説明

Fターム[3G093AA04]の内容

車両用機関又は特定用途機関の制御 (95,902) | 機関の用途 (9,333) | 車両用 (7,853) | 変速機付 (2,719)

Fターム[3G093AA04]の下位に属するFターム

Fターム[3G093AA04]に分類される特許

21 - 40 / 534


【課題】発電機による発電量を十分に確保しつつ耐ストール性にも優れた発電機の制御装置を提供する。
【解決手段】本実施形態に係る発電機たるオルタネータ110の制御装置であるECU4は、エンジン回転数を検出し、運転者の操作によるエンジン回転数の低下を検出するとともに検出されたエンジン回転数が所定のエンジン回転数以下であるか否かを判定するものであり、運転者の操作によるエンジン回転数の低下が検出されず且つ検出されたエンジン回転数が所定の回転数以下と判定された場合に、前記オルタネータ110の発電量を減じるようにしている。 (もっと読む)


【課題】エンジン及びモータからの動力によって走行するハイブリッド車両において、ABS制御やスリップ率制御などの車両安定制御を安定的に実施可能なハイブリッド車両の制御装置を提供する。
【解決手段】本発明に係るハイブリッド車両の制御装置(18)は、スリップ状態にあるか否かを判定する駆動輪状態判定手段(22)と、スリップ状態と判定時にエンジン(2)及びモータ(4)の少なくとも一方の運転状態を制御することでスリップ状態から回復させる車両安定制御手段(24)と、車両安定制御手段の作動を判定する車両安定制御判定手段(27)と、車両安定制御手段の作動時にクラッチ(3)を切断状態に設定するクラッチ制御手段(28)とを備えたことを特徴とする。 (もっと読む)


【課題】加速要求に応じたモータ走行からエンジン走行への切換の際に、停止中のエンジンの始動後にエンジン回転速度を速やかに上昇させてクラッチ出力軸の回転速度に同期でき、もってクラッチ接続により迅速に走行モードを切り換えることができるハイブリッド車両の制御装置を提供する。
【解決手段】エンジン走行への切換指示がなされたときに停止中のエンジンを始動すると共に、エンジン始動及び回転同期の所要時間に相当する予測時間Tpdの経過後のクラッチ出力回転速度Noutを予測し、予測したクラッチ出力軸の回転速度Noutに所定値を加算した目標値Ntgtを走行モードの切換指示の当初からエンジン回転速度Neの制御に適用する。エンジン回転速度Neが上昇して目標値Ntgtに到達した後に、クラッチを接続して走行モードの切換を完了する。 (もっと読む)


【課題】エンジンの始動時に発生する振動を極力抑えることによりスムースに始動することのできるハイブリッド自動車のエンジン始動制御方法を提供する。
【解決手段】自動車を運行するための駆動モーター及びエンジンを始動するための始動モーターを備えたハイブリッド自動車のエンジン始動制御方法において、停止後始動するエンジンの回転を加速させるステップと、エンジンの現在の速度が設定値よりも高いか否かを判断するステップと、エンジンの現在の速度が設定値よりも高ければ、エンジンの内部に燃料を噴射するステップと、エンジンの目標速度によって始動モーターのトルクを決めるステップと、決められた始動モーターのトルクによってエンジンの速度を制御するステップと、を含み、停止後始動するエンジンの回転を加速させるステップにおいて、始動モーターのトルクは、エンジン摩擦トルクによって決められることを特徴とする。 (もっと読む)


【課題】車両の危険状態を抑制するための車両制御装置において、運転者がアクセルとブレーキとを踏み間違えたときに、車速が大きくなる前に危険状態を抑制できるようにする。
【解決手段】誤操作防止システムを構成する制御部は、アクセルの操作量の情報を示すアクセル情報を繰り返し取得し、アクセル情報に基づいて、アクセルの操作量が、予め設定された減少判定時間以内に減少閾値以上減少し、その後、予め設定された増加判定時間以内に増加した場合、運転者がアクセルとブレーキとを踏み間違えたものと判断する(S150、S160)。そして、踏み間違いと判断された場合、当該車両の加速を抑制する(S290)。このシステムによれば、アクセルの操作量が減少後に増加すれば直ちに当該車両の加速を抑制することができるので、車速が大きくなる前に加速を抑制することができる。 (もっと読む)


【課題】クリープの状態における適正な制御ができる動力伝達装置を提供すること。
【解決手段】搭乗者の操作の大きさににより前記車両の減速を指示するブレーキペダルBPについて、そのブレーキペダルの操作が行われなくなった後、車両速度が所定の速度以下であるときに、クリープ状態が所定時間以上継続しているときに、所定速度に至るまで、前記クラッチトルクを漸増させ、且つ、クラッチトルクの上昇に遅れて前記出力軸からの出力トルクの大きさを漸増させるように前記内燃機関を制御する制御装置を有することである。 (もっと読む)


【課題】機関運転を停止させておく期間を確保して燃料消費量の抑制を図る一方で、登坂路における機関運転再開時にも安定した再始動を実現することのできる車載内燃機関の自動停止始動装置を提供する。
【解決手段】本発明の車載内燃機関の自動停止始動装置である電子制御装置100は、停止条件が成立したときに機関運転を停止させる一方、クラッチ21の継合によって終了する一連の発進操作に含まれる所定の操作が実行されたことを条件に内燃機関10を再始動させる自動停止始動制御を実行する。電子制御装置100は、再始動の条件となる所定の操作を路面の上り勾配の大きさに応じて変更し、路面の上り勾配が大きいときほど一連の発進操作におけるより早い段階において実行される操作を前記所定の操作として設定する一方、路面の上り勾配が小さいときほど一連の発進操作におけるより遅い段階において実行される操作を前記所定の操作として設定する。 (もっと読む)


【課題】生産コストの上昇を抑制しつつ、手動変速機の変速時のショックを抑制する。
【解決手段】ECUは、車両の暖機が完了した状態であって(S100にてYES)、手動変速機が変速中の状態であって(S102にてYES)、かつ、ブレーキペダルが踏み込まれた状態であって、車両が減速状態であるという走行状態である場合に(S104にてYES)、ダウンシフトに対応した第1エンジン制御を実行するステップ(S106)と、車両の暖機が完了していない状態であったり(S100にてNO)、手動変速機が変速中の状態でなかったり(S102にてNO)、あるいは、上述の走行状態でなかったりした場合に(S104にてNO)、アクセルペダルの踏み込み量に応じた出力を発生させるための第2エンジン制御を実行するステップ(S108)とを含む、プログラムを実行する。 (もっと読む)


【課題】手動変速機73のシフトアップ後における、ディーゼルエンジン1の燃焼安定性の低下を回避する。
【解決手段】エンジン1が完全暖機する前の運転状態において、燃料噴射弁(インジェクタ18)は、拡散燃焼を主体とした主燃焼を行うために圧縮上死点又はそれよりも前に燃料噴射を開始する主噴射と、主燃焼の開始前に前段燃焼が生起するように、主噴射よりも前のタイミングで少なくとも1回の燃料噴射を行う前段噴射と、を実行し、EGR手段(排気ガス還流通路50、排気ガス還流弁51a、クーラバイパス弁53a)は、エンジンの運転状態に応じたEGR量の排気還流を実行する。EGR手段はまた、アクセルの全閉とクラッチ(クラッチ機構72)の開放とを伴う変速機73のシフトアッププロセスの最中に、当該シフトアッププロセスの開始直前のEGR量を保持する。 (もっと読む)


【課題】 簡単かつ低コストな構成でありながら、ディーゼルエンジン及び電動発電機が搭載されたハイブリッド車両において、アトキンソンサイクルを採用することで、燃費を改善して環境保護に貢献することができるハイブリッド車両を提供する。
【解決手段】 本発明は、ディーゼルエンジンと電動機とを駆動源として備えたハイブリッド車両であって、ディーゼルエンジン1をアトキンソンサイクルにて運転することを特徴とする。また、ディーゼルエンジン1、メカニカルクラッチ機構2、電動発電機3、変速機4が、出力伝達方向下流側に向けて、この順番で配設されたことを特徴とすることができる。 (もっと読む)


【課題】HV−MT車に適用され、種々の状況において適切なシフトフィーリングを得ることができる動力伝達制御装置を提供すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータとを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。モータの出力軸は、手動変速機の入力軸に接続される。摩擦クラッチが分断状態にあり、且つ、運転者による変速操作がなされていると判定されたことに基づいて、手動変速機の入力軸を回転駆動するためにモータのトルク(MGトルク)が調整される。これにより、変速操作中(特に、同期作動中)において、手動変速機の入力軸を回転駆動するためにその入力軸に対して任意の大きさのMGトルクが与えられ得る。従って、種々の状況に応じて同期作動中における「シフト力積」を積極的に調整することができる。 (もっと読む)


【課題】AMT付ハイブリッド車両において、EV走行モードにおいて変速機内で発生する歯打ち音によって乗員が不快感を受ける事態の発生を抑制すること。
【解決手段】この動力伝達制御装置では、クラッチトルクがゼロに維持された状態で電動機駆動トルクのみを利用して走行するEV走行モードと、クラッチトルクがゼロより大きい値に調整された状態で内燃機関駆動トルクを利用して走行するEG走行モード(又はHV走行モード)とが、走行状態に応じて選択的に実現される。EG走行モードでは、「実現される変速段」が車両の走行状態(変速マップ)に応じて変更される。「実現される変速段」が複数の走行用変速段の何れかに設定されている場合において、EG走行モードからEV走行モードへの変更がなされた場合、「実現される変速段」がニュートラル段に変更・固定される。 (もっと読む)


【課題】第1動力源を停止して第2動力源からの動力のみによる走行時に、第1動力源からの動力による走行に備えた変速機構の変速比の変更を、燃費及びドライバビリティを良好な状態に維持しつつ最小限に抑えること。
【解決手段】第1動力源と、第1動力源から駆動輪への動力を伝達する変速機構と、第2動力源とを備えた駆動システムにおいて、変速機構の変速比を制御する変速比制御装置は、第1動力源からの動力による走行時の変速機構に設定され得る変速比の第1範囲、及び第1動力源の始動中に変更可能な変速比の変化量に基づいて、第1動力源が停止した状態で設定される変速機構の変速比の第2範囲を導出する変速比範囲導出部と、車両が第2動力源からの動力のみによる走行中に、変速比範囲導出部が導出した第2範囲内に変速機構の変速比がおさまらないときのみ、変速機構の変速比が第2範囲内となるよう変速機構を制御する変速比制御部とを備える。 (もっと読む)


【課題】後退レンジへのシフト誤操作を検出するシフト誤操作検出装置において、車両が停止状態から段差を乗り越えて後退させる場合等のように、運転者の意思で後退レンジに切り換えてアクセルを大きく踏み込んで車両を後退させる場合に、後退レンジへのシフト誤操作と間違って判定されることを防止できるようにする。
【解決手段】Rレンジへの切り換え後に、アクセルセンサ14の検出値に基づいてアクセル踏み込み操作及びアクセル戻し操作の挙動を学習すると共に、Rレンジへの切り換え後にアクセルセンサ14の検出値に基づいて検出したアクセル踏み込み操作及びアクセル戻し操作の挙動をそれぞれ学習値と比較して、通常の車両後退時より急なアクセル踏み込み操作及び急なアクセル戻し操作であるか否かを判定する。その結果、通常の車両後退時より急なアクセル踏み込み操作及び急なアクセル戻し操作と判定されれば、Rレンジへのシフト誤操作と判断する。 (もっと読む)


【課題】動力源から駆動輪への動力伝達経路にワンウェイクラッチが含まれる車両において、シフトダウン時のブリッピング制御実行中における意図しない加速を防止すること。
【解決手段】駆動システムは、車両の動力源と、動力源からの動力を車両の駆動輪に伝達する第1変速機と、第1変速機と駆動輪の間に配置され、動力源からの動力のみを駆動輪側に伝達可能なワンウェイクラッチと、を有した、動力源から駆動輪への方向の動力を伝達する第1の動力伝達経路と、複数の変速段を有する第2変速機と、動力伝達経路を断接する断接部と、を有した、駆動輪から動力源への方向の動力を伝達する第2の動力伝達経路とを備える。その駆動制御装置は、断接部により第2の動力伝達経路が切断された状態で第2変速機をシフトダウンすることに伴い動力源の回転数を上げる際に、第1のワンウェイクラッチが接続しないよう、第1変速機の変速比及び動力源の回転数を制御する。 (もっと読む)


【課題】バッテリのSOCのバランスを良好に保つと共に、再生処理を短時間で終了させる。
【解決手段】エンジン10と電動機13とを有し、エンジン10もしくは電動機13により走行可能であり、またはエンジン10と電動機13とが協働して走行可能であり、排気ガスの後処理装置20を有するハイブリッド自動車1の後処理装置20のハイブリッドECU18において、後処理装置20の再生時には、エンジン10の高負荷運転により後処理装置20の内部に流入する排気ガスの温度を第一の温度以上に昇温させる第一の制御と、後処理装置20の内部に流入する排気ガスの温度が第一の温度以上のときには、後処理装置20内に、未燃焼の燃料を供給すると共に、エンジン10のトルクを電動機15のトルクによりアシストし、後処理装置20に、エンジン10が吸気した空気を送り込む第二の制御と、を実施する。 (もっと読む)


【課題】ハイブリッド車両において、ユーザの要求に応じてスポーティー性と静粛性とをバランス良く制御する。
【解決手段】車両は、エンジンと、第2MGと、第2MGの駆動回路であるインバータと、インバータのキャリア周波数fを制御するECU800とを備える。ECU800は、第1判定部810、第2判定部820、PWM制御部830を含む。第1判定部810は、パワーモード時であるか否か(パワーモード要求の有無)を判定する。第2判定部820は、手動変速モード時であるか否か(手動変速モード要求の有無)を判定する。PWM制御部830は、手動変速モード時またはパワーモード時にはキャリア周波数fを第2MG回転速度Nm2の増加に応じて増加させる。一方、手動変速モード時でもなくかつパワーモード時でもない場合、PWM制御部830は、キャリア周波数fを非可聴領域に含まれる固定値とする。 (もっと読む)


【課題】ホイールローダの走行システムにおいて、作業時の作業効率や走行始動時の加速性能を低下させずに最高走行速度を制限することができ、かつ最高走行速度の制限時のエンジン出力馬力のロスを抑え、燃費の向上を図る。
【解決手段】4速変速制御処理時、第1及び第2油圧モータ23,24の容量を連携して制御するとともに、第2油圧モータ24の最小傾転量を制限傾転量q2cmiに制限する。また、第1油圧モータ23の傾転量が最小傾転量q1minに達するとエンジン10の最高回転数を第1制限回転数Ncmax1(例えば1800rpm)に制限する。 (もっと読む)


【課題】少ない種類のパラメータによりシフトアップのタイミングを運転者に的確に伝達すること。
【解決手段】マニュアルトランスミッションを有する車両に搭載され、車両の車速に対応して予め設定されている目標加速度を、実際の加速度が超えるときには、目標加速度に実際の加速度が近付くようにアクセル開度の調整を行うアクセル開度制御部10を有する車両の制御装置1であって、アクセル開度制御部10は、車両のエンジンの回転速度が所定の値を超えるときには、目標加速度を引き下げるように制御するように構成する。 (もっと読む)


【課題】ドライバの走行要求に見合うエンジンの出力制御を実施する。
【解決手段】ECU30は、アクセルペダル31が踏み込まれているアクセル踏込状態であって、かつブレーキペダル34が踏み込まれているブレーキ踏込状態である両踏み状態であることが検出された場合に、エンジン10の出力を制限する出力制限処理を実施する。また特に、ECU30は、クラッチ手段(クラッチ装置14、クラッチペダル17)が、エンジン10と変速機15との間の動力伝達を遮断する動力遮断状態になっていることが検出された場合に、出力制限処理の実施を禁止する。 (もっと読む)


21 - 40 / 534