説明

Fターム[2G059EE01]の内容

光学的手段による材料の調査、分析 (110,381) | 分析法(原理) (16,272) | 光透過、光吸収 (4,171)

Fターム[2G059EE01]に分類される特許

4,141 - 4,160 / 4,171


本発明は、極めて低い屈折率をもつ気体に基づいて気体と液体を区別するための装置及び方法を提供する。また、サンプルの浄化される様子をその場で観察できる。坑井中の流体の屈折率は、既知の屈折率を持った透明窓と流体との界面での反射光の分画Rから決定する。好ましくは、屈折率は流体を通る光の波長が大きく減衰するのではなく、適度に減衰するような波長で測定する。隣接する変換分光計は観察することにより、波長の減少から正確な屈折率を測定することができる。この反射を基にした屈折計の設計は大きく減衰する波長において減衰反射法分光器のように用いられている。 (もっと読む)


本発明は、気相または液相中の目的分子を多孔質材料に選択的に吸着させ、吸着された目的分子を検出する検出法に関する。本発明の検出方法は、前記多孔質材料が、ナノサイズの細孔を有し、該細孔が高秩序な周期的細孔構造を有し、且つ、細孔の径、形状および細孔内部の表面の構造、並びに細孔内部の表面の化学的親和性が、目的分子の吸着に適合されていることを特徴とする。本発明はさらに、前記多孔質材料とその製造方法を提供する。 (もっと読む)


本発明はセンサ1を使用する測定方法に関する測定値に対して、特に「ドリフト」誤差に関する温度依存誤差補償を行う方法および電子配置6に関する。電子回路6は1つ以上のガスおよび/またはガス混合物の存在の確立および/またはガスまたはガス混合物の濃度の演算に適合する。選択した測定サイクルT1の間に発生し確立した最高測定値Mmaxまたは最低測定値Mminはメモリー69’に格納する。選択した期間T1の間に発生し評価した最低アナログ値または最高デジタル測定値を前記メモリー69’に格納し、選択した測定サイクルまたは期間T1の最後に発生し評価した測定値Mmax、Mminと、格納したアナログまたはA/D変換器を介したデジタルの制御値65’を比較し、評価した最低または最高測定値と前記格納した制御値の差を、次の期間T2に発生する測定値の関係および/または対応する測定値の補償K1の基礎として使用することを提案する。 (もっと読む)


格子結合表面プラズモン共鳴(SPR)画像形成を実行するために特に適した光学分析ユニットは、SPRセンサなどの静止した目標センサ上に投影された入射光の角度範囲を介して走査することができる旋回光源を特徴とする。照明されたセンサからの反射画像は例えばCCDカメラにより検出され、画像および角走査データは、センサの表面上で進行する反応のリアルタイム分析を提供するために、例えば適合アルゴリズムにより処理される。 (もっと読む)


マイクロ流体装置の画像を処理する方法である。この方法は、マイクロ流体装置の第1画像を受信する。第1画像は第1状態に関連している。さらに、この方法は、マイクロ流体装置の第2画像を受信する。第2画像は第2状態に関連している。さらに、この方法は、第1画像と第2画像を第3座標空間に変換する。さらに、この方法は、変換された第1画像と変換された第2画像に関連した情報に少なくとも基づいて第3画像を取得し、また、第1状態と第2状態に関連した情報を取得するべく第3画像を処理する。
(もっと読む)


所望の光学特性を有する光ビームを発生し、アレー状に配された試料に照射できる光検査システムおよび方法である。1つの実施の形態において、光学検査システムは光源、回折素子、およびコリメート光学系(例えば、単レンズ、f−θレンズ、分割鏡、ファイバー・アレー)を含んでいる。光源から回折光学系に向けて光ビームが出射され、回折光学系は光ビームを受け、コリメート光学系に向け多数の光ビームを出射する。コリメート光学系は回折光学系から出射された光を受けて調整し、試料アレーに向け所望の光学特性を有する調整済み光ビームを出射する。光学検査システムの別の幾つかの実施の形態も記載されている。
(もっと読む)


患者の骨組織の状態を診断するため、または診断を補助するための方法において、この患者の骨組織の一部分が、光源を使用して照射される。この骨組織は、例えば、皮膚を通してかまたは切開を介して、インビボで照射され得る。あるいは、骨組織の生検が照射され得る。次いで、この骨組織によって散乱されたか、反射されたか、または透過された光についてのスペクトル内容の情報が決定され、そして少なくとも部分的に、この患者が骨組織の状態を有するか否かを決定するために使用される。
(もっと読む)


本発明は、ガラス組成物内のFe(II)およびFe(III)のレベルを測定する方法と、測定されたFe(II)およびFe(III)のレベルを用いて、ガラス材料の関連する酸化状態を決定する方法と、Fe(II)およびFe(III)の測定値に基づき、ガラス材料の品質に関する決定をさらに行う方法とを提供する。さらに、これらの方法は、時間と手間を低減して、超微細/超薄ガラスの確実な品質を決定するために提供される。
(もっと読む)


慣例の酸素計を用いて、酸素計から離れた場所に位置し得る患者を監視するために使用する、シミュレータアダプタを提供する。本発明の第1実施例では、シミュレータアダプタは、酸素計のセンサに番わせたシミュレータの指を有している。シミュレータの指は、酸素計から出力される光を検知し、かつシミュレータアダプタにフィードバックを供給して、患者がその場にいて酸素計で測定されているかのように、アダプタが、酸素計に用いられるアダプタに送信される患者の信号を適合させることを可能にする。第2実施例では、シミュレータの指の代わりに、シミュレータアダプタは、出力として、慣例の酸素計の一部をなす慣例のコネクタと番うべく適合させたコネクタを有する。この第2実施例では、シミュレータアダプタに適切な回路が設けられ、このアダプタを酸素計に直接接続することができるため、酸素計用の如何なるシミュレータの指及びセンサも不要である。患者からの信号が電磁的に影響を受け得る環境では、このシミュレータアダプタは、光ファイバケーブルにより遠隔酸素計測ユニットと接続することができるため、患者から離れて測定した生理的パラメタを表す信号は、第1実施例のシミュレータの指又は第2実施例のアダプタコネクタに直接送信される。
(もっと読む)


本発明の好ましい実施例は、共通路干渉計検査、位相基準化、能動的安定化及び差動測定を含むが、それらに限定されない、多数の戦略の組み合わせを用いて、位相ノイズの問題に取り組む位相測定用システムに向けられている。実施例は光を用いて小さな生物学的対象を画像形成する光学デバイスに向けられている。これらの実施例は、例えば、細胞生理学及び神経科学の分野に適用出来る。これらの好ましい実施例は位相測定及び画像形成技術の原理に基づく。位相測定及び画像形成技術を使う科学的動機付けは、例えば、限定せぬが、形成異常の起源の画像形成、細胞接合、神経伝達及び遺伝暗号の実施を含むことが出来るが、それらに限定されない、μm以下のレベルでの細胞生物学から導出される。細胞以下の構成部分の構造とダイナミックスは、例えば、X線及び中性子散乱を含む現在の方法と技術を使ってはそれらの自然な状態で現在研究することは出来ない。対照的に、ナノメーターの解像度を有する光ベースの技術は細胞マシナリー(cellular machinery)がその自然な状態で研究されることを可能にしている。かくして、本発明の好ましい実施例は干渉計検査及び/又は位相測定の原理に基づくシステムを含み、細胞生理学を研究するため使われる。これらのシステムは位相を測定するために光学的干渉計を使う低コヒーレンス干渉計検査(LCI)又は細胞部分自身内の干渉が使われる光散乱スペクトロスコピー(LSS)の原理を含むか、又は代わりにLCI及びLSSの原理が組み合わされ本発明のシステムに帰着する。
(もっと読む)


サンプル領域における化学物質を検出するための光センサには、光を生成し、その光がサンプル領域を通過するように導くための放射体が含まれる。また、センサには、光がサンプル領域を通過した後、光を受光し、検出器が受光する光に対応する信号を生成するための検出器が含まれる。更に、センサには、放射体と検出器との間に配置された熱光学フィルタが含まれる。光学フィルタは、放射体からの光のフィルタ処理を選択的に行うための調整可能な通過帯域を有する。光学フィルタの通過帯域は、光学フィルタの温度を変更することによって調整可能である。また、センサには、光学フィルタの通過帯域を制御し、検出器からの検出信号を受信するためのコントローラが含まれる。コントローラは、光学フィルタの通過帯域を変調し、検出信号を分析して化学物質の吸収ピークが存在するかどうかを判定する。
(もっと読む)


光源(102)がパラメトリック装置(106)をポンピングするために用いられるポンピング波(104)を発生する。パラメトリック装置(106)は縮退点またはその近傍に構成されて、広帯域出力(108)を発生する。広帯域出力(108)は化学剤(112)があるかもしれない遠隔地(110)に向けられる。広帯域出力(108)は遠隔地(110)を通して送波するかまたは遠隔地(110)から散乱させることができ、遠隔地(110)にある化学剤(112)は広帯域出力(108)の部分領域を吸収することができる。広帯域出力(108)を集光して、分散させて(114)、検出器アレイによって検出されるチャネルまたはサブバンドをつくることができる。検出器アレイはサブバンドの強度を多重化して、吸収スペクトルをつくることができる。吸収スペクトルは既知の化学剤のライブラリと比較することができ、遠隔地における化学剤の存在をリアルタイムまたはほぼリアルタイムに判定することができる。

(もっと読む)


本発明は、一つの表面のエバネッセント場(5)内で少なくとも一つの光学活性物質を検出する表面構造を有し、これによって、表面構造が、表面構造に隣接する媒体(2)にエバネッセント場(5)を発生することができるサポート(1)、特に、光ディスクに関する。表面構造は、サポート(1)の表面の一般的な向きに対して傾斜した(αエッジ)サポート(1)の表面の一つ以上の区分を具える。また、本発明は、表面構造を有するそのようなサポート(1)、特に光ディスクを用いる装置、表面構造を有するサポート(1)及び装置の使用に関する。
(もっと読む)


【課題】
【解決手段】本発明は、油およびガスで潤滑を行う装置(1)を監視する方法に関し、油およびガスで潤滑を行う装置(1)によって、油膜が、縞を形成しながら、空気流によって、供給管路(4)の壁に沿って潤滑点(2)まで運ばれることができ、本方法において、縞センサ(14)によって縞(12)の時間的変化が検出され、縞(12)の時間的変化を表す縞信号が生成される。縞信号の評価中に異常を防止する、油およびガスで潤滑を行う装置(1)を監視する従来技術の方法をさらに拡張するために、所定の平均化間隔にわたって縞信号の平均値を計算することによって縞信号を平滑化する。 (もっと読む)


本発明は、層(1)に対して異なる入射角(5)で偏光を通過させて、層(1)を通過した際の偏光状態の変化を測定、評価する、透明又は部分的に透明な層の屈折率と場合によっては層厚を三次元により測定するための方法及び装置に関する。この方法は、層(1)を間に挟み込んだ液浸媒体(3)を通過させる形で測定を行うことを特徴とする。この方法により、三つの空間方向すべてにおいて、異方性の薄い層の屈折率を高精度に測定することが可能となる。
(もっと読む)


【課題】サンプル部位被分析物濃度決定より前に処理するまたは前処理するために光刺激を使用する方法および装置が提供すること。
【解決手段】サンプル部位被分析物濃度決定より前に処理するまたは前処理するために光刺激を使用する方法および装置が提供される。より詳細には、少なくとも1つのサンプル部位でまたは近傍で、サンプリングと関連する誤差を減少することになる、サンプル部位の灌流を強化するために、光刺激が使用される。サンプル部位の灌流を増加すると、ターゲットの被分析物の体積パーセンテージが増加し、および/または血液または組織構成成分濃度が、動脈、静脈、または指先のような、さらに十分に潅流される身体区画または部位における、対応するサンプル構成成分をさらに正確におよび/または精度良くトラッキングすることを可能にする。一実施例において、光刺激を受けた部位の分析は、被分析物濃度を、さらに容易に、正確に、または精度良く決定するために、グルコースアナライザと併用して使用され、かつ別のサンプリングされない身体部分または区画の被分析物濃度の決定を可能にする。 (もっと読む)


四塩化チタンを製造する流動床反応装置(10)のガス状生成物中の一酸化炭素の二酸化炭素に対する濃度比を決定するための方法。反応装置の熱い流動床を赤外線の供給源として使用する。赤外線(18)は、反応装置の窓(15)を経て反応装置の上位部におけるガス状生成物を通過し、赤外分光計(19)に向かって誘導される。濃度比を使用して、反応装置に導入される冷たい四塩化チタンの量を制御することによって、流動床反応装置(10)の温度を制御することが可能である。
(もっと読む)


本発明は、地層流体試料を坑内で又は地表で分析し、地層流体のパラメータを決定するための波長可変ダイオードレーザ(TDL)を用いる超高分解能分光のための坑内装置及び方法を提供する。吸光分析に加えて、本発明は、TDLの波長を掃引し、狭帯域検出器を用いて、固定された波長でラマン散乱光を検出することによって、流体に対してラマン分光を行なうことができる。分光計は、坑内で集められた加圧された坑井流体試料を分析する。分析は、坑内又は地表の現場のいずれかで、行なわれる。試料特性と不純物レベルの地表の現場分析又は坑内分析をもたらすために、近赤外、中赤外、及び可視光分析も試料に対して行なわれる。現場分析又は坑内分析は、相関関係、学習ニューラルネットワーク、又は計量化学式によって評価され得る芳香族化合物、オレフィン、飽和化合物、ガス/油比率、API比重、及び種々の他のパラメータを決定することを含む。

(もっと読む)


本発明は、放射線を吸収して加熱される吸収器エレメント(19)と凹部(18)を有する支持体(17)とを備えた検出器チップ(2)からなり、例えば、非接触温度測定または赤外線ガス分光用の放射線センサーであって、吸収器エレメント(19)は、吸収器エレメント(19)の少なくとも一部が支持体(17)に接触せず、かつ、支持体(17)が支持基板(1)に実装されるように、凹部(18)上に配置されている前述の放射線センサーに関する。本発明によれば、放射線センサーは、放射線を吸収して加熱される吸収器エレメントと凹部を有する支持体とを備えた検出器、好ましくは検出器チップからなり、吸収器エレメントは、吸収器エレメントの少なくとも一部が支持体に接しないように、凹部上に配置され、支持体の凹部の少なくともベースまたはフロア表面が、少なくとも部分的に、検出のために放射線を反射する材料からなり、前述の放射線センサーを設けることができ、少なくともベースまたは凹部(18)のフロア表面が、検出のために放射線を反射し、かつ、その下方に支持基板(1)が配置される材料(7)を少なくとも部分的に有している。

(もっと読む)


本発明に係る方法と装置は、血中成分濃度の非侵襲測定に用いられる。少なくとも1つの光源がスペクトル測光を利用して光を発生させ、当該光は、脈打つ血液で供給され適用位置に在る組織を通って少なくとも1つの光検出器に案内される。光検出器の少なくとも測定信号が評価ユニットに案内される。第1、第2、第3から(n+1)番目の波長の光信号が、引き続いての対をなす時間TとT、TとT、TとTからTとTn+1で発生する。評価ユニットは所定の算術パターンにしたがい全ての波長に対する光検出器の受け取り信号を考慮して、血中成分の濃度を決定する。本発明の装置は、互いの関連において異なる波長の光を発生する少なくとも3つの光源を備えて成っている。評価ユニットは対数、割り算、掛け算、足し算、引き算を実行するための算術ユニットを備えている。本発明の方法は特に、全ヘモグロビン濃度CHbを決定するため及び脈打つ血液で供給される範囲に医療上適用される生理物質を決定するために用いられる。
(もっと読む)


4,141 - 4,160 / 4,171