説明

Fターム[3C081BA43]の内容

マイクロマシン (28,028) | 形状、構成 (11,743) | 可動部 (6,256) | 可撓性を有するもの (4,428) | 片持ち梁 (473)

Fターム[3C081BA43]に分類される特許

81 - 100 / 473


【課題】可動電極構造体に安定した状態で接点電極が形成できるようにする。
【解決手段】第2電極103の上部の後述する接点部が形成される接点部形成領域において、第2開口部105aを有する密着膜105を犠牲膜104の上に形成し、次に、第2開口部105aを覆って密着膜105の上に接点電極膜106を形成する。密着膜105は、例えば、チタン、クロム、ジルコニウム、タンタルなどの遷移金属、およびこれらの酸化物から構成することができる。接点電極膜106は、例えば、ルテニウム,ロジウム,パラジウム,オスミウム,イリジウム,および白金などの白金属の金属および金などから構成することができる。 (もっと読む)


【課題】信頼性が高く、安定した振動特性を有するMEMS振動子を提供する。
【解決手段】MEMS振動子100は、基板10と、基板10の上方に形成された第1電極20と、基板10の上方に形成された支持部30a、および支持部30aから延出し第1電極20と対向配置された梁部30bを有する第2電極30と、を含み、第1電極20は、平面視において第2電極30の外縁の外側に形成された第1側面22aと、平面視において第2電極30の外縁の内側に形成された第2側面22bと、を有し、第1側面22aは、基板10の上面10aに対して傾斜し、第2側面22bと第1電極20の上面22cとは、角部23を構成している。 (もっと読む)


【課題】 制御端子が浮遊状態になると、予期しないリーク電流などにより電極に電荷が蓄積され、電極の電位が変動し、スイッチが誤動作してしまう可能性がある。
【解決手段】 クーロン力により湾曲させることで第1の信号電極と第2の信号電極とを接触または分離することが可能な架橋部と、前記架橋部を制御するための制御端子とを有するスイッチ素子と、前記制御端子に接続された第1の不揮発性半導体素子と、前記制御端子および前記第1の不揮発性半導体素子に接続された第2の不揮発性半導体素子とを備える。 (もっと読む)


【課題】出力電力がより高く小型化が可能な振動発電素子およびそれを用いた振動発電装置を提供する。
【解決手段】支持部2aと該支持部2aに揺動自在に支持されたカンチレバー部2bとを備えたベース基板1と、カンチレバー部2bに形成されカンチレバー部2bの振動に応じて交流電力を発生する発電部3とを備えた振動発電素子10であって、発電部3は、ベース基板1の一表面1b側においてカンチレバー部2bに重なる部位に形成された下部電極4aと、該下部電極4aにおけるカンチレバー部2b側とは反対側に形成された第1の圧電層5aと、該第1の圧電層5aにおける下部電極4a側とは反対側に形成された中間電極4bと、該中間電極4bにおける第1の圧電層5aとは反対側に形成された第2の圧電層5bと、該第2の圧電層5bにおける中間電極4bとは反対側に形成された上部電極4cとを有する。 (もっと読む)


【課題】作動MEMS装置及び該作動MEMS装置を制御するためのドライバ回路を提供する。
【解決手段】ドライバ回路は、基板上に形成される複数の高電圧薄膜トランジスタ(HVTFT)を含み、各HVTFTは、制御ゲート電極、ソース電極、及び、該ソース電極が制御ゲート電極から第1の距離だけ離れるように配置されたドレイン電極を含む。このドレイン電極は、ドレイン電極のいずれか一部及び制御ゲート電極の間の最短距離が第1の距離より十分に大きいように、ドレイン電極及びソース電極間の第1の破壊電圧が制御ゲート電極及びソース電極間の第2の破壊電圧より大きいように、制御ゲート電極から離間される。複数の作動MEMS装置は、上記基板上に形成され、複数のHVTFTのうちの関連したHVTFTのドレイン電極にそれぞれ接続される。 (もっと読む)


【課題】トランスデューサーの製造コストを低減する。
【解決手段】ナノシートトランスデューサ(1)は、溝(100a)と前記溝によって互いに隔てられた電極支持部(101)と厚さ1μm未満のシート状の可撓電極(104)とが形成されたシリコンからなる基板(100)と、前記電極支持部上に形成された導電膜からなる固定電極(103)と、前記固定電極と前記電極支持部との間に形成された絶縁層(102)と、を備え、前記可撓電極は前記基板の主面に対して垂直である。 (もっと読む)


【課題】外力の大きさ及び方向、並びに加速度を検出することができ、簡易な構造で、製造を容易にすることのできる力学量センサ及び力学量センサの製造方法を提供すること。
【解決手段】本発明の一実施形態に係る力学量センサは、基板と、前記基板上に配置された固定部と、前記固定部に一端部が支持されて前記基板から離隔して配置された可動部を含む複数の可動電極と、前記複数の可動電極の他端部にそれぞれ隣接して力学量の検出方向に配置された固定電極と、前記可動電極に電気的に接続された第1端子と、前記固定電極に電気的に接続された第2端子と、を備え、前記複数の可動電極は、それぞれ内部応力を有する薄膜を含み、前記複数の可動電極の前記他端部は、それぞれ対向する前記固定電極と電気的に接触し、前記複数の可動電極の前記他端部は、印加される外力に応じて変位し、前記固定電極と電気的に非接触となることを特徴とする。 (もっと読む)


【課題】環境温度などによる共振周波数の変動を調整可能な光偏向器を提供する。
【解決手段】固定ベース60と、光反射面を有するミラー部10と、ミラー部10を揺動可能に支持する弾性支持部材20と、一端が固定ベース60に接続され、他端が弾性支持部材20に接続され、梁状部材に圧電部材が固着された一対の振動梁50とを備え、振動梁50は、交流電圧を印加することで、弾性支持部材20に捻り変形を発生して、ミラー部10を所望共振周波数で回転振動せしめる駆動梁30と、直流電圧を印加することで、弾性支持部材20に応力を与えて、共振周波数を調整する周波数調整梁40とで構成する。 (もっと読む)


【課題】パッケージング応力による基板変形が無く、かつ安価なパッケージングが可能なMEMSデバイスアセンブリを提供する。
【解決手段】MEMSデバイスアセンブリ20は、MEMSダイ22と、集積回路ダイ24とを備える。また、MEMSダイは、基板38に形成されたMEMSデバイス36とキャップ層34とを備える。パッケージング処理は、基板38にMEMSデバイス36を形成することとMEMSデバイスが存在するカンチレバー基板台を形成するためにMEMSデバイスを包囲する基板の一部分を除去することを含み、キャップ層34は基板に接続される。MEMSダイは集積回路ダイに電気接続され、MEMSダイ、集積回路ダイ、およびそれらを電気的に相互接続する相互接続部30を実質的に封止するためにモールド成形化合物32が施される。キャップ層はモールド成形化合物がMEMSデバイスと接触することを防止する。 (もっと読む)


【課題】デバイスの封止構造内に気体吸収物質を簡単な工程で、交差汚染無く形成できるマイクロマシーンを提供する。
【解決手段】マイクロマシーンの可動構造91を収容する空間を確定する基板92及び空洞65を有する被覆要素61を具備するマイクロマシーン90において、該被覆要素の前記空洞内の雰囲気に少なくとも部分的に露出する気体吸収材料の堆積物63をも併せて収容し、かつ該被覆要素をマイクロマシーンの最終封止のための半田を実施できる材料とする。 (もっと読む)


【課題】デバイス構造が形成された基板と、これを封止する基板を陽極接合する際に電気的な接続を確実に行うことができる配線接続方法を提供する。
【解決手段】第1の基板40と第2の基板45とが陽極接合され、かつ前記第1の基板と前記第2の基板とが、純度99.9質量%以上で、平均粒径0.005μm〜1.0μmの金、銀、白金及びパラジウムから選択される1種以上の金属からなる多孔質金属51,52を介して電気的に接続されたデバイス4、及び第1の基板の接続電極部及び第2の基板の接続電極部の少なくとも一方に多孔質金属(バンプ)を形成し、前記第1及び第2基板の接続電極部同士がバンプを挟んで対向するように前記第1及び第2基板を重ね合わせた後、両基板を陽極接合すると同時に多孔質金属を介して前記第1及び第2基板の接続電極部間を電気的に接続する配線接続方法。 (もっと読む)


【課題】小型の構成でありながら、移動鏡15を構成する反射膜15aの大きな移動量および並進性を確保しつつ、反射膜15aの面精度を向上させて反射光の波面の乱れを抑制する。
【解決手段】駆動機構18の板ばね部31・32は、互いに対向して配置されている。支持体33・34は、板ばね部31・32の間で互いに離間して配置され、それぞれが板ばね部31・32と連結されている。駆動部35は、板ばね部31・32の対向方向に、支持体34に対して支持体33を平行移動させる。支持体34の移動方向において、支持体33・34の厚さは、板ばね部31・32よりも厚く、支持体33における移動方向に垂直な一端面に、反射膜15aが形成されている。支持体33は、反射膜15aが露出するように板ばね部31・32と連結されている。 (もっと読む)


【課題】 SOI層のシリコンウエハで形成された枠体部と対向基板とが金属結合部を介して固定されたMEMSセンサにおいて、金属結合部を覆う保護絶縁層を欠陥無く形成できるようにしたMEMSセンサを提供する。
【解決手段】 対向絶縁層22に第1の金属層31aが形成され、機能層のシリコンウエハから分離された枠体部14に第2の金属層32aが形成され、第1の金属層31aと第2の金属層32aとが共晶接合または拡散接合で結合されている。第1の金属層31aのはみ出し部31cと対向する部分で、枠体部14に凹部18が形成され、はみ出し部31cと凹部18の底表面18bとの間に空隙部19aが形成される。CVD法などで成膜される保護絶縁層41が空隙部19aを経て金属結合部30aの外側部に欠陥なく成膜されるようになり、第1の金属層31aまたは第2の金属層32aの腐食を防止しやすくなる。 (もっと読む)


【課題】スイッチにおける損失を低減することができるMEMSスイッチの構造およびその製造方法を提供する。
【解決手段】接点金属薄膜21は、第2の配線3と対向する部分のみに設けられている。これにより、高い周波数の信号がその接点金属薄膜21を通過する距離が短くなるので、MEMSスイッチにおける損失を低減させることができる。すなわち、いわゆる表皮効果により、高周波信号の周波数が高いほど信号が導体の表面を流れるようになり、その表面が抵抗率の高い材料で覆われている場合には覆われていない場合に比べてスイッチの損失が増大する。しかしながら、上述したように第2の配線3と対向する部分のみに接点金属薄膜21を設けたので、高い周波数の信号がその接点金属薄膜21を通過する距離が短くなるので、スイッチの損失が増大するのを防ぐことができる。 (もっと読む)


【課題】固定個所の変形などの影響を支持部は受けない構成とでき、デバイス部をホルダ部に固定する位置精度を向上させつつ固定強度を良好にすることができる構造体及びその固定方法を提供する。
【解決手段】構造体はホルダ部1とデバイス部2と、を有する。デバイス部2は、一体的に形成された接着部3と弾性部4と支持部5とを備え、支持部5は弾性部4で接着部3に対して弾性支持される。ホルダ部1は、周辺部より高い段差部6を有する。接着部3は、ホルダ部1の周辺部に固定され、支持部5は、弾性変形した弾性部4の復元力により段差部6に当接させられている。 (もっと読む)


【課題】製造コストを抑制できる簡素な構成で、可動部を有する半導体素子を配線基板に対して高い密度で配置するとともに電気的に接続することを実現する。
【解決手段】可動部(112b、112c)を有し主面の縁領域に端子(116a)が形成された半導体素子(11)と、半導体素子の主面に主面が対向するカバー(111a、111b)と、半導体素子の端子よりも内側に位置し半導体素子とカバーとの間に空隙を形成する封止部(118、119)と、を備え、半導体素子の端面が配線基板(13)の主面に対向した状態において配線基板の主面に形成された端子(132,133)と半導体素子の端子(116a)とが接合されることによって、半導体素子が配線基板に固定されるとともに配線基板の主面に形成された端子と半導体素子の端子とが電気的に接続される、MEMSパッケージ(1)。 (もっと読む)


【課題】MEMSコンポーネントを収納する密封空洞を備えたMEMSデバイスおよびその製造方法を提供する。
【解決手段】MEMSデバイス1は、MEMSコンポーネント6を収納した密封空洞5を備え、空洞5は、ある厚さtを有する絶縁体層スタック3の中に形成され、これにより空洞5および絶縁体層6のスタック3は、基板2と、厚さtを有する封止絶縁体層4との間に挟まれており、MEMSコンポーネント6は、絶縁体層スタック3の厚さtおよび封止絶縁体の厚さtに渡って延びた少なくとも1つの溝8によって取り囲まれている。 (もっと読む)


【課題】2方向の加速度を精度よく感知することができ、小型化及び製造コストの低減化を可能とする2軸加速度センサを提供することを目的とする。
【解決手段】本発明は、平板状の錘部、この錘部の側面を囲う枠部、上記錘部の側面と枠部の内面とを連結する1又は複数の梁部、及び上記梁部に付設される歪み感知手段を備える平板状の2軸加速度センサであって、上記梁部の厚さが幅より大きく、上記1又は複数の梁部が、厚さ方向と垂直な直交2方向の正負それぞれの加速度に対する撓みパターンの組合せが異なる少なくとも2つの変形領域を有し、上記歪み感知手段として、上記各変形領域の両端側かつその幅方向両側近傍に二対のピエゾ抵抗素子が配設されていることを特徴とする。 (もっと読む)


【課題】衝撃が加わってX方向に過度の加速度が作用した場合でも、梁部が破損するのを防ぐ加速度センサを提供する。
【解決手段】加速度センサ100は、蓋体5と、センサ本体3と、基台4とを備える。センサ本体3は、支持部30と、梁部31と、錘部34とを備える。基台4は、錘部34と対向する部分に凹部41を有する。梁部31は、錘部34の側面の一部が凹部41の壁41A、41Bと所定の間隔dで対向するまで錘部34が凹部41側へ変位するよう反った形状に形成されている。衝撃が加速度センサ100に加わってX方向に過度の加速度が作用した際、この実施形態の加速度センサ100では、錘部34の側面の一部が凹部41の壁41A(又は41B)に当接する。 (もっと読む)


【課題】可動梁の自己駆動による影響を受けにくく、RF容量が緩やかに変化するバイアス電圧の電圧範囲を広げることができる、可変容量装置を提供する。
【解決手段】可変容量装置1は、支持板2と可動梁3とRF容量部C1A,C1Bと駆動容量部C2A,C2Bとを備える。可動梁3は片持ち梁構造であり、可動端周辺に矩形薄肉部3Eを設けて、曲げ剛性を局所的に低減した構成である。駆動容量部C2A,C2Bは、バイアス電圧が印加されて生じる駆動容量によって可動梁3を曲げ変形させる。RF容量部C1A,C1Bは、支持板2と可動梁3との間が近接状態となる領域面積に応じて容量値が変化するRF容量を生じる。 (もっと読む)


81 - 100 / 473