説明

Fターム[4G169DA05]の内容

触媒 (289,788) | 使用形態 (6,950) | 固体 (6,447)

Fターム[4G169DA05]の下位に属するFターム

Fターム[4G169DA05]に分類される特許

2,201 - 2,220 / 2,346


プロパンおよび/またはブタンを、アルキルメルカプタンで汚染されている炭化水素供給原料から、前記プロパンおよび/またはブタンを含有する分離されたオーバーヘッド流れが50〜100℃の範囲の温度になるような圧力にて分別蒸留によって分離する。炭化水素供給原料中に充分な量の酸素を導入して存在しているメルカプタンを酸化し、こうして得られる混合物を、一般的な条件下にてメルカプタンをより高い沸点のイオウ化合物に酸化することができる触媒の少なくとも1つの床を含んだ塔において分別蒸留に付す。これらの高沸点イオウ化合物を蒸留塔から液相の一部として分離する。 (もっと読む)


シリカ・アルミナ触媒組成物および該触媒を用いて炭化水素質供給物を転化する方法が開示されている。本発明は高度に均質な非晶質シリカ・アルミナ・コーゲル物質に関し、その特性によりそれは単独または他の触媒との組合せで炭化水素質供給物の水素化処理に特に有用となる。本発明は、表面対本体シリカ/アルミナ比(SB比)が約0.7〜約1.3、好ましくは約0.8〜約1.2、より好ましくは約0.9〜約1.1、そして最も好ましくは1.0であり、結晶アルミナ相が約10%以下、好ましくは約5%以下の量で存在する、高度に均質な非晶質シリカ・アルミナ触媒に関する。本発明の触媒は、他のシリカ・アルミナ触媒と比較して、より高い活性およびより良い製品選択性を示す。
(もっと読む)


【課題】 被担持体を担体へ高分散化させることにより、従来技術に比して浄化性能及び耐熱性能を向上させた排ガス浄化触媒を提供する。
【解決手段】 アルミナと、上記アルミナに担持され、LnAlO(Ln:希土類金属)で表されるペロブスカイト型複合酸化物と、上記複合酸化物に担持された貴金属とを備え、上記アルミナの細孔内に触媒成分を含有する溶液を浸み込ませ、細孔壁に固定させる工程を経る方法により得られ、上記ペロブスカイト型複合酸化物の比表面積が5m/g以上である。 (もっと読む)


【課題】
本発明は、単層カーボンナノチューブのみを比較的低温で、効率よく高純度に製造でき、生成速度が速く、量産性に優れた単層カーボンナノチューブの製造方法および製造装置を提供することを目的とするものである。
【課題を解決するための手段】
基板の表面をクリーニングする工程と、クリーニングされた基板の表面に、触媒材料を形成する工程と、続いてカーボンナノチューブを形成する工程と、その後、形成された不純物を削減する工程とを含むカーボンナノチューブの製造方法において、触媒材料を形成する工程で、触媒材料を形成する前に、前記クリーニングされた基板の表面に、基板の表面と触媒材料との反応を防止するための反応防止層を形成し、触媒材料形成後、その上に分散材料を形成する。 (もっと読む)


ナノワイヤの成長に用いるための、ナノスケールの大きさの触媒領域からなる所定のパターンを形成する方法を提供する。当該方法は、非触媒材料によって包囲された触媒ナノアイランドあるいはナノスケールの触媒材料領域からなるアレイを製造するための、1つ又は複数のナノインプリンティングステップを包含する。
(もっと読む)


【課題】自動車排ガス浄化触媒の担体に好適な低温域で高い触媒活性を与える物質を提供する。
【解決手段】熱重量測定による50〜1000℃での重量減少に対する50〜180℃での重量減少の割合が30%以上の、例えば希土類元素類の1種以上と遷移金属元素の1種以上を含むペロブスカイト型複合酸化物。特に構造式RTO3において、Rは希土類元素類の1種以上で構成され、Tは遷移金属元素の1種以上で構成されるもの、あるいはまた、Rは希土類元素類の1種以上と、アルカリ金属元素およびアルカリ土類金属元素の中から選ばれる1種以上とで構成され、Tは遷移金属元素の1種以上で構成されるものが好適に採用できる。ここで「希土類元素類」とは希土類元素にYを加えた元素群をいう。 (もっと読む)


【課題】メルカプタンと共に天然ガス又は不活性ガスを含むガス流からメルカプタンを除去する簡単で効率的な方法を提供すること。
【解決手段】本発明は(a)天然ガス又は不活性ガスとメルカプタンとを含む第一ガス流を水素の存在下、水素化脱硫触媒と接触させて、天然ガス又は不活性ガスを含み、メルカプタンを欠き、HSに富む第二ガス流を得る工程、(b)HS除去ユニット中で該天然ガス又は不活性ガスを含む第二ガス流からHSを除去して、天然ガス又は不活性ガスを含み、メルカプタンを欠く精製ガス流を得る工程、を含む天然ガス又は不活性ガスとメルカプタンとを含むガス流からのメルカプタンの除去方法を提供する。 (もっと読む)


【課題】 本発明の課題は、熱交換エレメント内部を十分に清浄化することができる熱交換ユニットを提供することにある。
【解決手段】 熱交換ユニット100,200は、室内空気排出路8、室外空気供給路9、熱交換エレメント12,220、触媒、第1活性種生成部15、バイパス路301,321、および給気経路切換部311,331を備える。活性種生成部15は、熱交換エレメント12,220の給気流れ方向上流側および排気流れ方向上流側の少なくとも給気流れ方向上流側に配置される。バイパス路は、給気を、熱交換エレメントを介させた後に、室内空気排出路に流入させるための通路である。給気経路切換部は、給気SAを室内に供給する第1状態と、給気をバイパス路に流入させる第2状態とを切換可能である。 (もっと読む)


【課題】 自己酸化内部加熱型の水蒸気改質方法において、改質触媒と酸化触媒を混合した混合触媒の劣化を防止すると共に改質効率の低下を抑制する。
【解決手段】 炭化水素を含む原料ガス、水蒸気及び酸素含有ガスを改質触媒と酸化触媒を混合した混合触媒に供給して水素リッチな改質ガスを生成する自己酸化内部加熱型の水蒸気改質方法において、前記混合触媒としてNi系改質触媒と貴金属系酸化触媒を含み、Niと貴金属を重量比で100:0.05〜100:3の割合で含むものを使用する。 (もっと読む)


【課題】 燃料、例えばガソリンおよび/または灯油を製造することができるオレフィン類のオリゴマー化方法に関する。
【解決手段】 オレフィンオリゴマー化方法は、5重量%を超えるが95重量%未満のシリカ(SiO)を含むシリカ−アルミナをベースとする非ゼオライト担体を含み、以下の特徴を有する特定のシリカ−アルミナ触媒を採用する。総細孔容積:0.1〜0.6ml/g;BET比表面積:100〜550m/g;140Å超の直径の細孔に含まれる細孔容積:0.1ml/g未満;160Å超の直径の細孔に含まれる細孔容積:0.1ml/g未満;200Å超の直径の細孔に含まれる細孔容積:0.1ml;500Å超の直径の細孔に含まれる細孔容積:0.1ml;アルファ、ロー、カイ、エータ、ガンマ、カッパ、テータおよびデルタアルミナからなる群に含まれる少なくとも1種の遷移アルミナの少なくとも主特性ピークを含むX線回折図。 (もっと読む)


【課題】 多孔質複合酸化物の細孔構造の制御性が良好でかつ収率の高い製造方法を提供する。
【解決手段】 加水分解することにより水酸化物もしくは酸化物を生成する第1の金属元素の化合物を有機溶媒に溶解した溶液と、有機溶媒中に界面活性剤が形成する逆ミセルの内部の水相に第2以降の金属元素のイオンを含むエマルションとを混合し、この逆ミセルの界面において第1の金属元素の化合物を加水分解させるとともに第2以降の金属元素を取り込ませ、重縮合させて複合酸化物の前駆体の一次粒子を形成し、この一次粒子を含む系において一次粒子を凝集させて二次粒子を形成し、さらにこの二次粒子を凝集させることを含み、この加水分解時に上記逆ミセル内の水相における水素イオンを除く陽イオン濃度を2mol/L以上、油相と水相との体積比(O/W)を40以下とする。 (もっと読む)


【課題】 基板上に成長するSWNTの配向状態を、平行方向又は垂直方向に制御することのできるSWNT合成用触媒;基板上に分散・担持される主触媒金属の分散密度を制御できるSWNT合成用触媒の調製方法;一酸化炭素を用いた容易かつ低コストであって、常圧、低温で行うことができ、基板上に成長するSWNTの配向状態を制御できるSWNTの製造方法を提供。
【解決手段】 基板2上に触媒金属が担持されてなる単層カーボンナノチューブ合成用触媒であって、前記触媒金属が、8族、9族、10族からなる主触媒金属3と、6族からなる助触媒金属4とから構成され、この主触媒金属3が、前記基板2上に疎に分散されて担持されている。 (もっと読む)


【課題】 触媒金属粒子の粒子径、担持量および分散性に優れた燃料電池用電極触媒の製造方法を提供する。
【解決手段】 導電性担体と触媒金属原料とを含む混合液中において、触媒金属原料を還元する過程を、触媒金属粒子生成工程と触媒金属粒成長工程とに分け、触媒金属生成工程よりも触媒金属粒子成長工程の還元反応速度を大きくする燃料電池用電極触媒の製造方法である。 (もっと読む)


【課題】 本発明の課題は、熱交換エレメント内部を十分に清浄化することができる熱交換ユニットを提供することにある。
【解決手段】 熱交換ユニット100,200は、室内空気排出路8、室外空気供給路9、熱交換エレメント12,220、触媒、活性種生成部15、排気循環路341、および排気経路切換部351を備える。活性種生成部は、熱交換エレメントの給気流れ方向上流側および排気流れ方向上流側の少なくとも給気流れ方向上流側に配置される。排気循環路は、排気EAを、熱交換エレメントを介させた後に、熱交換エレメントの排気流れ方向上流側の室内空気排出路に流入させるための通路である。排気経路切換部は、室内空気を排気EAとして室外に排出する第3状態と、排気を排気循環路に流入させる第4状態とを切換可能である。 (もっと読む)


【課題】テンプレート法によるセラミックスナノ粒子の成形方法及びその焼結体を提供する。
【解決手段】有機系基質粒子表面上にセラミックスナノ粒子を被覆させたセラミックスナノ粒子被覆複合体を構成要素とするナノ粒子成形体であって、原料のセラミックスナノ粒子の分散液を調製し、このナノ粒子を、サブミクロンサイズの径を有する有機系基質粒子を含む水溶液中に導入し、その表面電荷の違いによって被覆反応を行い、セラミックスナノ粒子被覆複合体を作製し、上記ナノ粒子被覆複合体を湿式成形してセラミックスナノ粒子成形体を作製する、ことにより得られる、セラミックスナノ粒子成形体、その焼成体からなる多孔質セラミックス、それらの製造方法、及びその応用製品。 (もっと読む)


【課題】第一の課題は、廃液中の硝酸性窒素を取扱い容易で無害なガスに変えて除去する方法を提供することにある。第二の課題は、硝酸性窒素含有廃液を低コストで浄化する方法を提供することにある。
【解決手段】硝酸性窒素を含む酸性廃液を例えば200〜350℃、飽和圧以上の高温高圧下で処理する第一工程と、その後に液のpHを上げ、第一工程と同一又は異なる高温高圧下で処理する第二工程とを備えることを特徴とし、場合により前記第一工程の前に、硝酸性窒素を含む中性もしくはアルカリ性の廃液をクエン酸等の有機酸含有廃液にて酸性にし、前記酸性廃液とする前工程を備える廃液浄化方法である。 (もっと読む)


銅成分を約2から20重量%有していて前記銅成分の少なくとも50重量%が酸化銅,酸化アルミニウム−スピネルの形態である非発火性触媒を製造する方法を提供する。この触媒の調製は、銅前駆体とアルミナ前駆体の混合物を生じさせ、前記混合物を共押出し加工し、その共押出し加工品を乾燥させそしてその乾燥させた共押出し加工品に焼成を少なくとも600℃の温度で受けさせることで実施可能である。本発明は、他の面において、また、銅が基になっている触媒を活性化させる方法および銅が基になっている失活した触媒を再生させる方法にも関する。
(もっと読む)


【課題】 多孔質複合酸化物の細孔分布の制御性が良好であり、また収率を向上させて工業的実用性の高い製造方法を提供する。
【解決手段】 第1の金属元素の化合物を有機溶媒に溶解した溶液と、有機溶媒中に界面活性剤が形成する逆ミセルの内部の水相に第2以降の金属元素のイオンを含むエマルションとを混合し、この逆ミセルの界面において第1の金属元素の化合物を加水分解させるとともに第2以降の金属元素を取り込ませ、重縮合させて複合酸化物の前駆体の一次粒子を形成し、この一次粒子を含む系において一次粒子を凝集させて二次粒子を形成し、かつこの二次粒子を凝集させることを含み、上記逆ミセル内の水相における水素イオンを除く陽イオンの濃度を2mol/L以上とするとともに、その陽イオンの一部である金属イオンの濃度によって前記複合酸化物における細孔径を制御する。 (もっと読む)


【課題】内燃機関の排ガス温度域において安定して溶融することでPMの捕集率を高めるとともにPMとの接触面積をさらに高め、特に自動車の排気系に安定して配置できる実用的な粒子状物質浄化材とする。
【解決手段】炭酸銀、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、希土類元素の炭酸塩、ハロゲン化銀、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物から選ばれる少なくとも一種及び/又はこれらから選ばれる複数種が複合化した複合塩を含み、固体担体に担持されたスート捕集成分と、
硝酸銀、アルカリ金属の硝酸塩、アルカリ土類金属の硝酸塩及び希土類元素の硝酸塩から選ばれる少なくとも一種及び/又はこれらから選ばれる複数種が複合化した複合硝酸塩を含み、固体担体に担持されたスート浄化成分と、から構成した。
PM中のスートはスート捕集成分2に捕集され、捕集されたスートは近傍に存在するスート浄化成分3によって効率良く酸化浄化されCO2 となって排出される。 (もっと読む)


【課題】気体状態の炭素源を鉄を含む少なくとも一種の遷移金属の酸化されていない金属の被覆を有する多孔質アルミナ担体から成る少なくとも一種の担持固体触媒と接触させる、炭素源の分解によって規則化されたカーボンナノチューブを選択的に製造する方法。
【解決方法】使用する担持固体触媒が25μm〜2.5mmの平均粒径を有し、鉄合金皮膜がアルミナ担体のマクロ形状の表面の75%以上を被覆している触媒粒子から主として成る。鉄合金皮膜は複数の互いに凝集した金属球から成るクラスタの形をしていることができる。
(もっと読む)


2,201 - 2,220 / 2,346