEM材料と相互作用させる段階と、PEM材料との入力放射線の相互作用(40)を検出する段階と、PEM(50)内の水の水和レベルを示す相互作用の結果として入力放射線内の検知可能な変化を測定する段階とによってPEMの水和を測定する。 (もっと読む)


感知面を具えた表面プラズモン共鳴装置を使った医療的診断方法である。患者の目からの涙サンプルを感知面と接触させる。表面プラズモン共鳴装置は涙サンプルの浸透圧モル濃度を決定する。 (もっと読む)


本発明は、半導体ウェハ(100)上に堆積または形成された膜(104)の光学特性を測定するためのシステム(201)および方法を提供する。膜の試験領域(206)内にあって、互いに重なり合わない複数の位置(216)において、上記膜の化学線照射量よりも低い放射線照射量で光学特性を測定する。この結果、上記測定によって上記膜内に化学変化が引き起こされることはない。従来技術による方法に対して上記測定を較正して、その結果を調整係数または較正係数によって調節してもよい。
(もっと読む)


体液中のタンパク質含有分析物などの生体試料中の分析物を検出するためのラマン活性またはSERS活性プローブ構築物を使用する種々の方法が提供される。本発明の方法が、試料中のタンパク質含有分析物または断片のアミノ酸組成についての情報を提供できるように、ラマン活性構築物におけるプローブ部分は、生体試料中の特定の公知の分析物に結合し、同定するように選択されるか、またはプローブ部分は、一定のアミノ酸に共通に見いだされる官能基と化学的に相互作用するようにデザインされる。患者試料のタンパク質プロフィールを作製することができるように、場合によっては、ラマン活性またはSERS活性プローブ構築物は、本発明の方法に使用したときに、特定のタンパク質含有分析物またはこのような分析物の型を同定することができる。ラマンのデータベースまたは正常な試料のSERSスペクトルと比較したときに、開示された方法を使用して患者の疾病状態を同定することができる。

(もっと読む)


光学分析系(20)は、光信号の主成分の振幅を決定するように、配置される。その光学分析系(20)は、スペクトルの重み付けの関数によってその光信号を重み付けするための多変量光学素子(5,6)及びその重み付けされた光信号を検出するための検出器(7,8)を含む。その光信号は、その主成分及びそのスペクトルの重み付けの関数を設計するとき占められなかったさらなる成分を含む。従って、その検出された重み付けされた光信号は、その主成分の振幅に関係する部分及びそのさらなる成分のさらなる振幅に関係するさらなる部分を含む。その光学分析系(20)は、その検出された重み付けされた光信号を変調するための変調器素子(13)をさらに含む。その変調された検出された重み付けされた光信号とその検出された重み付けされた光信号との間の差は、その主成分の振幅に関係すると共に、このように、正確な方式でその主成分の振幅を決定することを許容する。血液分析系(40)は、このような光学分析系(20)を含む。主成分の振幅を決定する方法は、その光学分析系(20)を使用する。
(もっと読む)


【課題】流体の分光又は干渉測定を行うための薄層電極及び方法を提供する。
【解決手段】気体センサは、多孔性の薄いフィルムセル内で光学干渉を用いて孔隙媒質の屈折率を測定する。孔隙内の媒質が変化すると、スペクトル的変動を検出することができる。例えば、孔隙が溶液で満たされると、固有ピークは1つの方向にスペクトルシフトを示す。逆に、微量の気体が生成されると、ピークは反対方向にシフトする。これは、気体の発生や湿度の測定、及び他の干渉計ベースのセンサ装置に対する用途に使用することができる。 (もっと読む)


提供されるものは、撮像平面における位置のシフトを得るために少なくとも二つの異なる角度で問題の物体を撮像するステップ及びその後に器官の表面に関する撮像された物体の座標を得るために二つの画像における物体の相対的なシフトを比較するステップを含む、本発明に従った、直交偏光分光撮像(OPSI)を使用する、拡散性の散乱媒体の表面より下の物体の、特に、ヒトの皮膚のような器官における毛細血管の、検出用の方法及び装置である。
(もっと読む)


光学材料(例えばガラス板)の複屈折(例えば、応力誘起複屈折、固有複屈折)を測定及び解析することによる光学材料の品質を判定するためのシステム及び方法が説明される。方法は、複屈折センサが第1の光学状態に設定され、次いで一定の速度でガラス板上を一方向に移動させられ、この間に第1のパワー透過率測定が高データレートでなされる、スキャン手法である。この移動の終点において、複屈折センサは第2の光学状態に設定され、次いでガラス板上を同じ速度で戻され、この間に第2のパワー透過率測定がなされる。この手順が、複屈折センサがもつ光学状態の数と同じ回数反復される。次いで、ガラス板の品質を判定するために、コンピュータがパワー透過率測定値のプロファイルを用いて複屈折値を計算する。

(もっと読む)


例えば分光学的方法、NMR法, 化学発光法, ガス液体クロマトグラフィ,ポーラログラフィ、薄層クロマトグラフィ及びペーパークロマトグラフィのような従来の方法を用いた綿実中のゴシポールの測定は、面倒で、時間がかかり、高コストで較正システムを必要とする。本発明では低コストで携帯可能なシステムが開発され、全ゴシポールの濃度が試験溶液からmgl-1又はppmレベルでLCD上に直接表示され、吸光度を測定するため、較正曲線を作製するための標準溶液が不要である。 (もっと読む)


流体(7)、すなわち分析対象の気体や液体の一定量を封入するための流体セル(1)が含まれている流体センサー、およびこのようなセンサーの製造方法である。流体センサーは、電磁波(4)が流体セル(1)中を通過するように配設された電磁エネルギー源(3)と、流体セル(1)を通過する電磁波を検知するための少なくとも一つの検知器(5)と、分析する流体が出入りするための少なくとも一つの開口部(2)とから構成される。流体センサーは、前記の少なくとも一つの検知器(5)に到達する電磁波の強度を評価し、および/または電磁エネルギー源(3)用の回路構成部材となる回路基板(8、10、11、12、13、14、15、16)とからも構成される。流体セル(1)の少なくとも一部は、回路基板(8、10、11、12、13、14、15、16)の基材に組み入れられている。

(もっと読む)


本発明は、本発明は、好ましくはパッケージ内部の、物質あるいは物質混合物を含む試料容量が少ないあるいは高粘性媒体内部の化学的及び/又は物理的状態変化の検出用の検知システムに関する。本発明の目的は、廉価に該物質及びそれらの混合物または異なった媒体の状態をチェックすることを可能とすることにある。本目的のために、本発明の検知システムは、カニューレ(2)に対して交換可能に連結可能としたエレメント(3)の上あるいは内部に膜あるいは感知フィルム(1)を配置可能となるように設計され、それによってエレメント(3)とカニューレ(2)とを測定可能な媒体中に導入し光学センサシステム(4)とにより光学的連結部を形成することを可能とするものである。 (もっと読む)


【課題】本発明は、物質あるいは物質の混合物、特に、食品や医薬品のような傷みやすい製品のためのパッケージに関するものである。本発明の目的は、パッケージを破壊することなくそれらの物質やその混合物の状態を調べることを可能にする手段を供給することである。
【解決手段】本発明の目的のために、本発明のパッケージングは感光性膜またはフィルムの形状で実施された、あるいはそのような特性を表す感光性要素を備えている。結果として、固有の層厚さ変化、散乱光変化、光学的屈折率およびスペクトル変化が用いられる。 (もっと読む)


気体中の不純物を分析するための装置及び方法が提供される。この装置は、不純物を含む第1の気体を収容している第1セル208と、不純物を含まない第2の気体を収容している第2セル210とを備えている。第1セル208には第1の光ビーム201aが結合され、第2セル210には第2の光ビーム201bが結合されている。第1セル208の出力部には第1検出器214が結合され、この第1検出器214は、第1セル208内における第1光ビームの第1の減衰率に基づいて第1信号を生成する。第2セル210の出力部には第2検出器216が結合され、この第2検出器216は、第2セル210内における第2光ビームの第2の減衰率に基づいて第2信号を生成する。第1の減衰率と第2の減衰率との差に基づいて不純物の濃度が決定される。

(もっと読む)


液体中の不純物を分析するための装置及び方法が提供される。この装置は、光源102に結合されたセル204と検出器114とを備えている。セル204は、該セル204の第1の端部に配置され、光を受け取って該セル204の長手方向の軸に沿って該セル204内に導入する第1の鏡108を備えるとともに、該セル204の第2の端部に配置され、上記光を少なくとも部分的に反射させる第2の鏡110を備えている。液体供給装置210は、第1の鏡108と第2の鏡110との間で、セル204の長手方向の軸と交差するように、液体の流れ208を投与する。検出器114がセル204の第2の端部に結合され、液体を透過する光に基づいて、セル204内の光の減衰率を決定する。

(もっと読む)


本発明は、生体物質を測定する装置を製造する方法に関するもので、第1基板に分析試薬が固定された複数の反応要素を形成する段階と、個別反応要素単位に上記第1基板を切断する段階と、上記個別反応要素単位の第1基板を第2基板の所定位置に接合する段階と、を含むことを特徴とする。本発明によれば、生体物質測定装置では材料費が最小化され、生産自動化が容易なため、結局、生産コストを節減することができる。
(もっと読む)


非分散形赤外線ガスセンサ用の特有な光キャビティと、二酸化炭素濃度が100ppmから2,000ppmでの試験結果を開示している。提案するセンサモジュールは、パルス継続時間が500msのときに最大電圧を示すが、パルス継続時間が200msで最大部分電圧変化量が得られ、18,000倍の増幅率を示す。二酸化炭素濃度が100ppmから2,000ppmの間で、センサモジュールの電圧差(V)は、パルス継続時間が200msでターンオフ時間が3秒のときに200mVとなる。
(もっと読む)


細胞観察チェンバー30と光学的観察手段70とを備え、チェンバー30は、その内部に一対のウエルと、これらのウエルを連通する流路とを備え、一対のウエルのうちの一方のウエルに貯蔵された細胞浮遊溶液中の細胞が、他方のウエルに貯蔵された走化性因子含有溶液に反応して、一方のウエルから他方のウエルに流路を通って移動することができるようにされ、光学的観察手段70は、流路を通って移動する細胞をチェンバー30の外部から光学的に観察することができるようにされて成る細胞観察装置10において、チェンバー30は、その一部がケーシング20から露出するようにして、ケーシング20内に収容され、光学的観察手段70は、チェンバー30の下方に、その光軸が水平に延びるようにして、ケーシング20内に収容されている。これにより、小型化され、移動が容易で、操作性が大きく改善された細胞観察装置が得られる。 (もっと読む)


【課題】分子状汚染物質膜モデル作成ツール
【解決手段】分子状汚染物質膜が光学システムの性能に対して及ぼす影響のモデルを作成するためのシステム及び方法が開示されている。該光学システムの材料からガスの形で放出された物質の質量が、ガスの形で放出された生成物のスペクトルと相互に関連づけられる(30、31)。ガスの形で放出された生成物のスペクトルが正規化され(30)、総分子状汚染物質膜厚が、各材料から予測される(32)。該総分子状汚染物質膜の吸光スペクトルが導き出され(32)、該総分子状汚染物質膜の該導き出された吸光スペクトルに、光学システム装置関数が畳み込まれる(38)。該光学システムの性能劣化を決定するために、ソース温度の関数としての少なくとも1つの透過帯域の作図が実施される(36)。 (もっと読む)


4,081 - 4,100 / 4,171