説明

Fターム[4G146AA16]の内容

炭素・炭素化合物 (72,636) | 炭素、炭素化合物−種類 (7,270) | 炭素 (7,120) | 炭素以外の成分を含有 (1,074) | 金属含有 (403)

Fターム[4G146AA16]に分類される特許

121 - 140 / 403


【課題】カーボンナノ材料が飛散する心配が無く、酸化物が介在する心配が無い複合材料の製造技術を提供することを課題とする。
【解決手段】図(a)に示すように、上部が開いている耐熱容器28の底にカーボンナノ材料13を入れる。次に、図(b)に示すように、カーボンナノ材料13の上に、固相のマトリックス金属材料29を載せる。図(c)に示すように、耐熱容器28に蓋30を被せて密閉し、加熱を開始する。すると、マトリックス金属材料29が軟化し、流れて耐熱容器28の内壁に到達する。
【効果】カーボンナノ材料13は、マトリックス金属材料29で密閉されたことになる。耐熱容器28内には微量の酸素が残存しているが、マトリックス金属材料29で密閉された後には、残存酸素がカーボンナノ材料13又はSi被覆カーボンナノ材料25に到達する心配はなく、酸化等の心配が少なくなる。 (もっと読む)


(a)粉の最大粒子サイズが2μm以上で、かつ1mm以下の結晶質のダイヤモンド粉を供給すること;(b)微粉を製造するために、窒素ジェットミリングによる微粒子化を用いて前記結晶質のミクロンダイヤモンド粉を粉砕すること;(c)炭化タングステンの遊星ボールミルを用いてステップb)に記載の微粉をナノミリングすること;(d)ステップc)に記載のナノミリングされた粉を酸処理すること;(e)遠心分離によって立方晶ダイヤモンドのナノ結晶(10)を抽出すること;の連続したステップを含む、立方晶ダイヤモンドのナノ結晶(10)を製造する方法。有利には円形の立方晶ダイヤモンドのナノ結晶が製造される。 (もっと読む)


【課題】電池の負極材として使用される改質カーボン材を提供し、更に、前記改質カーボン材の製造方法、前記改質カーボン材を負極材に使用されているリチウムイオン二次電池を提供する。
【解決手段】基材としてのカーボン材の表面に、スズ分及び硫黄分の含有粒子が複数付着していることを特徴とする改質カーボン材、並びに、その製造方法、及びそれを負極材としたリチウムイオン二次電池。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


【課題】電子を放出するエミッションサイトの数を増やすことで発光効率を向上させたエミッタの製造方法、エミッタ、電界放出発光素子の製造方法、電界放出発光素子及び照明装置を提供する。
【解決手段】本発明のエミッタ製造方法は、金属物質をカーボンナノチューブに内包させる内包ステップと、基板に塗布されたカーボンナノチューブを大気雰囲気、窒素雰囲気及び一酸化炭素雰囲気の何れかで焼成し、カーボンナノチューブとカーボンナノチューブに内包される金属物質との接面を酸化反応させ、カーボンナノチューブを切断する切断ステップと、を有している。 (もっと読む)


【課題】負の屈折率を有するメタマテリアルにおいて、電磁波の伝播効率を向上させる。
【解決手段】本発明は、複数の単位素子から構成され負の屈折率を有するメタマテリアルであって、単位素子の少なくとも一部が、グラフェン1により構成されるものである。また、複数のグラフェン1が、層間距離0.2nm以上となるように配置されることが好ましい。また、2層のグラフェン1が、層間距離0.14nm以下となるように配置されたものを単位層とし、複数の単位層が、層間距離0.2nm以上となるように配置されてもよい。 (もっと読む)


金属およびナノ粒子、とりわけカーボンナノチューブを含む複合材料ならびにその製造方法が本明細書内に開示される。金属粉末およびナノ粒子は、1nmから100nmの範囲の平均サイズ、好ましくは、10nmから100nmの範囲の平均サイズ、または100nmより大きくかつ200nm以下の範囲の平均サイズを有し、前記ナノ粒子によって少なくとも部分的に互いに分離される金属結晶を含む複合材料を形成するよう、メカニカルアロイングによって処理される。 (もっと読む)


【課題】ナノチューブ、ナノロッドなどの微細構造体からなり、しかも凝集が高度に抑制された微細構造材料、あるいはこのような微細構造体に金属、高分子有機物などが担持された微細構造材料の製造方法を提供すること。
【解決手段】気化性物質と前記気化性物質の良溶媒とを含む第1溶液を、微細構造体に接触させる第1工程と、前記気化性物質の貧溶媒を含む第2溶液を、前記第1溶液に添加する第2工程と、前記良溶媒及び前記貧溶媒を除去し、前記微細構造体と前記気化性物質とを含む複合体を得る第3工程と、前記複合体から前記気化性物質を気化させる第4工程とを備えた微細構造材料の製造方法。前記第1溶液及び/又は前記第2溶液は、金属錯体、金属塩、金属ナノ粒子、高分子有機物及び低分子有機物から選ばれるいずれか1以上をさらに含んでいても良い。 (もっと読む)


【課題】製造後の炭素繊維に含まれる鉄系不純物を乾式で効率よく除去する気相法炭素繊維の鉄系不純物除去方法を提供する。
【解決手段】炭素源と鉄系触媒を用いて製造された気相法炭素繊維中の鉄系不純物の乾式の除去方法であって、炭素繊維と鉄系不純物とを含む炭素繊維の凝集体を解砕手段3により解砕し、次いで、解砕された炭素繊維を、電磁石を具備する鉄系不純物除去手段4に供給して鉄系不純物を除去処理する気相法炭素繊維中の鉄系不純物の除去方法である。 (もっと読む)


本発明は、グラファイトのような炭素系粒子と銅とが互いに混合された炭素系粒子/銅複合材料の製造方法に関するものであって、(ステップ.1)主鎖が炭素からなる高分子有機化合物と銅前駆体とを溶媒に溶解させた溶液を、炭素系粒子を第1分散媒に分散させた分散液と混合して混合物を生成するステップ;(ステップ.2)上記混合物に第1還元剤を投入して、炭素系粒子の表面に酸化第一銅粒子が付着された複合粒子を形成するステップ:及び(ステップ.3)上記複合粒子を非酸化性雰囲気で焼成するステップを含む。本発明の製造方法によれば、炭素系粒子と銅とがよく混合された複合材料を得ることができる。 (もっと読む)


【課題】炭素に先立って金属が蒸発するのを抑制することによって、カーボンナノチューブの収率向上とカーボンナノチューブの純度向上とを図ることができる金属−炭素複合材料を提供することを目的とする。
【解決手段】炭素材料とこの炭素材料に分散された金属微粒子2とを備えた金属−炭素複合材料であって、上記炭素材料は炭素骨材1とこの炭素骨材1より黒鉛化度が低いピッチ3とから構成され、且つ、上記炭素骨材1と上記金属微粒子2とを含み内部に開気孔4を備えた基部と、この基部の開気孔4内に設けられ上記金属微粒子2から成る充填部と、から構成されることを特徴とする。 (もっと読む)


【課題】安価で高性能な触媒材料となる多孔質炭素材料及びその製造方法並びに燃料電池を提供する。
【解決手段】グラファイトを液相酸化させて酸化グラファイトを生成する工程と、酸化グラファイトを含有させたアルカリ性の溶液に金属錯体を添加してイオン交換によって酸化グラファイトに金属錯体中の金属を導入する工程と、金属が導入された酸化グラファイトを濾別して乾燥させる工程と、乾燥させた酸化グラファイトを空気中、真空中または不活性ガス中で焼成する工程とにより多孔質炭素材料を製造する。この多孔質炭素材料で生成した触媒を備えた燃料電池とする。 (もっと読む)


【課題】亜鉛(Zn)、アンチモン(Sb)及び炭素(C)を機械的合成方法で合成して亜鉛アンチモナイド−炭素複合体を製造する方法及び該複合体を活物質として含む負極材料を提供する。
【解決手段】亜鉛アンチモナイド−炭素複合体の製造方法では、亜鉛アンチモナイド二元系合金の機械的性質を用いて簡単且つ迅速に効率よく複合体を製造することができる。また、上記複合体を負極活物質として含む負極材料を二次電池に適用する場合、優れた初期効率を示し、且つ粒子粗大化による体積変化という問題を生じさせることなく、極めて優れた高率特性及び充放電特性を示す。 (もっと読む)


【課題】炭素材料に含まれる不可避的不純物である金属粒子を効率良く除去するとともに、電池内に存在していても電池性能に悪影響を及ぼさない形態に変換する。
【解決手段】スラリー調製工程および通電工程を含む方法で、不可避的不純物として金属粒子を含有する炭素材料を精製する。スラリー調製工程では、炭素材料の酸性水性スラリーを調製する。通電工程では、炭素材料の酸性水性スラリーに攪拌下に通電を行う。これにより、金属粒子を効率良く除去できる。また、金属粒子の一部が炭素材料に付着して残存しても、イオン化され、電池の充放電反応に対する活性が著しく減少しているので、電池性能に悪影響を及ぼさない。 (もっと読む)


【課題】大気中でも安定した複合材を容易に得ることができる複合材の製造方法及び半導体装置の製造方法を提供する。
【解決手段】基体1上に、複数の表面酸化微粒子2を堆積する。表面酸化微粒子2の直径は10nm以下であることが好ましく、例えば0.5nm〜5nm程度である。表面酸化微粒子2は、グラファイト層を形成する際の触媒として機能し得るコバルト等の強磁性体金属微粒子とこの表面を覆う酸化膜から構成されている。次いで、炉内に基体1及び表面酸化微粒子2を挿入し、炉内を高真空にして基体1を510℃程度まで昇温する。この結果、基体1及び表面酸化微粒子2に付着していた異物等が除去される。その後、炉内の雰囲気を炭化水素系ガス雰囲気にする。この結果、表面酸化微粒子2の表面に存在した酸化膜が還元され、更に、強磁性体金属微粒子の表面にグラファイトが析出し、グラファイト被覆微粒子3が強磁性体複合微粒子として得られる。 (もっと読む)


【課題】半溶融状態での撹拌を維持しながら、カーボンナノ材料に好適なカーボンナノ複合マグネシウム合金素材の製造方法することを提供することを課題とする。
【解決手段】マグネシウム合金を加熱して半溶融状態にする半溶融工程と、半溶融状態のマグネシウム合金へカーボンナノ材料を投入し撹拌する第1撹拌工程と、カーボンナノ材料の投入が終わった半溶融物を、半溶融温度領域で且つ前記第1撹拌工程での温度より高い温度で撹拌することでカーボンナノ複合マグネシウム合金素材を得る第2撹拌工程と、からなる。 (もっと読む)


【課題】元来有する細孔機能を維持しながら担持された金属が有する機能を発現可能なミクロポーラス炭素系材料を提供する。
【解決手段】ミクロポーラス炭素系材料5であって、0.7nm以上2nm以下の範囲内の3次元の長周期規則構造と、ミクロ細孔2aとを有するミクロポーラス炭素系材料であって、ミクロ細孔2a表面に遷移金属4が担持されている。この材料を、遷移金属を含む多孔質材料の表面及びミクロ細孔内に有機化合物を導入し、この有機化合物を化学気相成長法により炭化して遷移金属を含むミクロポーラス炭素系材料と多孔質材料の複合体を得る工程と、多孔質材料を除去する工程とを有する方法、又は多孔質材料の表面に有機化合物を導入して化学気相成長法によりミクロポーラス炭素系材料を得て、このミクロポーラス炭素系材料を遷移金属塩溶液中に浸漬・含浸し、ミクロポーラス炭素系材料の表面に遷移金属を担持する方法により得る。 (もっと読む)


【課題】
鶏糞を原料として、細孔の発達が十分で比表面積の大きい活性炭を、簡易な設備で容易に、安価に製造する方法を提供すること。
【解決手段】
鶏糞炭化物を酸処理する。 (もっと読む)


【課題】電気泳動法と電解メッキ法の同時実施によって、ナノ粒子と金属がカーボン纎維に同時に混合附着されるようにした多成分同時蒸着による多機能性複合纎維と、これを具備した複合材料及び多機能性複合纎維の製造方法を提供することを課題とする。
【解決手段】本発明による多成分同時蒸着による多機能性複合纎維は、直径が5〜10μmの外径を持つ連続纎維が多数本纏まった束形状を持つカーボン纎維120と、前記カーボン纎維120の外面に電気泳動過程を通じて附着されるナノ粒子160と、前記カーボン纎維160の外面に電解メッキ過程を通じて附着される金属140を含んで構成されて、前記ナノ粒子160と金属140は電気泳動過程と電解メッキ過程の同時実施によって、前記カーボン纎維120の外面に混合した状態で附着されたことを特徴とする。 (もっと読む)


【課題】放電容量及びレート特性に優れた電気化学素子を形成可能な活物質を提供すること。
【解決手段】本発明の活物質2は、下記化学式(1)で表される組成を有する化合物を含む化合物粒子4と、化合物粒子4を被覆する炭素層6と、炭素粒子8と、を備える。
LiMXO・・・(1)
[化学式(1)中、aは0.9≦a≦2を満たし、MはFe、Mn、Co、Ni及びVOからなる群より選ばれる一種を表し、XはP、Si、S、V、及びTiからなる群より選ばれる一種を表す。] (もっと読む)


121 - 140 / 403